23
Diffusion in Condensed Matter

Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

  • Upload
    hahanh

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Diffusion in Condensed Matter

Page 2: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Paul Heitjans · Jörg Kärger

Diffusion inCondensed MatterMethods, Materials, Models

With 448 Figures

ABC

Page 3: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Editors

Professor Dr. Paul HeitjansUniversität HannoverInstitut für Physikalische Chemieund ElektrochemieCallinstr. 3–3aD-30167 Hannover, GermanyEmail: [email protected]

Professor Dr. Jörg KärgerUniversität LeipzigInstitut für Experimentelle Physik ILinnéstr. 5D-04103 Leipzig, GermanyEmail: [email protected]

Library of Congress Control Number: 2005935206

ISBN -10 3-540-20043-6 Springer Berlin Heidelberg New YorkISBN -13 978-3-540-20043-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publicationor parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violationsare liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Mediaspringeronline.comc© Springer-Verlag Berlin Heidelberg 2005

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt from the relevant protective lawsand regulations and therefore free for general use.

Typesetting: by the authors and S. Indris using a Springer LATEX macro package

Cover design: Cover design: design &production GmbH, Heidelberg

Printed on acid-free paper SPIN: 10816487 56/3141/jl 5 4 3 2 1 0

Page 4: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

To Maria and Birge

Page 5: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Preface

Diffusion as the process of migration and mixing due to irregular movementof particles is one of the basic and ubiquitous phenomena in nature as wellas in society. In the latter case the word “particles” may stand for men orideas, and in the former for atoms or galaxies. In this sense diffusion is atruly universal and transdisciplinary topic.

The present book is confined, of course, to diffusion of atoms and mole-cules. As this process shows up in all states of matter over very large time andlength scales, the subject is still very general involving a large variety of nat-ural sciences such as physics, chemistry, biology, geology and their interfacialdisciplines. Besides its scientific interest, diffusion is of enormous practicalrelevance for industry and life, ranging from steel making to oxide/carbondioxide exchange in the human lung.

It therefore comes as no surprise that the early history of the subject ismarked by scientists from diverse communities, e.g., the botanist R. Brown(1828), the chemist T. Graham (1833), the physiologist A. Fick (1855), themetallurgist W.C. Roberts-Austen (1896) and the physicist A. Einstein (1905).Today, exactly 150 and 100 years after the seminal publications by Fick andEinstein, respectively, the field is flourishing more than ever with about 10.000scientific papers per year.

From the foregoing it is evident that a single volume book on atomic andmolecular diffusion has to be further restricted in its scope. As the title says,the book is confined to diffusion in condensed matter systems, so diffusionin gases is excluded. Furthermore, emphasis is on the fundamental aspects ofthe experimental observations and theoretical descriptions, whereas practi-cal considerations and technical applications have largely been omitted. Thecontents are roughly characterized by the headings Solids, Interfaces, Liq-uids, and Theoretical Concepts and Models of the four parts under which thechapters have been grouped.

The book consists of 23 chapters written by leading researchers in theirrespective fields. Although each chapter is independent and self-contained(using its own notation, listed at the end of the chapter), the editors havetaken the liberty of adding many cross-references to other chapters and sec-tions. This has been facilitated by the common classification scheme. Further

Page 6: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

VIII Preface

help to the reader in this respect is provided by an extended common list ofcontents, in addition to the contents overview, as well as an extensive subjectindex.

The book is a greatly enlarged (more than twice) and completely revisededition of a volume first published with Vieweg in 1998. Although the firstedition was very well received (and considered as a “must for students andworkers in the field”), it was felt that, in addition to the broad coverageof modern methods, materials should also be discussed in greater detail inthe new edition. The same applies to theoretical concepts and models. This,in fact, is represented by the new subtitle Methods, Materials, Models ofDiffusion in Condensed Matter.

The experimental Methods include radiotracer and mass spectrometry,Moßbauer spectroscopy and nuclear resonant scattering of synchrotron ra-diation, quasielastic neutron scattering and neutron spin-echo spectroscopy,dynamic light scattering and fluorescence techniques, diffraction and scan-ning tunneling microscopy in surface diffusion, spin relaxation spectroscopyby nuclear magnetic resonance (NMR) and beta-radiation detected NMR,NMR in a magnetic field gradient, NMR in the presence of an electric field,impedance spectroscopy and other techniques for measuring frequency de-pendent conductivities.Materials now dealt with are, among others, metals and alloys, metallicglasses, semiconductors, oxides, proton-, lithium- and other ion-conductors,nanocrystalline materials, micro- and mesoporous systems, inorganic glasses,polymers and colloidal systems, biological membranes, fluids and liquid mix-tures. The span from simple monoatomic crystals, with defects in thermalequilibrium enabling elementary jumps, to highly complex systems, exem-plarily represented by a biomembrane (cf. Fig. 12.3), is also indicated on thebook cover.Models in the subtitle stands for theoretical descriptions by, e. g., correlationfunctions, lattice models treated by (approximate) analytical methods, thetheory of fractals, percolation models, Monte Carlo simulations, molecular dy-namics simulations, phenomenological approaches like the counterion model,the dynamic structure model and the concept of mismatch and relaxation.

Despite the large variety of topics and themes the coverage of diffusion incondensed matter is of course not complete and far from being encyclopedic.Inevitably, it reflects to a certain extent also the editors’ main fields of inter-est. Nevertheless the chapters are believed to present a balanced selection.

The book tries to bridge the transition from the advanced undergradu-ate to the postgraduate and active research stage. Accordingly, the variouschapters are in parts tutorial, but they also lead to the forefront of currentresearch without intending to mimic the topicality of proceedings, which nor-mally have a short expiry date. It is therefore designed as a textbook or refer-

Page 7: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Preface IX

ence work for graduate and undergraduate students as well as a source bookfor active researchers.

The invaluable technical help of Dr. Sylvio Indris (University of Han-nover) in the laborious editing of the chapters, which in some cases includedextensive revision, is highly acknowledged. We also thank Jacqueline Lenzand Dr. T. Schneider from Springer-Verlag for accompanying this project.As ever, the editors have to thank their wives, Maria Heitjans and BirgeKarger, for their patience and encouragement.

Hannover, Germany Paul HeitjansLeipzig, Germany Jorg KargerAugust 2005

Page 8: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – Overview

Part I Solids

1 Diffusion: Introduction and Case Studies in Metals andBinary AlloysHelmut Mehrer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Elementary Diffusion Step in Metals Studied by theInterference of Gamma-Rays, X-Rays and NeutronsGero Vogl, Bogdan Sepiol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Diffusion Studies of Solids by Quasielastic NeutronScatteringTasso Springer, Ruep E. Lechner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Diffusion in SemiconductorsTeh Yu Tan, Ulrich Gosele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5 Diffusion in OxidesManfred Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6 Diffusion in Metallic Glasses and Supercooled MeltsFranz Faupel, Klaus Ratzke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Part II Interfaces

7 Fluctuations and Growth Phenomena in Surface DiffusionMichael C. Tringides, Myron Hupalo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

8 Grain Boundary Diffusion in MetalsChristian Herzig, Yuri Mishin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

9 NMR and β-NMR Studies of Diffusion in Interface-Dominated and Disordered SolidsPaul Heitjans, Andreas Schirmer, Sylvio Indris . . . . . . . . . . . . . . . . . . . . . 367

Page 9: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

XII Contents – Overview

10 PFG NMR Studies of Anomalous DiffusionJorg Karger, Frank Stallmach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

11 Diffusion Measurements by UltrasonicsRoger Biel, Martin Schubert, Karl Ullrich Wurz, Wolfgang Grill . . . . . . 461

12 Diffusion in MembranesIlpo Vattulainen, Ole G. Mouritsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Part III Liquids

13 Viscoelasticity and Microscopic Motion in Dense PolymerSystemsDieter Richter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

14 The Molecular Description of Mutual Diffusion Processesin Liquid MixturesHermann Weingartner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

15 Diffusion Measurements in Fluids by Dynamic LightScatteringAlfred Leipertz, Andreas P. Froba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

16 Diffusion in Colloidal and Polymeric SystemsGerhard Nagele, Jan K.G. Dhont, Gerhard Meier . . . . . . . . . . . . . . . . . . . 619

17 Field-Assisted Diffusion Studied by Electrophoretic NMRManfred Holz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

Part IV Theoretical Concepts and Models

18 Diffusion of Particles on LatticesKlaus W. Kehr, Kiaresch Mussawisade, Gunter M. Schutz, ThomasWichmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

19 Diffusion on FractalsUwe Renner, Gunter M. Schutz, Gunter Vojta . . . . . . . . . . . . . . . . . . . . . . 793

20 Ionic Transport in Disordered MaterialsArmin Bunde, Wolfgang Dieterich, Philipp Maass, Martin Meyer . . . . . 813

21 Concept of Mismatch and Relaxation for Self-Diffusionand Conduction in Ionic Materials with Disordered StructureKlaus Funke, Cornelia Cramer, Dirk Wilmer . . . . . . . . . . . . . . . . . . . . . . . 857

Page 10: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – Overview XIII

22 Diffusion and Conduction in Percolation SystemsArmin Bunde, Jan W. Kantelhardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895

23 Statistical Theory and Molecular Dynamics of Diffusionin ZeolitesReinhold Haberlandt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915

List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955

Page 11: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – In Detail

Part I Solids

1 Diffusion: Introduction and Case Studies in Metals andBinary AlloysHelmut Mehrer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Continuum Description of Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Fick’s Laws for Anisotropic Media . . . . . . . . . . . . . . . . . . . . . 41.2.2 Fick’s Second Law for Constant Diffusivity . . . . . . . . . . . . . 51.2.3 Fick’s Second Law for Concentration-Dependent Diffusivity 6

1.3 The Various Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.1 Tracer Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.2 Chemical Diffusion (or Interdiffusion) Coefficient . . . . . . . . 81.3.3 Intrinsic Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.4.1 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.2 Indirect Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Dependence of Diffusion on Thermodynamic Variables . . . . . . . . . 171.5.1 Temperature Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.5.2 Pressure Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Atomistic Description of Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.6.1 Einstein-Smoluchowski Relation and Correlation Factor . . 191.6.2 Atomic Jumps and Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 221.6.3 Diffusion Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Interstitial Diffusion in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.7.1 ‘Normal’ Interstitial Solutes . . . . . . . . . . . . . . . . . . . . . . . . . . 271.7.2 Hydrogen Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Self-Diffusion in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.8.1 Face-Centered Cubic Metals . . . . . . . . . . . . . . . . . . . . . . . . . . 321.8.2 Body-Centered Cubic Metals . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9 Impurity Diffusion in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351.9.1 ‘Normal’ Impurity Diffusion in fcc Metals . . . . . . . . . . . . . . 361.9.2 Slow Diffusion of Transition-Metal Solutes in Aluminium . 391.9.3 Fast Solute Diffusion in ‘Open’ Metals . . . . . . . . . . . . . . . . . 40

1.10 Self-Diffusion in Binary Intermetallics . . . . . . . . . . . . . . . . . . . . . . . . 42

Page 12: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

XVI Contents – In Detail

1.10.1 Influence of Order-Disorder Transition . . . . . . . . . . . . . . . . . 431.10.2 Coupled Diffusion in B2 Intermetallics . . . . . . . . . . . . . . . . . 441.10.3 The Cu3Au Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.11 Interdiffusion in Substitutional Binary Alloys . . . . . . . . . . . . . . . . . 491.11.1 Boltzmann-Matano Method . . . . . . . . . . . . . . . . . . . . . . . . . . 491.11.2 Darken’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511.11.3 Darken-Manning Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.12 Multiphase Diffusion in Binary Systems . . . . . . . . . . . . . . . . . . . . . . 531.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 The Elementary Diffusion Step in Metals Studied by theInterference of Gamma-Rays, X-Rays and NeutronsGero Vogl, Bogdan Sepiol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652.2 Self-Correlation Function and Quasielastic Methods . . . . . . . . . . . . 66

2.2.1 Quasielastic Methods: Moßbauer Spectroscopy andNeutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.2 Nuclear Resonant Scattering of Synchrotron Radiation . . . 732.2.3 Neutron Spin-Echo Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 742.2.4 Non-Resonant Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772.3.1 Pure Metals and Dilute Alloys . . . . . . . . . . . . . . . . . . . . . . . . 772.3.2 Ordered Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Diffusion Studies of Solids by Quasielastic NeutronScatteringTasso Springer, Ruep E. Lechner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933.2 The Dynamic Structure Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943.3 The Rate Equation and the Self-Correlation Function . . . . . . . . . . 1023.4 High Resolution Neutron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 1063.5 Hydrogen Diffusion in Metals and in Metallic Alloys . . . . . . . . . . . 1153.6 Diffusion with Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213.7 Vacancy Induced Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243.8 Ion Diffusion Related to Ionic Conduction . . . . . . . . . . . . . . . . . . . . 1263.9 Proton Diffusion in Solid-State Protonic Conductors . . . . . . . . . . . 1313.10 Proton Conduction: Diffusion Mechanism Based on a Chemical

Reaction Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393.11 Two-Dimensional Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433.12 Coherent Quasielastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1493.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Page 13: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – In Detail XVII

4 Diffusion in SemiconductorsTeh Yu Tan, Ulrich Gosele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654.2 Diffusion Mechanisms and Point Defects in Semiconductors . . . . . 1654.3 Diffusion in Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.3.1 Silicon Self-Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1664.3.2 Interstitial-Substitutional Diffusion: Au, Pt and Zn in Si . 1684.3.3 Dopant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1724.3.4 Diffusion of Carbon and Other Group IV Elements . . . . . . 1774.3.5 Diffusion of Si Self-Interstitials and Vacancies . . . . . . . . . . . 1804.3.6 Oxygen and Hydrogen Diffusion . . . . . . . . . . . . . . . . . . . . . . 182

4.4 Diffusion in Germanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1834.5 Diffusion in Gallium Arsenide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.5.1 Native Point Defects and General Aspects . . . . . . . . . . . . . . 1854.5.2 Gallium Self-Diffusion and Superlattice Disordering . . . . . 1874.5.3 Arsenic Self-Diffusion and Superlattice Disordering . . . . . . 1944.5.4 Impurity Diffusion in Gallium Arsenide . . . . . . . . . . . . . . . . 1964.5.5 Diffusion in Other III-V Compounds . . . . . . . . . . . . . . . . . . 203

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5 Diffusion in OxidesManfred Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2095.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2095.2 Defect Chemistry of Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.2.1 Dominating Cation Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . 2125.2.2 Dominating Oxygen Disorder . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.3 Self- and Impurity Diffusion in Oxides . . . . . . . . . . . . . . . . . . . . . . . . 2165.3.1 Diffusion in Oxides with Dominating Cation Disorder . . . . 2165.3.2 Diffusion in Oxides with Dominating Oxygen Disorder . . . 222

5.4 Chemical Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2265.5 Diffusion in Oxides Exposed to External Forces . . . . . . . . . . . . . . . 228

5.5.1 Diffusion in an Oxygen Potential Gradient . . . . . . . . . . . . . 2295.5.2 Diffusion in an Electric Potential Gradient . . . . . . . . . . . . . 236

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2425.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6 Diffusion in Metallic Glasses and Supercooled MeltsFranz Faupel, Klaus Ratzke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2496.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2496.2 Characteristics of Diffusion in Crystals . . . . . . . . . . . . . . . . . . . . . . . 2506.3 Diffusion in Simple Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2516.4 General Aspects of Mass Transport and Relaxation in

Supercooled Liquids and Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Page 14: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

XVIII Contents – In Detail

6.5 Diffusion in Metallic Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2596.5.1 Structure and Properties of Metallic Glasses . . . . . . . . . . . . 2596.5.2 Possible Diffusion Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 2626.5.3 Isotope Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2656.5.4 Pressure Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2686.5.5 Effect of Excess Volume on Diffusion . . . . . . . . . . . . . . . . . . 269

6.6 Diffusion in Supercooled and Equilibrium Melts . . . . . . . . . . . . . . . 2706.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Part II Interfaces

7 Fluctuations and Growth Phenomena in Surface DiffusionMichael C. Tringides, Myron Hupalo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2857.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2857.2 Surface Diffusion Beyond a Random Walk . . . . . . . . . . . . . . . . . . . . 286

7.2.1 The Role of Structure and Geometry of the Substrate . . . 2867.2.2 The Role of Adsorbate-Adsorbate Interactions . . . . . . . . . . 2887.2.3 Diffusion in Equilibrium and Non-Equilibrium

Concentration Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2907.3 Equilibrium Measurements of Surface Diffusion . . . . . . . . . . . . . . . . 297

7.3.1 Equilibrium Diffusion Measurements from DiffractionIntensity Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

7.3.2 STM Tunneling Current Fluctuations . . . . . . . . . . . . . . . . . . 3067.4 Non-Equilibrium Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

7.4.1 Uniform-Height Pb Islands on Si(111) . . . . . . . . . . . . . . . . . 3137.4.2 Measurements of Interlayer Diffusion on Ag/Ag(111) . . . . 320

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

8 Grain Boundary Diffusion in MetalsChristian Herzig, Yuri Mishin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3378.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3378.2 Fundamentals of Grain Boundary Diffusion . . . . . . . . . . . . . . . . . . . 338

8.2.1 Basic Equations of Grain Boundary Diffusion . . . . . . . . . . . 3388.2.2 Surface Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3398.2.3 Methods of Profile Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 3408.2.4 What Do We Know About Grain Boundary Diffusion? . . . 343

8.3 Classification of Diffusion Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3478.3.1 Harrison’s Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3488.3.2 Other Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

8.4 Grain Boundary Diffusion and Segregation . . . . . . . . . . . . . . . . . . . . 3538.4.1 Determination of the Segregation Factor from Grain

Boundary Diffusion Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Page 15: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – In Detail XIX

8.4.2 Beyond the Linear Segregation . . . . . . . . . . . . . . . . . . . . . . . . 3578.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

9 NMR and β-NMR Studies of Diffusion in Interface-Dominated and Disordered SolidsPaul Heitjans, Andreas Schirmer, Sylvio Indris . . . . . . . . . . . . . . . . . . . . . 3679.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3679.2 Influence of Diffusion on NMR Spin-Lattice Relaxation and

Linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3699.3 Basics of NMR Relaxation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 3759.4 Method of β-Radiation Detected NMR Relaxation . . . . . . . . . . . . . 3809.5 Intercalation Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

9.5.1 Lithium Graphite Intercalation Compounds . . . . . . . . . . . . 3849.5.2 Lithium Titanium Disulfide – Hexagonal Versus Cubic . . . 386

9.6 Nanocrystalline Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3909.6.1 Nanocrystalline Calcium Fluoride . . . . . . . . . . . . . . . . . . . . . 3919.6.2 Nanocrystalline, Microcrystalline and Amorphous

Lithium Niobate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3949.6.3 Nanocrystalline Lithium Titanium Disulfide . . . . . . . . . . . . 3979.6.4 Nanocrystalline Composites of Lithium Oxide and Boron

Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3999.7 Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

9.7.1 Inhomogeneous Spin-Lattice Relaxation in Glasses withDifferent Short-Range Order . . . . . . . . . . . . . . . . . . . . . . . . . . 403

9.7.2 Glassy and Crystalline Lithium Aluminosilicates . . . . . . . . 4059.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4089.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

10 PFG NMR Studies of Anomalous DiffusionJorg Karger, Frank Stallmach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41710.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41710.2 The Origin of Anomalous Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 41810.3 Fundamentals of PFG NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

10.3.1 The Measuring Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42110.3.2 The Mean Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42210.3.3 PFG NMR as a Generalized Scattering Experiment . . . . . 42410.3.4 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

10.4 PFG NMR Diffusion Studies in Regular Pore Networks . . . . . . . . . 42710.4.1 The Different Regimes of Diffusion Measurement . . . . . . . . 42810.4.2 Intracrystalline Self-Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 43010.4.3 Correlated Diffusion Anisotropy . . . . . . . . . . . . . . . . . . . . . . . 43110.4.4 Transport Diffusion Versus Self-Diffusion . . . . . . . . . . . . . . . 43210.4.5 Single-File Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Page 16: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

XX Contents – In Detail

10.4.6 Diffusion in Ordered Mesoporous Materials . . . . . . . . . . . . . 43710.5 Anomalous Diffusion by External Confinement . . . . . . . . . . . . . . . . 439

10.5.1 Restricted Diffusion in Polystyrene Matrices . . . . . . . . . . . . 44010.5.2 Diffusion in Porous Polypropylene Membranes . . . . . . . . . . 44110.5.3 Tracing Surface-to-Volume Ratios . . . . . . . . . . . . . . . . . . . . . 444

10.6 Anomalous Diffusion due to Internal Confinement . . . . . . . . . . . . . 44710.6.1 Anomalous Segment Diffusion in Entangled Polymer

Melts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44810.6.2 Diffusion Under the Influence of Hyperstructures in

Polymer Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45010.6.3 Diffusion Under the Influence of Hyperstructures in

Polymer Melts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45310.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

11 Diffusion Measurements by UltrasonicsRoger Biel, Martin Schubert, Karl Ullrich Wurz, Wolfgang Grill . . . . . . 46111.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46111.2 Diffusion of Hydrogen in Single-Crystalline Tantalum . . . . . . . . . . 46211.3 Observation of Diffusion of Heavy Water in Gels and Living

Cells by Scanning Acoustic Microscopy with Phase Contrast . . . . 46611.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

12 Diffusion in MembranesIlpo Vattulainen, Ole G. Mouritsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47112.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47112.2 Short Overview of Biological Membranes . . . . . . . . . . . . . . . . . . . . . 47312.3 Lateral Diffusion of Single Molecules . . . . . . . . . . . . . . . . . . . . . . . . . 477

12.3.1 Lateral Tracer Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . 47712.3.2 Methods to Examine Lateral Tracer Diffusion . . . . . . . . . . . 47912.3.3 Lateral Diffusion of Lipids and Proteins . . . . . . . . . . . . . . . . 482

12.4 Rotational Diffusion of Single Molecules . . . . . . . . . . . . . . . . . . . . . . 49112.5 Lateral Collective Diffusion of Molecules in Membranes . . . . . . . . . 493

12.5.1 Fick’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49312.5.2 Decay of Density Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 49412.5.3 Relation Between Tracer and Collective Diffusion . . . . . . . 49512.5.4 Methods to Examine Lateral Collective Diffusion . . . . . . . . 49712.5.5 Lateral Collective Diffusion in Model Membranes . . . . . . . 498

12.6 Diffusive Transport Through Membranes . . . . . . . . . . . . . . . . . . . . . 50012.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Page 17: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – In Detail XXI

Part III Liquids

13 Viscoelasticity and Microscopic Motion in Dense PolymerSystemsDieter Richter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51313.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51313.2 The Neutron Scattering Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

13.2.1 The Neutron Spin-Echo Technique Versus ConventionalScattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

13.2.2 Neutron Spin Manipulations with Magnetic Fields . . . . . . 51613.2.3 The Spin-Echo Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

13.3 Local Chain Dynamics and the Glass Transition . . . . . . . . . . . . . . . 51913.3.1 Dynamic Structure Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52113.3.2 Self-Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

13.4 Entropic Forces – The Rouse Model . . . . . . . . . . . . . . . . . . . . . . . . . . 52913.4.1 Neutron Spin-Echo Results in PDMS Melts . . . . . . . . . . . . 53113.4.2 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

13.5 Long-Chains Reptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53713.5.1 Theoretical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53713.5.2 Experimental Observations of Chain Confinement . . . . . . . 538

13.6 Intermediate Scale Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54013.7 The Crossover from Rouse to Reptation Dynamics . . . . . . . . . . . . . 54313.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

14 The Molecular Description of Mutual Diffusion Processesin Liquid MixturesHermann Weingartner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55514.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55514.2 Experimental Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55814.3 Phenomenological Description of Mutual Diffusion . . . . . . . . . . . . . 55914.4 Thermodynamics of Mutual Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 56414.5 Linear Response Theory and Time Correlation Functions . . . . . . . 56714.6 The Time Correlation Function for Mutual Diffusion . . . . . . . . . . . 56914.7 Properties of Distinct-Diffusion Coefficients . . . . . . . . . . . . . . . . . . . 57114.8 Information on Intermolecular Interactions Deduced from

Diffusion Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57314.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

15 Diffusion Measurements in Fluids by Dynamic LightScatteringAlfred Leipertz, Andreas P. Froba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57915.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Page 18: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

XXII Contents – In Detail

15.2 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58015.2.1 Spectrum of Scattered Light . . . . . . . . . . . . . . . . . . . . . . . . . . 58015.2.2 Correlation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58215.2.3 Homodyne and Heterodyne Techniques . . . . . . . . . . . . . . . . 587

15.3 The Dynamic Light Scattering Experiment . . . . . . . . . . . . . . . . . . . 58915.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58915.3.2 Signal Statistics and Data Evaluation . . . . . . . . . . . . . . . . . . 594

15.4 Thermophysical Properties of Fluids Measured by DynamicLight Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59715.4.1 Thermal Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59715.4.2 Mutual Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 60015.4.3 Dynamic Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60115.4.4 Sound Velocity and Sound Attenuation . . . . . . . . . . . . . . . . 60415.4.5 Landau-Placzek Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60615.4.6 Soret Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60615.4.7 Derivable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

15.5 Related Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60815.5.1 Surface Light Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60815.5.2 Forced Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

15.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

16 Diffusion in Colloidal and Polymeric SystemsGerhard Nagele, Jan K.G. Dhont, Gerhard Meier . . . . . . . . . . . . . . . . . . . 61916.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61916.2 Principles of Quasielastic Light Scattering . . . . . . . . . . . . . . . . . . . . 620

16.2.1 The Scattered Electric Field Strength . . . . . . . . . . . . . . . . . . 62016.2.2 Dynamic Light Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62416.2.3 Dynamic Structure Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

16.3 Heuristic Considerations on Diffusion Processes . . . . . . . . . . . . . . . 62816.3.1 Very Dilute Colloidal Systems . . . . . . . . . . . . . . . . . . . . . . . . 62916.3.2 Diffusion Mechanisms in Concentrated Colloidal Systems . 636

16.4 Fluorescence Techniques for Long-Time Self-Diffusion ofNon-Spherical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66016.4.1 Fluorescence Recovery After Photobleaching . . . . . . . . . . . . 66116.4.2 Fluorescence Correlation Spectroscopy . . . . . . . . . . . . . . . . . 669

16.5 Theoretical and Experimental Results on Diffusion of ColloidalSpheres and Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67516.5.1 Colloidal Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67616.5.2 Polymer Blends and Random Phase Approximation . . . . . 697

16.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

Page 19: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – In Detail XXIII

17 Field-Assisted Diffusion Studied by Electrophoretic NMRManfred Holz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71717.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71717.2 Principles of Electrophoretic NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

17.2.1 Electrophoresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71917.2.2 Pulsed Field Gradient NMR for the Study of Drift

Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72017.3 NMR in Presence of an Electric Direct Current. Technical

Requirements, Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . 72517.4 ENMR Sample Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72717.5 ENMR Experiments (1D, 2D and 3D) and Application Examples 728

17.5.1 1D ENMR Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72917.5.2 2D and 3D Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73417.5.3 Mobility and Velocity Distributions. Polydispersity and

Electro-Osmotic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73717.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

Part IV Theoretical Concepts and Models

18 Diffusion of Particles on LatticesKlaus W. Kehr, Kiaresch Mussawisade, Gunter M. Schutz, ThomasWichmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74518.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74518.2 One Particle on Uniform Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

18.2.1 The Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74818.2.2 Solution of the Master Equation . . . . . . . . . . . . . . . . . . . . . . 74918.2.3 Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75118.2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

18.3 One Particle on Disordered Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 75318.3.1 Models of Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75318.3.2 Exact Expression for the Diffusion Coefficient in d = 1 . . . 75518.3.3 Applications of the Exact Result . . . . . . . . . . . . . . . . . . . . . . 75718.3.4 Frequency Dependence in d = 1: Effective-Medium

Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75818.3.5 Higher-Dimensional Lattices: Approximations . . . . . . . . . . . 76218.3.6 Higher-Dimensional Lattices: Applications . . . . . . . . . . . . . . 76618.3.7 Remarks on Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

18.4 Many Particles on Uniform Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 77118.4.1 Lattice Gas (Site Exclusion) Model . . . . . . . . . . . . . . . . . . . . 77118.4.2 Collective Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77218.4.3 Tracer Diffusion for d > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77318.4.4 Tagged-Particle Diffusion on a Linear Chain . . . . . . . . . . . . 774

18.5 Many Particles on Disordered Lattices . . . . . . . . . . . . . . . . . . . . . . . 778

Page 20: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

XXIV Contents – In Detail

18.5.1 Models with Symmetric Rates . . . . . . . . . . . . . . . . . . . . . . . . 77818.5.2 Selected Results for the Coefficient of Collective

Diffusion in the Random Site-Energy Model . . . . . . . . . . . . 78018.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78318.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784

18.7.1 Derivation of the Result for the Diffusion Coefficient forArbitrarily Disordered Transition Rates . . . . . . . . . . . . . . . . 784

18.7.2 Derivation of the Self-Consistency Condition for theEffective-Medium Approximation . . . . . . . . . . . . . . . . . . . . . 787

18.7.3 Relation Between the Relative Displacement and theDensity Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790

19 Diffusion on FractalsUwe Renner, Gunter M. Schutz, Gunter Vojta . . . . . . . . . . . . . . . . . . . . . . 79319.1 Introduction: What a Fractal is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79319.2 Anomalous Diffusion: Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . 79719.3 Stochastic Theory of Diffusion on Fractals . . . . . . . . . . . . . . . . . . . . 80219.4 Anomalous Diffusion: Dynamical Dimensions . . . . . . . . . . . . . . . . . 80319.5 Anomalous Diffusion and Chemical Kinetics . . . . . . . . . . . . . . . . . . 80619.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

20 Ionic Transport in Disordered MaterialsArmin Bunde, Wolfgang Dieterich, Philipp Maass, Martin Meyer . . . . . 81320.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81320.2 Basic Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

20.2.1 Tracer Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81620.2.2 Dynamic Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81720.2.3 Probability Distribution and Incoherent Neutron

Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81720.2.4 Spin-Lattice Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

20.3 Ion-Conducting Glasses: Models and Numerical Technique . . . . . . 81920.4 Dispersive Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82220.5 Non-Arrhenius Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83220.6 Counterion Model and the “Nearly Constant Dielectric Loss”

Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83520.7 Compositional Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83920.8 Ion-Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

20.8.1 Lattice Model of Polymer Electrolytes . . . . . . . . . . . . . . . . . 84320.8.2 Diffusion through a Polymer Network: Dynamic

Percolation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84620.8.3 Diffusion in Stretched Polymers . . . . . . . . . . . . . . . . . . . . . . . 849

20.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

Page 21: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Contents – In Detail XXV

21 Concept of Mismatch and Relaxation for Self-Diffusionand Conduction in Ionic Materials with Disordered StructureKlaus Funke, Cornelia Cramer, Dirk Wilmer . . . . . . . . . . . . . . . . . . . . . . . 85721.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85721.2 Conductivity Spectra of Ion Conducting Materials . . . . . . . . . . . . . 86121.3 Relevant Functions and Some Model Concepts for Ion Transport

in Disordered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86421.4 CMR Equations and Model Conductivity Spectra . . . . . . . . . . . . . . 86721.5 Scaling Properties of Model Conductivity Spectra . . . . . . . . . . . . . 87121.6 Physical Concept of the CMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87421.7 Complete Conductivity Spectra of Solid Ion Conductors . . . . . . . . 87721.8 Ion Dynamics in a Fragile Supercooled Melt . . . . . . . . . . . . . . . . . . 88021.9 Conductivities of Glassy and Crystalline Electrolytes Below

10MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88321.10 Localised Motion at Low Temperatures . . . . . . . . . . . . . . . . . . . . . . . 88721.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

22 Diffusion and Conduction in Percolation SystemsArmin Bunde, Jan W. Kantelhardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89522.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89522.2 The (Site-)Percolation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89522.3 The Fractal Structure of Percolation Clusters near pc . . . . . . . . . . 89722.4 Further Percolation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90122.5 Diffusion on Regular Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90322.6 Diffusion on Percolation Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90422.7 Conductivity of Percolation Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 90522.8 Further Electrical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90622.9 Application of the Percolation Concept: Heterogeneous Ionic

Conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90822.9.1 Interfacial Percolation and the Liang Effect. . . . . . . . . . . . . 90822.9.2 Composite Micro- and Nanocrystalline Conductors . . . . . . 910

22.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

23 Statistical Theory and Molecular Dynamics of Diffusionin ZeolitesReinhold Haberlandt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91523.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91523.2 Some Notions and Relations of Statistical Physics . . . . . . . . . . . . . 916

23.2.1 Statistical Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 91623.2.2 Statistical Theory of Irreversible Processes . . . . . . . . . . . . . 919

23.3 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92223.3.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92223.3.2 Procedure of an MD Simulation . . . . . . . . . . . . . . . . . . . . . . . 923

Page 22: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

XXVI Contents – In Detail

23.3.3 Methodical Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92523.4 Simulation of Diffusion in Zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . 925

23.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92523.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92623.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

23.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955

Page 23: Diffusion in Condensed Matter - Home - Springer978-3-540-3097… ·  · 2017-08-25Diffusion in Condensed Matter Methods, Materials, Models With 448Figures ABC. ... contents are roughly

Part I

Solids