12
Distributed Computation: Circuit Simulation CK Cheng UC San Diego [email protected]

Distributed Computation: Circuit Simulation

  • Upload
    sen

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Distributed Computation: Circuit Simulation. CK Cheng UC San Diego [email protected]. Trends of Scaling (Moore’s Law). Expansion of applications: ai , bioinf , graphics, vision Explosion of communication: internet Distributed system: exascale computation - PowerPoint PPT Presentation

Citation preview

Page 1: Distributed Computation: Circuit Simulation

Distributed Computation: Circuit Simulation

CK ChengUC San Diego

[email protected]

Page 2: Distributed Computation: Circuit Simulation

Trends of Scaling (Moore’s Law)• Expansion of applications: ai, bioinf, graphics,

vision• Explosion of communication: internet• Distributed system: exascale computation• Power constrained designs: low power• Interconnect dominance: VLSI• Nano-devices with variations: fault tolerant

design, design for manufacturability

2

Technology

System

Application

Page 3: Distributed Computation: Circuit Simulation

Research Outline

• Parallel SPICE– Cluster Machines– Netlist Partitioning– Whole Chip Analysis– SPICE Accuracy

• Power Ground Analysis– Worst Power Load Exploration– 3D Power Distribution– Voltage Drop and Electronic Migration Analysis– RLC Optimization

3

Page 4: Distributed Computation: Circuit Simulation

Circuit Simulation: Motivation Technology Scaling

Challenges for Circuit Simulation Complexity Signal Integrity: crosstalk, voltage drop, coupling noise etc. High clock frequency: Inductance Effect Smaller transistors: Higher nonlinearity

Page 5: Distributed Computation: Circuit Simulation

5

Simulation: Goal• Analyze whole chip with 100x memory

capacity, 100x speed up, 100x efficiency for designers

• Set standard of input/output for parallel processing

• Allow cluster machines or cloud computing for the acceleration

• Demonstrate the results via power ground analysis and tera Hertz circuitry

Page 6: Distributed Computation: Circuit Simulation

Parallel Device Loading (continued)

Original Circuit

Nonlinear Sub-circuit

Interface Linear-Nonlinear Iteration

linear Sub-circuit

Equivalent Ckt

Equivalent Ckt

PU: Processing Unit

linear Sub-circuit

Equivalent Ckt

linear Sub-circuit

Equivalent Ckt

PUK+j1

Parallel AMG

PUK

Parallel AMG

PUK+jm

Parallel AMG

PU1

Direct Solver (KLU)

Nonlinear Sub-circuit

Equivalent Ckt

PU2

Direct Solver (KLU)

Nonlinear Sub-circuit

Equivalent Ckt

PUk-1

Direct Solver (KLU)

Device Loading Device Loading Device Loading

Page 7: Distributed Computation: Circuit Simulation

7

Action Items• Input/Output Parsing and

Screening– Parallel Input

• Parallel input format• Parallel parsing

– Netlist Transformation– Parallel Output

• Output parsing• Graphic display

• Device Evaluation– Transistor Model

• Matrix Solver• Sensitivity Calculation• Adaptive Time Step Control

• Parallelization• Overall Framework

– Implement in C/C++ – Which math library?– Sparse matrix library? – Parallel Implementation

• Applications– Power Ground Network

Analysis– Tera Hertz Circuit

Simulation

Page 8: Distributed Computation: Circuit Simulation

Power Grid Analysis

• Package: – Voltage regulator– distributed RLC

model• Silicon Chips:

– Bumps– Metal wires

Page 9: Distributed Computation: Circuit Simulation

Power Network Analysis: Motivation

9

Year gte Lnm

freqGHz

VddVolt

PW

I=P/VAmp

Z=V/IOhm

2011 24 6.3 0.93 90 96 0.009642015 17 8.5 0.81 123 152 0.005332020 10.7 12.4 0.68 142 208 0.003262024 7.4 16.6 0.60 170 284 0.00211

ITRS Roadmap: MPU

Page 10: Distributed Computation: Circuit Simulation

Responses in Frequency DomainT1

T20

2040

6080

100120

140

0

10

20

30

40

50

600

0.5

1

1.5

2

2.5

3

M3 directionM1 direction

Vol

tage

(V

)

020

4060

80100

120140

0

10

20

30

40

50

600

0.2

0.4

0.6

0.8

1

1.2

1.4

M3 directionM1 direction

Vol

tage

(V

)

020

4060

80100

120140

0

10

20

30

40

50

600

0.05

0.1

0.15

0.2

0.25

M3 directionM1 direction

Vol

tage

(V

)

020

4060

80100

120140

0

10

20

30

40

50

600.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

M3 directionM1 direction

Vol

tage

(V

)

020

4060

80100

120140

0

10

20

30

40

50

600.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

M3 directionM1 direction

Vol

tage

(V

)

020

4060

80100

120140

0

10

20

30

40

50

600.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

M3 directionM1 direction

Vol

tage

(V

)

γ=0 γ=0.05 γ=1

Page 11: Distributed Computation: Circuit Simulation

Time Domain Responses: Rogue Waves

Page 12: Distributed Computation: Circuit Simulation

Conclusion

• Spice Simulation for Whole System– Memory Capacity– CPU Time– User Interface

• Power Distribution Analysis– Huge Netlist– Complex Electrical Behavior– Stringent Constraints

12