Dynamic Foundation from web

Embed Size (px)

DESCRIPTION

dynamic foundation from theori to practice

Citation preview

  • 1.0 GENERAL

    1.1 Scope ----------------------------------------------------------------------------------------1.2 Definitions ----------------------------------------------------------------------------------------

    2.0 REFERENCE CODES, STANDARD AND PROJECT DOCUMENTS

    2.1 Industry Codes and Standards ------------------------------------------------------------------2.2 Company References ------------------------------------------------------------------2.3 Saudi Arabian Standard Organization ------------------------------------------------------------------2.4 Project Documents ------------------------------------------------------------------2.5 Reference Document ------------------------------------------------------------------

    3.0 MATERIALS AND UNITS

    3.1 Materials ----------------------------------------------------------------------------------3.2 Units of Measurements ----------------------------------------------------------------------------------

    4.0 DYNAMIC FOUNDATION REQUIREMENTS

    4.1 Foundation Grouping for Vibrating Machinery -------------------------------------------------------4.2 General Design Requirements -------------------------------------------------------

    5.0 BLOWER FOUNDATION

    5.1 General Sketch -----------------------------------------------------------------------5.2 The Soil and Foundation Paramete-----------------------------------------------------------------------5.3 Foundation Data -----------------------------------------------------------------------5.4 Equipment Data -----------------------------------------------------------------------5.5 Machine Data -----------------------------------------------------------------------

    00

    0

    00

    0

    PAGE

    0

    0

    0

    TABLE OF CONTENTS

    DECRIPTION

    00

    00

    00

    0

  • 6.0 CHECK FOR BLOWER FOUNDATION DESIGN

    6.1 The Mass Ratio of Blower Foundation -------------------------------------------------------6.2 The Minumum Thickness of Concrete Foundati -------------------------------------------------------6.3 The Width of Concrete Foundation -------------------------------------------------------6.4 Allowable Soil Bearing Pressure -------------------------------------------------------6.5 Allowable Eccentricities for Concrete Foundatio-------------------------------------------------------6.6 Rebar Check -------------------------------------------------------

    ATTACHMENT (1)- Dynamic Analysis

    ATTACHMENT (2)- Engineering Data

    00

    00

    00

  • 1.0 GENERAL

    1.1 Scope

    1.2 Definitions

    Project :Company : SATORP(Saudi Aramco Total Refining and Petrochemical Company)Contractor :Location : Industrial Site of Jubail 2, The West Coast of Arabian Gulf, Saudi

    2.0 REFERENCE CODES, STANDARD AND PROJECT DOCUMENTS

    2.1 Industry Codes and Standards

    ACI-318-02 Building Code Requirements for Reinforced ConcreteMinimum Design Loads for Buildings and Other Structures

    2.2 Company References

    JERES-M-001 Civil and Structural Design CriteriaJERES-Q-001 Criteria for Design and Construction of Concrete StructuresJERES-Q-005 Concrete FoundationsJERES-Q-007 Foundations and Supporting Structure for Heavy MachineryJERES-Q-010 Cement Based, Non-Shrink Grout for Structural and Equipment GroutingJERES-Q-011 Epoxy Grout for Machinery SupportJERMS-H-9106 Epoxy Coating of Steel Reinforcing Bars

    2.3 Saudi Arabian Standard Organization

    SASSO SSA 2 Steel Bars for the Reinfocement of ConcreteSASSO SSA 224 Steel Fabric for Reinforcement of Concrete

    This calculation report is relevant to the design of C.A.BLOWER Foundation (551-B-1001/2001/3001/4001)

    ASCE 7-05

  • 2.4 Project Documents

    SA-JER-PUAAA-SKEC-468002 Design Criteria for Civil and StructureSA-JER-PUAAA-SKEC-588001 Geotechnical Investigation ReportSA-JER-PUAAA-SKEC-468001 Geotechnical & Foundation Design Basis

    2.5 Reference Document

    Design of Structures and Foundations for Vibrating Machines by Suresh C. Arya

    3.0 MATERIALS AND UNITS

    3.1 Materials

    3.1.1 Concrete

    - Cement

    1) Below Grade (up to 150 mm above grade)Type - V Portland cement (JERES-Q-001 and ASTM 150) orType - I Portland cement (JERES-Q-001 and ASTM 150) + Silica Fume 7%

    2) Above Grade (from 150 mm above grade)Type - I Portland cement (JERES-Q-001 and ASTM 150)

    - Specified Compressive Cylinder Strength at 28 Days

    1) f'c = 35 Mpa for basins and water retaining structures2) f'c = 28 Mpa for foundations, walls and pavings

    - Unit Weight for Reinforced Concrete

    1) Wc = 24 kN/m

    - Modulus of elasticity

    1) Ec = (f'c = 28 Mpa)2) Ec = (f'c = 35 Mpa)

    24800 Mpa27800 Mpa

  • 3.1.2 Reinforcing Bar

    1) Reinforcing steel bars shall conform to SASO SSA 2, hot-rolled, high tensile, deformed steel.2) Characteristic Strength (ACI 318M)

    = 422 Mpa

    3) Modulus of Elasticity- Es = 200,000 Mpa

    3.1.3 Anchor Bolt

    1) Threaded Anchor Bolts : ASTM A36/A36M or ASTM F1554, Gr. 36 - Headed Bolts : ASTM A307 Grade A - Washers : ASTM F436/F436M - Nuts : ASTM A563 Grade A, Heavy Hex or ASTM A 563M2) High Strength Anchor Bolts - Anchor Bolts : ASTM A193/A193M Gr. B7 or ASTM F1554, Gr. 105 - Washers : ASTM F436/F436M - Heavy Hex Nuts : ASTM A194/A194M or ASTM A563, DH3) Min. Anchor Bolt Diameter : 20 mm4) For Corrosion Allowance : Anchor Bolt Diameter + 3 mm.

    3.1.4 Grout for Machinery Support

    When type of grout is not specified by the equiment Manufacturer,cenmentitious grout shall be used for any of the following

    1) Non-Shrink Grout for Structural and Equipment- Equipment with driver horsepower < 500 (373 kW)- RPM of Equipment < 3600 RPM- Total weight of Equipment < 2270 kg

    2) Epoxy Grout for Machinery Support- Equipment with driver horsepower 500 (373 kW)- RPM of Equipment 3600 RPM- Total weight of Equipment 2270 kg

    - fy

  • 3.2 Units of Measurements

    The Metric units shall be used :

    - Force : kN- Length : meter- Temperature : Degree centigrade

    4.0 PUMP FOUNDATION DESIGN ASSUMPTION

    4.1 Foundation Grouping for Vibrating Machinery

    4.1.1 Centrifugal Rotating Machinery

    1) Horsepower 500 The foundatiom shall be designed for the expected dynamic forces using dynamic analysis procedures

    2) Horsepwoer < 500 The foundation weight shall be 3 times the total machinery weight

    4.2 General Design Requirements

    4.2.1 Clean, simple outlines shall be used for foundations. Beams and columns shall be of a uniform rectangular shape. Block foundations should be rectangular.

    4.2.2 The height of the machine support above grade shall be the minimum to accommodate suction and discharge piping arrangements.

    4.2.3 The minimum thickness of the concrete foundations

    - 0.60 + L / 30 (meters)

    Where, L = Length of foundation parallel to the machine bearing axis in meters

    ITEMS

    551-B-1001/2001/3001/4001

    UNIT FDN. TYPE MACHINETYPE RATING

    (JERES-Q-007 Section 5.1.1)

    POWER DYNAMIC ANALYSIS

    1587 HP YESUNIT 551 Rigid Block Rotating 1167 kW

  • 4.2.4 The width of the foundation

    - B 1.5 Vertical distance from the base to the machine centerline

    Where, B = Width of foundation in meters

    4.2.5 For deformed bars

    1) The reinforcement in each direction shall not be less than 0.0018 times the gross area perpendicular to the direction of reinforcement

    2) Minimum tie size in pers shall be 12 mm

    4.2.6 Allowable Eccentricities for Concrete Foundations with Horizontal Shaft Machinery

    1) The horizontal perpendicular to the machine bearing axis, between of gravity of the machine foundation system and the centroid of the cosil contact area ( < 0.05 B)

    2) The horizontal parallel to the machine bearing axis, between of gravity of the machine foundation system and the centroid of the cosil contact area ( < 0.05 L)

    4.2.7 Allowable Soil Bearing Pressures

    1) For High-tuned foundatio: Soil bearing pressures shall not exceed 50% of the allowable bearing pressure permitted for static loads

    2) For Low-tuned foundatio: Soil bearing pressures shall not exceed 75% of the allowable bearing pressure permitted for static loads

    Where,High-tuned System = A high-tuned system is a machine support/foundation system

    in which the operating frequency (range) of the machinery is below all natural frequencies of the system

    Low-tuned System = A low-tuned system is a machine support/foundation systemin which the operating frequenct (range) of the machinery is aboveall natural frequencies of the system

  • 4.2.8 Permissible Frequency Ratios

    To avoid the danger of excessive vibration, the ratio between the operating frequency of the machif, and each natural frequency of the machine foundation system, f(n) shall not lie in the range of 0.7 to 1.3.

    4.2.9 Permissible Vibration

    If Manufacturer's vibration criteria are not available, the maximum velocity of movement during steady-state normal operation shall be limited to 0.12 inch per second for centrifugal machi

  • 5.0 BLOWER FOUNDATION (551-B-1001/2001/3001/4001)

    5.1 General SketchCombined C.G

    X direction

    Y direction

    C.G of Machine

    [ unit : m ]

    200

    Z direction G.L

    X direction [ unit : m ]

    1.406

    0.00

    0

    3.0003.000

    P L A N

    1.945

    0.000

    10.0

    00

    TOG EL.+100,

    3.645

    1.784

    0.294

    5.34

    6

    1.443

    10.0

    00

    0.000

    5.06

    9

    1.216

    AX

    IS O

    F R

    OC

    KIN

    G

    0.00

    0

    3.550

    S E C T I O N

    1.850

    0.200

    1.000

    0.500

  • 5.2 The Soil and Foundation Parameters

    Allowable Soil BeraingShear Modulus, GSoil Internal damping RatioPoisson's Ratio, Unit Weight (Soil)Unit Weight (Con'c)

    5.3 Foundation Data

    Height (h)Thickness of Grout

    5.4 Equipment Data

    =====

    5.5 Machine Data

    (1) For values for Equipment

    R.P.M FRotor WeightUnbalanced Force

    tonC.A.BLOWER - 2242

    C.A.BLOWER - 3.670

    C.A.BLOWER - 0.072

    tonrpm

    ton

    MOTOR - 1490

    m

    m

    0.040

    17.000

    m

    kN/m

    0.321

    Pedestal Height (PH)

    rpm

    kN

    mm

    Weight of Motor (Wm)

    1.200

    0.025

    m

    25.506

    0.500

    tontonton6.000

    m

    304.110 kN

    kNkN

    58.860 kN

    200.000

    24.000

    82579.233kN/m

    Item No.Footing Width (FL)

    551-B-1001/2001/3001/4001

    m

    kN/mkN/m

    3.000

    ton

    Ground Level (G.L.)

    Footing Length (FB)Footing Height (FH)Pedestal Width (PL)Pedestal Length (PB)

    Weight of C.A.BLOWER (Wc) 127.53092.214

    Total Weight (Wt) 31.000 ton

    Weight of Base Plate (Wb)Weight of Silencer (Ws)

    ton

    10.000

    3.000

    0.200

    1.700

    m10.000

    13.000

    2.6009.400

  • (2) For dimensions of Equipment & Foundation

    C.G from machines bottom to Machine centerC.G of Shaft from machines bottom (C.Gshaft)C.G from Pedestal Edge to Machine Center (X-direction) (Edx)C.G from Pedestal Edge to Machine Center (Y-direction) (Edy)

    6.0 CHECK FOR BLOWER FOUNDATION DESIGN

    6.1 The Mass Ratio of Blower Foundation

    (1) Foundation Weight Pedestal (Wcp)Footing (Wcf)

    = [(FL FB FH) + (PL PB PH)] Unit Weight (Con'c)= [(3.000 m 10.000 m 0.500 m) + (3.000 m 10.000 m 1.200 m)] 24.000= kN

    (2) Machine Weight

    = Weight of Blower + Weight of Motor + Weight of Base Plate + Weight of Silencer= 127.530 + 92.214 + 25.506 + 58.860= kN

    (3) Mass Ratio

    = / >= / >= >

    6.2 The Minumum Thickness of Concrete Foundation

    - Thickness (= FH + PH) 0.6 + FB / 30 (m)

    0.933

    OK!!

    Wc

    360.000 kN

    OK!!

    0.6 + FB / 30 (m)Length ( = FB)(m)

    Thickness ( = FH + PH)(m)

    1.700

    3.0

    864.000 kN

    Item No.

    551-B-1001/2001/3001/4001 10.000(m)

    3.04.025

    R

    304.110

    Wm

    1.850

    3.0

    Wc

    mm

    m1.945 m

    5.346

    Wm304.110

    1224.000

    1224.000

    1.216

  • 6.3 The Width of Concrete Foundation

    - FL 1.5 Vertical Distance from The Base to the Machine Centerline

    6.4 Allowable Soil Bearing Pressure (Static)

    [kN/m]

    = 1,528.110 / 30.000= kN/m

    Where,= [kN/m]= 0.750 200.000= kN/m= Allowable soil capacity for static case.= kN/m

    = + [kN]= 1,224.000 + 304.110= kN

    = 0.25 Wm (FH + PH + G.L[kN-m]= 0.250 304.110 (0.500 + 1.200 + 1.850)= kN-m

    = FB FL [m]= 10.000 3.000= m

    OK!!

    OK!!

    1.5 C.G

    2.775

    QItem No.

    Q = 0.750 Qa(kN/m)

    Q =Wt

    Area

    551-B-1001/2001/3001/4001 50.937

    551-B-1001/2001/3001/4001

    150.000

    269.898

    (kN/m)

    Length ( = FL)(m)

    Item No.(m)

    A

    30.000

    3.000

    150.000

    1528.110

    50.937

    Wm

    Qas

    Mx

    Qa 0.750

    Wt

    200.000Qas

    Wc

    (JERES-Q-007 Section 9.3)

    Low-tuned Foundations

  • 6.5 Allowable Eccentricities for Concrete Foundations

    = + = kN

    = [(304.110 1.216) + (864.000 1.500) + (360.000 1.500)] / 1,528.110 = mEccentricity(X-dir) = (1.500 - 1.443) 100 / 3.00 = < %

    = [(304.110 5.346) + (864.000 5.000) + (360.000 5.000)] / 1,528.110 = mEccentricity(Y-dir) = (5.000 - 5.069) 100 / 10.0 = < %

    = [(304.110 3.645) + (864.000 1.100) + (360.000 0.250)] / 1,528.110 = m

    6.6 Rebar Check

    a = @ 200

    c = @ 200

    b = @ 200

    5.069

    1.4431.884

    OK!!5.000

    Y'

    Wt 1528.110Wc

    X'

    a (mm)cb Top (mm) Bottom (mm)Rebar Dia.

    Wm

    Z' 1.406

    D20 D20 D12 1350.000

    Use AS

    5.000OK!!

    Req'd AS = 0.0018 b (H / 2)

    OK!!

    1350.000 5024.000

    0.689

    Item No.

    551-B-1001/2001/3001/4001

  • "Dynamic Analysis.xls"

    Job Name: Subject:Job Number: Originator: TYP Checker:

    1.0 Machine Data

    Blower Blower =Motor Motor =

    Unbalanced Force Blower = Motor =Moment by U.F Blower = Motor =

    1.1 Centrifugal Force (Fo)

    1) F0 = (Wr / g) e w = (Wr / g) e w= 64,750.000 / 981.0 0.00588 234.78 = 0.000 / 981.0 0.00721 234.780= N = N= kN = kN

    Where,g = cm/sec = cm/secw = (RPM 2 / 60) = (RPM 2 / 60)

    = 2,242 2 / 60 = 1,490 2 / 60= rad/sec = rad/sec

    e = (12000 / RPM) 0.0025 (cm) = (12000 / RPM) 0.0 (cm)(Maximum) = (12000 / RPM) (mil) = (12000 / RPM) (mil)

    = 1.000 (12000 / 2,242) = 1.000 (12000 / 1,490)= (mil) = (mil)= cm = cm

    Weight of Rotor of Blower Weight of Rotor of MotorWr = 1.000 = 0.000

    = ton = ton= kN = kN

    Wc = Weight of C.A.BLOWER = 13.000 ton = kNWm = Weight of Motor = 9.400 ton = kNWb = Weight of Base Plate = 2.600 ton = kNWs = Weight of Silencer = 6.000 ton = kN

    2) F0 = Factor W (rpm / 1000)1.5 = Factor W (rpm / 1000)1.5

    = 0.001 600.408 (2242 / 1000)^1 = 0.001 0.000 (1490 / 1000)^1.5= kN = kN= ton = ton

    R.P.M Rotor Weight

    0.405 ton

    0.600 ton0.000 ton

    For Motor

    0.205

    0.000

    For Motor

    0.205

    0.000

    92.21425.506

    0.000

    For Blower

    981

    234.780

    2.314

    1490 rpm

    For Blower

    234.780

    0.000 ton

    DYNAMIC ANALYSISDesign of Structures and Foundations for Vibrating Machines

    981

    64.750

    For Block Foundation (Centrifugal Machinery)

    127.530

    58.860

    2.016

    1.000 (mil)2.838

    0.0000.000

    0.00721

    2242 rpm

    21384.05421.384

    0.00588

    6.600

    1.437 ton-m 0.000 ton-m

    (Wc(rotor) + Ws) (Wm(rotor))

  • "Dynamic Analysis.xls"

    Where,Factor = 0.001 for SI units W = Total mass of the rotating

    = 0.1 for imperial units FD = Steady state dynamic force

    3) F0 = kg = kg= ton = ton= kN = kN

    Vertical Dynamic Force kNkNkN

    Horizontal Dynamic Force kNkNkN

    Rocking Dynamic moment [Verti. Force(blower)] (From Base to C.G) = FV(blower) (h + C.G.[3.970] (1.700 + 1.850)

    kN-m[Verti. Force(motor)] (From Base to C.G) = FV(motor) (h + C.G.)[0.000] (1.700 + 1.850)

    kN-m

    1.2 Calculation of center of gravity of machine & fdn.

    Wp = =Wm = =Wb = =Ww = =WE = = WE / g kN-sec/mWcp = = Wcp / g kN-sec/mWcb = = Wcb / g kN-sec/mWF = = WF / g kN-sec/m

    W = = W / g kN-sec/m

    Io = I (Machine) + I (Foundation)= We kM + [WF / 12 (ai + bi) + WF kFi]= [31.000 (1.700 + 1.945)] + [(88.073) / 12 (3.000 + 1.200)]

    + [(88.073) (0.600 + 0.500)] + [(36.697) / 12 (3.000 + 0.500)] + [(36.697) (0.250)]= kN-m

    Fv(motor) =

    Fh(blower) =Fh(motor) =

    3.970

    0.0003.970Fv(blower + motor) =

    Mr(blower) =

    = 88.073= 36.697

    = 155.771

    = 124.771

    13.000 ton9.400 ton2.600 ton6.000 ton

    3.970Apply for 3) F

    For Blower For Motor

    31.000 ton

    124.771 ton

    88.073 ton

    14.094

    0.4053.970

    360.000 kN

    58.860 kN

    Fh(blower + motor) =

    92.214 kN

    Mr(motor) =

    0.000

    Fv(blower) =

    0.0003.970

    36.697 ton

    404.689

    1224.000 kN

    25.506 kN

    1528.110 kN

    864.000 kN

    127.530 kN

    304.110 kN

    155.771 ton

    625.640

    = 31.000

  • "Dynamic Analysis.xls"

    Where,WE = Total Machine WeightWF = Foundation WeightW = Total Static Load (Total Machine Weight + Foundation Weight)g = cm/secIo = SUM [mi (Ai + Bi) / 12 + miKi]

    1.3 Coefficients Bv, Bh, and Br for Rectangular Footings

    L = 3.000 mB = 10.000 m

    Coefficents v, h and r for rectangular footings

    2.0 Vertical Excitation Analysis

    2.1 Spring Constant

    (1) Equivalent radius (r0v) for Rectangular Foundation

    rov = (FB FL / )

    = m

    (2) Embedment factor for Spring ConstantEffective Embedment height

    v = 1 + 0.6 (1 - ) (h / rov) = Height(h) - Ground Level(G.L.)= 1 + 0.6 (1 - 0.321) (1.500 / 3.090) = 1.700 - 0.200= = 1.500

    (3) Spring Constant Coefficient

    v =

    L / B

    0.300Roking (r)0.300

    2.150

    981.000

    1.198

    3.090

    2.150

    =10.000 3.000

    Horizontal (h) 1.0170.408

    0.300Coefficients

    Vertical (v)

    AXIS

    OF

    RO

    CK

    ING

    L

    B

    B

    L

    L/B

  • "Dynamic Analysis.xls"

    (4) Equivalent Spring Constant for Rectangular Foundation

    Kv = G / (1 - ) v FB FL v

    = kN/m

    2.2 Damping Ratio

    (1) Effect of Depth of Embedment on Damping Ratio

    v = [1 + 1.9 (1 - ) h / rov] / v= [1 + 1.9 (1 - 0.321) 1.500 / 3.090] / 1.198=

    (2) Mass Ratio

    Bv = (1 - ) / 4 W / ( rov)

    =

    (3) Effective Damping Coefficient

    This is not available for Vertical Mode

    (4) Geometrical Damping Ratio

    Dv = 0.425 / Bv v= 0.425 / 0.517 1.486=

    (5) Internal Damping

    Dvi =

    (6) Total Damping Ratio

    Dvt ===

    155.771

    Consider the Internal Damping

    1 - 0.321=

    Dv + Dvi

    (1 - 0.321)

    0.040

    =

    1715667.000

    1.486

    1.733 3.090

    10.000 3.000 1.198

    0.918

    82579.2332.150

    0.878 + 0.040

    0.878

    40.517

  • "Dynamic Analysis.xls"

    2.3 Frequency Check

    (1) Natural Frequency

    Fnv = 60 / (2 ) ( Kv / m)= 60 / (2 ) (1,715,667.000 / 155.771)= rpm

    (2) Resonance Frequency (rpm)

    Frv = Fnv [1 - (2 Dvt)]= 1,002.178 [1 - ( 2 0.918)]

    2 Dvt = 2 0.918= 1.685 > 1.00

    (3) Frequency Ratio (JERES-Q-007, Section 10.1)When f / f(n) < 0.7, f / f(n) > 1.3, O.K!!!

    = =

    (4) Magnification Factor

    For BlowerMv(blower) = 1 / (1 - rv(blower)) + (2 Dvt rv(blower))

    = 1 / (1 - 2.237) + (2 0.918 2.237) == < 1.500

    For MotorMv(motor) = 1 / (1 - rv(motor)) + (2 Dvt rv(motor))

    = 1 / (1 - 1.487) + (2 0.918 1.487) == < 1.500

    For Blower For Motor

    rv(motor) =

    =

    0.3350.335 OK!!!

    fv(motor)

    2242.000Fnv

    1490.000

    0.174

    1.487 OK!!!

    RESONANCE NOT POSSIBLE!!! (There is no need to analysis Vibration)

    =rv(blower)

    0.174

    =1002.178

    fv(blower)

    1002.1782.237

    Not Apply

    1002.178

    OK!!!

    Fnv

    OK!!!

  • "Dynamic Analysis.xls"

    (5) Transmissibility Factor

    For BlowerTv(blower) = Mv(blower) 1 + (2 Dvt rv)

    = 0.174 1+ (2 0.918 2.237)=

    For MotorTv(motor) = Mv(motor) 1 + (2 Dvt rv)

    = 0.335 1+ (2 0.918 1.487)=

    (6) Vibration Amplitude

    For Blower(For the normal operating speed - 2242 rpm) (For the normal operating speed - 1490 rpm)V(blower) = Mv(blower) Fv(blower) / Kv Vrocking(blower)

    = R(blower) (FL / 2) = 0.0000005 (3.000 / 2)

    = m = mFor Motor(For the normal operating speed - 2242 rpm) (For the normal operating speed - 1490 rpm)V(motor) = Mv(motor) Fv(motor) / Kv Vrocking(motor)

    = R(motor) (FL / 2) = 0.0000000 (3.000 / 2)

    = m = m

    Total Vertical AmplitudeVtotal = V(blower) + Vrocking(blower) + V(motor) + Vrocking(motor)

    = m

    =

    7.714E-07

    0.000E+00

    0.335 0.000

    0.736

    1715667.000 4.026E-07

    =

    1715667.000 0.000E+00

    1.174E-06

    0.974

    0.174 3.970

  • "Dynamic Analysis.xls"

    3.0 Horizontal Excitation Analysis

    3.1 Spring Constant

    (1) Equivalent radius (r0h) for Rectangular Foundation

    roh = (FB FL / )

    = m

    (2) Emebedment factor for Spring ConstantEffective Embedment height

    h = 1 + 0.55 (2 - ) (h / roh) = Height(h) - Ground Level(G.L.)= 1 + 0.55 (2 - 0.321) (1.500 / 3.090) = 1.700 - 0.200= = 1.500

    (3) Spring Constant Coefficient

    h =

    (4) Equiavelent Spring Constant for Rectangular Foundation

    Kh = 2 (1 + ) G h FB FL h= 2 (1 + 0.321) 82,579.233 1.017 10.000 3.000 1.448= kN/m

    3.2 Damping Ratio

    (1) Effect of Depth of Embedment on Damping Ratio

    h = [1 + 1.9 (2 - ) h / roh] / h= [ 1 + 1.9 (2 - 0.321) 1.500 / 3.090] / 1.448=

    (2) Mass Raito

    Bh = (7 - 8) / [32 (1 - )] W / ( roh)

    =

    =

    1760211.961

    0.621

    2.118

    =

    1.017

    1.448

    3.090

    10.000 3.000

    32 (1 - 0.321)(7 - 8 0.321)

    1.733 3.090155.771

    AX

    ISO

    FR

    OC

    KIN

    G

    L

    B

  • "Dynamic Analysis.xls"

    (3) Effective Damping Coefficient

    This is not avilable for Horizontal Mode

    (4) Geometrical Damping Ratio

    Dh = 0.288 / Bh h= 0.288 / 0.621 2.118=

    (5) Internal Damping

    Dhi =

    (6) Total Damping Ratio

    Dht ===

    3.3 Frequency Check

    (1) Natural Frequency

    Fnh = 60 / (2 ) (Kh / m)= 60 / (2 ) 1,760,211.961 / 155.771= rpm

    (2) Resonance Frequency (rpm)

    Frh = Fnh [1 - (2 Dht)]= 1,015.000 [1 - (2 0.814)]

    2 Dht = 2 0.814= 1.325 > 1.0

    0.774

    RESONANCE NOT POSSIBLE!!! (There is no need to analysis Vibration)

    0.814

    0.040 Consider the Internal Damping

    Dh + Dhi0.774 + 0.040

    1015.000

    Not Apply

  • "Dynamic Analysis.xls"

    (3) Frequency Ratio (JERES-Q-007, Section 10.1)When f / f(n) < 0.7, f / f(n) > 1.3, O.K!!!

    = =

    (4) Magnification Factor

    For BlowerMh(blower) = 1 / (1 - rh(blower)) + (2 Dht rh(blower))

    = 1 / (1 - 2.209) + (2 0.814 2.209) == < 1.50

    For MotorMh(motor) = 1 / (1 - rh(motor)) + (2 Dht rh(motor))

    = 1 / (1 - 1.468) + (2 1.468) == < 1.50

    (5) Transmissibility Factor

    For BlowerTh(blower) = Mh(blower) 1 + (2 Dht rh(blower))

    = 0.189 1 + ( 2 0.814 2.209)=

    For MotorTh(motor) = Mh(motor) 1 + (2 Dht rh(motor))

    = 0.377 1 + ( 2 0.814 1.468)=

    0.3770.377

    OK!!!

    0.977

    For Motor

    rh(blower)

    1490.000

    rh(motor) =fh(motor)

    Fnh

    fh(blower)Fnh

    2242.0001015.000

    2.209

    =1015.000

    1.468 OK!!!

    =

    0.189

    OK!!!

    =

    0.189 OK!!!

    For Blower

    0.705

  • "Dynamic Analysis.xls"

    (6) Vibration Amplitude

    For Blower(For the normal operating speed - 2242 rpm) (For the normal operating speed - 1490 rpm)H(blower) = Mh(blower) Fh(blower) / Kh Hrocking(blower)

    = R(blower) (h + C.G.)= 0.0000005 (1.700 + 1.850)

    = m = mFor Motor(For the normal operating speed - 2242 rpm) (For the normal operating speed - 1490 rpm)H(motor) = Mh(motor) Fh(motor) / Kh Hrocking(motor)

    = R(motor) (h + C.G.)= 0.0000000 (1.700 + 1.850)

    = m = m

    Total Horizontal AmplitudeHtotal = H(blower) + Hrocking(blower) + H(motor) + Hrocking(motor)

    = m

    4.0 Rocking Excitation Analysis

    4.1 Spring Constant

    (1) Equivalent (r0r) for Rectangular Foundation

    ror = [(FB FL) / (3 )]^()^()

    = m

    (2) Embedment factor for Spring Constant

    r = 1 + 1.2 (1 - ) (h / ror) + 0.2 (2 - ) (h / ror)= 1 + 1.2 (1 - 0.321) (1.500 / 2.314) + 0.2 (2 - 0.321) (1.500 / 2.314)=

    Effective Embedment height= Height(h) - Ground Level(G.L.)= 1.700 - 0.200= 1.500

    =0.377 0.0001760211.961

    =[ (10.000 3.000) ]

    1.826E-06

    0.000E+00

    2.252E-06

    0.000E+00

    0.189 3.970=

    1760211.961

    3 2.314

    4.263E-07

    1.620

    AXIS

    OF

    RO

    CK

    ING

    L

    B

  • "Dynamic Analysis.xls"

    (3) Spring Constant Coefficient

    r =

    (4) Equivalent Spring Constant for Rectangular Foundation

    Kr = G / (1 - ) r FB FL r

    = kN/m

    4.2 Damping Ratio

    (1) Effect of Depth of Embedment on Damping Ratio

    =

    (2) Mass Ratio

    Br = 3 (1 - ) / 8 Io / ( ror5)

    =

    (3) Effective Damping Coefficient

    nr =

    (4) Geometrical Damping Ratio

    Dr = 0.15 r / [(1 + nr Br) (nr Br) ]

    =

    (5) Internal Damping

    Dri =

    7234608.000

    r1 + 0.7 (1 - 0.321) (1.500 / 2.314) + 0.6 (2 - 0.321) (1.500 / 2.314)

    1.620

    1.387

    1.244

    =

    =

    0.052

    8=

    (1 - 0.321) 0.408 10.000 3.000 1.620

    3 (1 - 0.321) 625.640

    1.251

    0.040

    82579.233

    0.408

    r

    1.733 66.277

    =

    (1 + 1.251 1.387) (1.251 1.387)

    1 + 0.7 (1 - ) (h / ror) + 0.6 (2 - ) (h / ror)

    0.15 1.244

    =

  • "Dynamic Analysis.xls"

    (6) Total Damping Ratio

    Drt ===

    4.3 Frequency Check

    (1) Natural Frequency

    Fnr = 60 / (2 ) (Kr / I0)= 60 / (2 ) [7,234,608.000 / 625.640]= rpm

    (2) Resonance Frequency

    Frr = Fnr [1 - (2 Drt)]= 1,027.000 [1 - (2 0.092)]= rpm

    2 Drt = 2 0.092= 0.017 < 1.00

    (3) Frequency Ratio (JERES-Q-007, Section 10.1)When f / f(n) < 0.7, f / f(n) > 1.3, O.K!!!

    = =

    1490.000

    fr(motor)

    OK!!!

    For Blower

    Fnr

    For Motor

    rr(motor) =

    =1027.000

    2.183

    =1027.000

    1.451

    RESONANCE COULD BE POSSIBLE!!! (It is necessary to analysis Vibration)

    OK!!!

    0.092

    1027.000

    1018.270

    0.052 + 0.040Dr + Dri

    rr(blower) =fr(blower)

    Fnr2242.000

  • "Dynamic Analysis.xls"

    (4) Magnification Factor

    For BlowerMr(blower) = 1 / (1 - rr(blower)) + (2 Drt rr(blower))

    = 1 / (1 - 2.183) + (2 0.092 2.183) == < 1.500

    For MotorMr(motor) = 1 / (1 - rr(motor)) + (2 Drt rr(motor))

    = 1 / (1 - 1.451) + (2 0.092 1.451) == < 1.500

    (5) Transmissibility Factor

    For BlowerTr(blower) = Mr(blower) 1 + (2 Drt rr(blower))

    = 0.264 1 + (2 0.092 2.183)=

    For MotorTr(motor) = Mr(motor) 1 + (2 Drt rr(motor))

    = 0.880 1 + (2 0.092 1.451)=

    (6) Vibration Amplitude

    For Blower Moment Arm = (h + C.G.)R(blower) = Mr(blower) Fr(blower) / Kr = (1.700 + 1.850)

    = 3.550

    = radFor Motor

    R(motor) = Mr(motor) Fr(motor) / Kr

    = rad

    OK!!!0.880

    0.911

    =0.880 (0.000 3.550)

    7234608.000

    7234608.000

    0.880

    0.264 (3.970 3.550)

    0.285

    0.2640.264 OK!!!

    0.000E+00

    5.143E-07

    =

  • "Dynamic Analysis.xls"

    5.0 Amplitude Check

    5.1 Total Amplitude

    (1) Vertical AmplitudeVtotal = Vertical Vibration Amplitude + Rocking Vibration Amplitude (FL / 2)

    = m= cm= in

    (2) Horizontal AmplitudeHtotal = Horizontal Vibration Amplitude + Rocking Vibration Amplitude (h + C.G.)

    = m= cm= in

    (3) Maximum Velocity

    Where,Velocity = in/sec

    = m/sec"Machine" is the imposed frequency of the rotating equipment.

    RPM = (For Pump)= (For Motor)

    = cm = cm= in = in

    (3) Psta+dyn

    Psta+dyn 52.561

    Qall Pdyn OK!!!

    1.500 2.922

    3.000 10.000 3.000 10.000

    150.000

    1528.110

    5.086 5.299

    Qall

    0.750 Qa

    49.893

    =

    =Wt

    51.981

    Area

    Ph(total) (C.Gshaft + h) 6

    B L

    Area

    Pv(total)

    1.500

    150.000

    Pr 6B L

    1.500 2.801 (3.550) 3.000

    10.000 3.000

    1.500 4.010 610.000 3.000

    =Wt

    Pv(total)Area Area

    3.000 10.000

    Ptr 6

    B L

    1.500 14.782 6

    10.000 3.000

    =1528.110

    1.500 2.922

    3.000 10.000

    52.561 49.3135.358 5.027