13
12/6/2015 Analysis Of Frame By Direct Stiffness Method | Abdelghani Asalai UNIVERSITY OF TRIPOLI CE 609 ASSIGNMENT II Lecturer: Dr. Ramadan Murad

Direct Stiffness Method

Embed Size (px)

DESCRIPTION

Structural Analysis for direct stiffness method

Citation preview

  • 0 | P a g e

    12/6/2015

    Analysis Of Frame By Direct Stiffness Method | Abdelghani Asalai

    UNIVERSITY OF TRIPOLI

    CE 609 ASSIGNMENT II

    Lecturer: Dr. Ramadan Murad

  • 1 | P a g e

    FRAME ANALYSIS USING THE DIRECT STIFFNESS

    METHOD:

    For the frame shown, use the stiffness method to:

    (a) Determine the deflection and rotation at B & C.

    (b) Determine all the reactions at supports.

    E=A=I=Constant =1

    100 kN.m

    100 kN

    4m

    4m

    4m

    E = I = A =1

  • 2 | P a g e

    Transformation of Local Matrix

    3

    4

    1

    A

    B

    1

    2

    6

    5

    =90.0

    Local

    42

    B C

    7

    6 9

    5

    8

    Local

    =0.0

    3

    C

    D11

    7

    9

    12

    8

    10

    =90.0

    Local

  • 3 | P a g e

    3

    4

    4m

    4m

    4m1

    2

    3

    A

    B C

    D11

    1

    7

    2

    69

    12

    5

    8

    10

  • 4 | P a g e

    =

    1 2 3 4 5 6

    1

    2

    3

    4

    5

    6[

    0 0

    0 0

    012

    36

    20

    12

    26

    2

    06

    24

    0

    6

    22

    0 0

    0 0

    0 12

    36

    20

    12

    36

    2

    06

    22

    0

    6

    24

    ]

    1 =

    1 2 3 4 5 6

    1

    2

    3

    4

    5

    6[ 1

    40 0

    1

    40 0

    03

    16

    3

    80

    3

    16

    3

    8

    03

    81 0

    3

    8

    1

    2

    1

    40 0

    1

    40 0

    0 3

    163

    80

    3

    163

    8

    03

    8

    1

    20

    3

    81 ]

  • 5 | P a g e

    =

    [ 0 0 0 0

    0 0 0 0

    0 0 1 0 0 0

    0 0 0 0

    0 0 0 0

    0 0 0 0 0 1]

    Where

    C=Cos ()

    S= Sin ()

    Transformation matrix for member No.1 , where angle = 900 is

    1 =

    [ 0 1 0 0 0 0

    1 0 0 0 0 0

    0 0 1 0 0 0

    0 0 0 0 1 0

    0 0 0 1 0 0

    0 0 0 0 0 1]

  • 6 | P a g e

    Frame member global stiffness matrix

    1 =

    1 2 3 4 5 6

    1

    2

    3

    4

    5

    6[ 3

    160

    3

    83

    160

    3

    8

    01

    40 0

    1

    40

    3

    80 1

    3

    80

    1

    2

    3

    160

    3

    8

    3

    160

    3

    8

    0 1

    40 0

    1

    40

    3

    80

    1

    2

    3

    80 1 ]

    Local Matrix for member 2:

    2 =

    4 5 6 7 8 9

    4

    5

    6

    7

    8

    9[ 1

    40 0

    1

    40 0

    03

    16

    3

    80

    3

    16

    3

    8

    03

    81 0

    3

    8

    1

    2

    1

    40 0

    1

    40 0

    0 3

    163

    80

    3

    163

    8

    03

    8

    1

    20

    3

    81 ]

  • 7 | P a g e

    Transformation matrix for member No.2 , where angle = 00 is

    2 =

    [ 1 0 0 0 0 0

    0 1 0 0 0 0

    0 0 1 0 0 0

    0 0 0 1 0 0

    0 0 0 0 1 0

    0 0 0 0 0 1]

    Frame member global stiffness matrix

    2 =

    4 5 6 7 8 9

    4

    5

    6

    7

    8

    9[ 1

    40 0

    1

    40 0

    03

    16

    3

    80

    3

    16

    3

    8

    03

    81 0

    3

    8

    1

    2

    1

    40 0

    1

    40 0

    0 3

    163

    80

    3

    163

    8

    03

    8

    1

    20

    3

    81 ]

  • 8 | P a g e

    Local Matrix for member 3:

    3 =

    7 8 9 10 11 12

    7

    8

    9

    10

    11

    12[ 1

    40 0

    1

    40 0

    03

    16

    3

    80

    3

    16

    3

    8

    03

    81 0

    3

    8

    1

    2

    1

    40 0

    1

    40 0

    0 3

    163

    80

    3

    163

    8

    03

    8

    1

    20

    3

    81 ]

    Transformation matrix for member No.3 , where angle = 900 is

    3 =

    [ 0 1 0 0 0 0

    1 0 0 0 0 0

    0 0 1 0 0 0

    0 0 0 0 1 0

    0 0 0 1 0 0

    0 0 0 0 0 1]

  • 9 | P a g e

    Frame member global stiffness matrix

    3 =

    7 8 9 10 11 12

    7

    8

    9

    10

    11

    12[ 3

    160

    3

    83

    160

    3

    8

    01

    40 0

    1

    40

    3

    80 1

    3

    80

    1

    2

    3

    160

    3

    8

    3

    160

    3

    8

    0 1

    40 0

    1

    40

    3

    80

    1

    2

    3

    80 1 ]

  • 10 | P a g e

    Global stiffness matrix for the whole frame could be established by gathering the global matrixs for each member into one large matrix taking

    into account the nodes in the joints.

    [

    ]

    [

    ]

    [

    ]

  • 11 | P a g e

    The global Matrix for the whole frame in its final form is as follows:

    =

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    1 2 3 4 5 6 7 8 9 10 11 12

    [ 3

    160

    3

    83

    160

    3

    80 0 0 0 0 0

    01

    40 0 1/4 0 0 0 0 0 0 0

    3/8 0 13

    80

    1

    20 0 0 0 0 0

    3

    160

    3

    8

    7

    160

    3

    81

    40 0 0 0 0

    0 1

    40 0

    7

    16

    3

    80

    3

    16

    3

    80 0 0

    3

    80

    1

    2

    3

    8

    3

    82 0

    3

    8

    1

    20 0 0

    0 0 0 1

    40 0

    7

    160

    3

    83

    160

    3

    8

    0 0 0 0 3

    163

    80

    7

    163

    80

    1

    40

    0 0 0 03

    8

    1

    23

    83

    82

    3

    80

    1

    2

    0 0 0 0 0 0 3

    160

    3

    8

    3

    160

    3

    8

    0 0 0 0 0 0 0 1

    40 0

    1

    40

    0 0 0 0 0 0 3

    80

    1

    2

    3

    80 1 ]

    {} = []{}

    occurs in the unconstrained nodes , where in node 1 there is rotational displacement and in node 2 and 3

    there is vertical, horizontal and rotational displacement , but in node 4 there is no displacement because joint

    is totally constrained .

    {

    10010000000 }

    [ 1

    3

    80

    1

    20 0 0

    3

    8

    7

    160

    3

    81

    40 0

    0 07

    16

    3

    80

    3

    16

    3

    81

    2

    3

    8

    3

    82 0

    3

    8

    1

    2

    0 1

    40 0

    7

    160

    3

    8

    0 0 3

    163

    80

    7

    163

    8

    0 03

    8

    1

    23

    83

    82 ] 1

    =

    {

    566.57 1493.9448.52187.331083.5648.52268.2 }

    {} = {} + []{}

  • 12 | P a g e

    We obtain the reactions acting on the support as follows

    {

    12101112}

    =

    {

    00000}

    +

    [ 3

    83

    160

    3

    80 0 0

    0 0 1/4 0 0 0 0

    0 0 0 0 3

    160

    3

    8

    0 0 0 0 0 1

    40

    0 0 0 0 3

    80

    1

    2]

    {

    566.57 1493.9448.52187.331083.5648.52268.2 }

    =

    {

    2.612.13102.612.13272.24}

    100kN.m

    4m

    4m

    4m

    A

    B

    C

    D102.6kN

    2.6kN

    12.3kN

    272.24kN.m

    12.3kN

    100kN