22
Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych Weiwei Y. Tong E. Kanso J. E. Marsden P. Schröder M. Desbrun

Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Embed Size (px)

DESCRIPTION

Local vs. Global Accuracy Local accuracy (in scientific applications) In CG, we care more for qualitative behavior Global behavior > Local behavior for our purposes A geometric approach can guarantee both

Citation preview

Page 1: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Discrete Geometric Mechanics for

Variational Time Integrators

Ari SternMathieu Desbrun

Geometric, Variational

Integrators for Computer Animation

L. KharevychWeiweiY. Tong

E. KansoJ. E. MarsdenP. SchröderM. Desbrun

Page 2: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Time Integration• Interested in Dynamic Systems

• Analytical solutions usually difficult or impossible

• Need numerical methods to compute time progression

Page 3: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Local vs. Global Accuracy• Local accuracy (in scientific applications)

• In CG, we care more for qualitative behavior

• Global behavior > Local behavior for our purposes

• A geometric approach can guarantee both

Page 4: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Simple Example: Swinging Pendulum

• Equation of motion:

• Rewrite as first-order equations:

𝑞 (𝑡)

𝑙

Page 5: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Discretizing the Problem• Break time into equal steps of length :

• Replace continuous functions and with discrete functions and

• Approximate the differential equation by finding values for

• Various methods to compute

Page 6: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Taylor Approximation• First order approximation using tangent to curve:

v

• As , approximations approach continuous values

(𝑞𝑘 ,𝑣𝑘)

(𝑞𝑘+1 ,𝑣𝑘+1)

Page 7: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Explicit Euler Method• Direct first order approximations:

• Pros:• Fast

• Cons:• Energy “blows up”• Numerically unstable• Bad global accuracy

Page 8: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Implicit Euler Method• Evaluate RHS using next time step:

• Pros:• Numerically stable

• Cons:• Energy dissipation• Needs non-linear solver• Bad global accuracy

Page 9: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Symplectic Euler Method• Evaluate explicitly, then :

• Energy is conserved!• Numerically stable• Fast• Good global accuracy

Page 10: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Symplecticity• Sympletic motions preserve the

two-form:

• For a trajectory of points inphase space:

• Area of 2D-phase-space region is preserved in time

• Liouville’s Theorem

Page 11: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Geometric View: Lagrangian Mechanics

• Lagrangian: • Action Functional:• Least Action Principle:

• Action Functional “Measure of Curvature”• Least Action “Curvature” is extremized

𝑡 0

𝑇

Page 12: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Euler-Lagrange Equation

=

= 0

Page 13: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Lagrangian Example: Falling Mass

Page 14: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

The Discrete Lagrangian• Derive discrete equations of motion from a Discrete

Lagrangian to recover symplecticity:

• RHS can be approximated using one-point quadrature:

Page 15: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

The Discrete Action Functional• Continuous version:

• Discrete version:

Page 16: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Discrete Euler-Lagrange Equation

Page 17: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Discrete Lagrangian Example: Falling Mass

Page 18: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

More General: Hamilton-Pontryagin Principle

• Equations of motion given by critical points of Hamilton-Pontryagin action

• 3 variations now:

• is a Lagrange Multiplier to equate and

• Analog to Euler-Lagrange equation:

Page 19: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Discrete Hamilton-Pontryagin Principle

Page 20: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Faster Update via Minimization• Minimization > Root-Finding

• Variational Integrability Assumption:

• Above satisfied by most current models in computer animation

Page 21: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Minimization: The Lilyan

Page 22: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych

Resultshttp://tinyurl.com/n5sn3xq