22
Tor Håkon Sivertsen Bioforsk Plant Health and Plant Protection, Hogskoleveien 7, N‑1432 Aas (Norway); e-mail:[email protected] Discussing classification of meteorological and agro meteorological phenomena

Discussing classification of meteorological and agro meteorological phenomena

Embed Size (px)

DESCRIPTION

Tor Håkon Sivertsen Bioforsk Plant Health and Plant Protection, Hogskoleveien 7, N‑1432 Aas (Norway); e-mail:[email protected]. Discussing classification of meteorological and agro meteorological phenomena. The concept of classification. - PowerPoint PPT Presentation

Citation preview

Page 1: Discussing classification of meteorological and agro meteorological phenomena

Tor Håkon Sivertsen Bioforsk Plant Health and Plant Protection,

Hogskoleveien 7, N‑1432 Aas (Norway); e-mail:[email protected]

Discussing classification of meteorological and agro

meteorological phenomena

Page 2: Discussing classification of meteorological and agro meteorological phenomena

The concept of classification

We classify meteorological phenomena while giving names to the phenomena we observe:

Air, parcel of air, cloud, time, space,shower, hail, rain, warm front, wind, storm, evaporation, condensation, tropical storm, extra tropical cyclone, boundary layer, soil, surface of soil, crop canopy

Page 3: Discussing classification of meteorological and agro meteorological phenomena
Page 4: Discussing classification of meteorological and agro meteorological phenomena
Page 5: Discussing classification of meteorological and agro meteorological phenomena
Page 6: Discussing classification of meteorological and agro meteorological phenomena

I make an unusual statement:

Any physical and biological phenomenon contains a totality that includes time, space and consciousness

Page 7: Discussing classification of meteorological and agro meteorological phenomena

We then may use the concept of parameterization in this way:

We are connecting measurable/ quantitative entities to the phenomena – and we call these entities parameters

Page 8: Discussing classification of meteorological and agro meteorological phenomena

Through the centuries the following parameters (and many many others) are developed:

Length of time t, the spatial coordinates(x,y,z) , temperature of the air, pressure of the air, relative humidity of the air, density of the air, wind velocity of the air and density of the air. We call such parameters macro properties of the gas-mixture called air, or the parcels of air.

Page 9: Discussing classification of meteorological and agro meteorological phenomena
Page 10: Discussing classification of meteorological and agro meteorological phenomena

We model the nature by using parameters connected to the phenomena. Each of the parameters of the models has a ‘name’, it has a ‘definition’ and it has a ’unit’.

Page 11: Discussing classification of meteorological and agro meteorological phenomena

To actually use the model we must have input parameters we must have some sort of system for making measurement. Each parameter we derive through the system for making measurement has a ’name’, it has a ‘unit’, it has a ‘definition’. The parameter value derived is connected to the method for making measurements and we want it to be representative for the model parameter considered.

Page 12: Discussing classification of meteorological and agro meteorological phenomena

Macro physics

The macro model of the air we may conceptually describe as a parcel of air (the mass is not clearly defined, merely the relative mass, the density); and connected to this parcel we have the quantitative parameters.

 

Page 13: Discussing classification of meteorological and agro meteorological phenomena

 We may then extend our model by connecting

spatial and temporal coordinates to each parcel of air (by using f.ex. Cartesian coordinates x,y,z and

the time coordinate t) These coordinates are in fact parameters connected to each parcel of air.

 Two different mathematical systems have been

developed for studying flow of parcels of fluid: The representation of Joseph Louise Lagrange, looking at tagged parcels of fluid, and the representation of Leonard Euler,looking at the parameter values of the fluid parcels as function of the spatial and

temporal coordinates.

 

Page 14: Discussing classification of meteorological and agro meteorological phenomena

Micro physics

There also are developed models of the molecular physics of the air, looking at the movements of the molecules.

This may be considered a quite different world with quite different phenomena: Molecules, space, time

 We may connect parameters, measurable quantities to

thephenomena of the microphysics. And through statistical

physics macro properties of the air may be derived.

 .

Page 15: Discussing classification of meteorological and agro meteorological phenomena

Micro physics

  Examples of parameters connected to the microphysics of the air: Molecular mass, velocity of a molecule, momentum of a molecule, angular momentum of a molecule, spatial coordinates (x,y,z), temporal coordinate t.

  

An interesting feature in this is that the temporal and spatial coordinates of the macro-physics and

the micro-physics should not be the same. We consider two quite different worlds.

 

Page 16: Discussing classification of meteorological and agro meteorological phenomena

Physical ‘laws’

  The parameters of the macro state, we connect to certain ‘physical laws’ or preliminary hypotheses containing combination of the parameters:

Conservation of massConservation of energy ( containing The first

law of thermodynamics).Conservation of momentum

The second law of thermodynamics giving us the direction of certain processes.

 

Page 17: Discussing classification of meteorological and agro meteorological phenomena

Physical ‘laws’

We are able to use the laws of classical thermodynamics (the concept of reversible processes) for the parcels of air.

We are able to use Newtons laws of motion for each parcel of air (and we call it convective flow).

We then look at the fluid system as two different interrelated processes going on simultaneously on two different scales, the molecular movements of the air and the convective movements of the air

Page 18: Discussing classification of meteorological and agro meteorological phenomena

Most of the parameters used in meteorology and in meteorological models I think, might be derived from physical concepts of classical thermodynamics, fluid dynamics and the radiation ‘laws’ of short wave and radiation.

 Also changes of phase of the water of the

parcels of air are included in this –water vapor – drops of liquid water – crystals of ice.

 

Page 19: Discussing classification of meteorological and agro meteorological phenomena

Examples of meteorological parameters connected to the ‘physical laws’ mentioned:

 Instant temperature of the air 2m above the ground

Hourly mean temperature of the air 2m above the groundDaily mean temperature of the air 2m above the ground

Monthly mean temperature of the air 2m above the ground 

Instant air pressure at the sea surface 

Instant relative humidity of the air 2m above the groundHourly mean of the relative humidity of the air 2m above the

groundDaily mean of the relative humidity of the air 2m above the

groundMonthly mean of the relative humidity of the air 2m above the

ground 

Page 20: Discussing classification of meteorological and agro meteorological phenomena

We then move on to the practical systems for making measurements of meteorological parameters: Networks of meteorological stations, weather radar systems, satellites, radio sond systems

 

Page 21: Discussing classification of meteorological and agro meteorological phenomena

Agro meteorology

Agro meteorological phenomena are combinations of meteorological and biological phenomena. The biological phenomena also may be describes by connecting measurable parameters to the phenomena: Leaf area index of a crop canopy, weight of the biomass etc.

Page 22: Discussing classification of meteorological and agro meteorological phenomena