of 35/35
First Prev Next Last Go Back Full Screen Close Quit Dokazi bez rijeˇ ci doc.dr.sc. Julije Jak ˇ seti ´ c [email protected]

Dokazi bez rije ci - matematika.hr

  • View
    1

  • Download
    0

Embed Size (px)

Text of Dokazi bez rije ci - matematika.hr

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Dokazi bez rijeci
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Sume
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Suma prvih n neparnih brojeva
1 + 3 + · · · + (2n− 1) = n2
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Suma prvih n neparnih brojeva
1 + 3 = 22
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Suma prvih n neparnih brojeva
1 + 3 + 5 = 32
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Identitet za sumu prvih n brojeva
Sn = 1 + 2 + · · · + n
8Sn + 1 = (2n + 1)2
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Identitet za sumu prvih n brojeva
8 · 1 + 1 = 32
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Identitet za sumu prvih n brojeva
8 · (1 + 2) + 1 = 52
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Identitet za sumu prvih n brojeva
8 · (1 + 2 + 3) + 1 = 72
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Suma geometrijskog reda I
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Suma geometrijskog reda II
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Trisekcija kuta u beskonacno koraka
1
2
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Ekvipotentnost
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
#(a, b) = #R
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Identiteti za trokut
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Pitagorin poucak
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Kosinusov poucak
γ
(a + c)(a− c) = (2a cos γ − b)b ⇒ c2 = a2 + b2 − 2ab cos γ
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Suma arkus tangensa I
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Suma arkus tangensa II
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Nejednakosti
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
A-G nejednakost I
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Nejednakost sredina
a b
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
A-G nejednakost II-Lema
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
A-G nejednakost II
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Napierova nejednakost-prvi dokaz
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Napierova nejednakost-drugi dokaz
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Eksponencijalna nejednakost AB > BA za e ≤ A < B
y = nAx
y = nBx
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Limesi
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
lim n→∞

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Parcijalna integracija
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Parcijalna integracija v
r = g(a)
a −
b∫
a
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Dandelinove kugle
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Dandelinove kugle
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Hvala na paznji!