View
0
Download
0
Embed Size (px)
Transformation Unit Review
Name ____________________________________________ Period ___________ Date:_______________
Determine the rule described in the transformations below.
1. Which transformation has occurred to quadrilateral AHUP?
a. πππ‘ππ‘ππ 90Β°
b. πππππππ‘ππ πππππ π π₯ β ππ₯ππ
c. πππ‘ππ‘ππ 180Β°
d. πππππππ‘ππ πππππ π π¦ β ππ₯ππ
2. Which transformation has occurred to triangle UXS?
a. πππ‘ππ‘ππ 90Β°
b. πππππππ‘ππ πππππ π π₯ β ππ₯ππ
c. πππ‘ππ‘ππ 180Β°
d. πππππππ‘ππ πππππ π π¦ β ππ₯ππ
3. Which transformation has occurred to quadrilateral AKJI?
a. πππππππ‘ππ πππππ π π¦ = π₯
b. πππ‘ππ‘ππ 270Β°
c. πππππππ‘ππ πππππ π π₯ β ππ₯ππ
d. πππ‘ππ‘ππ 360Β°
4. Which transformation has occurred to quadrilateral BKHP?
a. πππππππ‘ππ πππππ π π¦ = π₯
b. πππ‘ππ‘ππ 270Β° CCW
c. πππππππ‘ππ πππππ π π₯ β ππ₯ππ
d. πππ‘ππ‘ππ 360Β°
Find the coordinates of the vertices of each figure after the transformations.
5. What would be the vertices of the image if the pre-image had vertices π΄(2, β2), π΅(1, 2), πΆ(3,3), π·(5, 2) and they were
rotated 180Β° CW about the origin?
a. π΄β²(2, β2), π΅β²(β1, 2), πΆβ²(β3,3), π·β²(β5, 2)
b. π΄β²(β2,2), π΅β²(β1, β2), πΆβ²(β3, β3), π·β²(β5, β 2)
c. π΄β²(β2, β2), π΅β²(β1, β2), πΆβ²(β3, β3), π·β²(β5, 2)
d. π΄β²(2,2), π΅β²(β1, β 2), πΆβ²(β3,3), π·β²(β5, 2)
6. What would be the vertices of the image if the pre-image had vertices π΄(2, β2), π΅(1, 2), πΆ(3,3), π·(5, 2) and they were
reflected across the x-axis?
a. π΄β²(2, β2), π΅β²(β1, 2), πΆβ²(β3,3), π·β²(β5, 2)
b. π΄β²(β2,2), π΅β²(β1, β2), πΆβ²(β3, β3), π·β²(β5, β 2)
c. π΄β²(β2, β2), π΅β²(β1, β2), πΆβ²(β3, β3), π·β²(β5, 2)
d. π΄β²(2,2), π΅β²(β1, 2), πΆβ²(3, β3), π·β²(5, β2)
7. What would be the vertices of the image if the pre-image had vertices π΄(2, β2), π΅(1, 2), πΆ(3,3), π·(5, 2) and they were rotated 270Β° CCW about the origin?
a. π΄β²(2, β2), π΅β²(β1, 2), πΆβ²(β3,3), π·β²(β5, 2)
b. π΄β²(β2,2), π΅β²(β1, β2), πΆβ²(β3, β3), π·β²(β5, β 2)
c. π΄β²(β2, β2), π΅β²(2, β1), πΆβ²(3, β3), π·β²(2, β5)
d. π΄β²(2, β2), π΅β²(2, 1), πΆβ²(3, β3), π·β²(2, 5)
8. On the graph to the right draw and label the triangle with vertices π΄(β4, 5), π΅(3,2), πΆ(β1,4) after all of the
transformations listed below are done. DRAW all the images.
1. πππππ πππ‘ππ 2 π’πππ‘ πππβπ‘ πππ 2 π’πππ‘π πππ€π
2. π ππππππ‘ πππππ π π¦ = π₯
3. π ππ‘ππ‘π 90 πππππππ πΆπΆπ ππππ’π‘ π‘βπ ππππππ
Vocabulary review: 9. List important Characteristics of each.
a) Rigid Transformation/Isometry b) Translations
c) Reflections d) Rotations e) Dilations f) Composition for Transformations
10. What is the difference between two figures that are congruent and two figures that are similar?
11. Name the ordered pair rule that transforms each figure into its image. Rule: (x, y) ο ______________ Rule: (x, y) ο _____________ Rule: (x, y) ο _____________
Complete the following transformations on the figure:
12. Reflect πππ across the y-axis, then translate it by the rule (π₯, π¦) β (π₯ β 3, π¦ + 4)
13. Translate π΄π΅πΆπ· by the rule (π₯, π¦) β (π₯ β 5, π¦), then rotate the figure 180Β°.
14.
Determine the scale factor for the dilations.
15.
a. π = 2
b. π = 1
c. π = 1.5
d. π = 0
16.
a. π = 2
b. π = 1
c. π = 0.5
d. π = 0
17.
a. π = 2 .5
b. π = 0.25
c. π = 2
d. π = 0.50
18.
a. π = 0.25
b. π = 2
c. π = 0.50
d. π = 2.5
Determine the coordinate points of the image after the pre-image provided is dilated by the scale factor listed.
19. π = 1
2
a. πΆβ(2,0), πβ(0.5, 0.5), π½β(1.5, 2.5)
b. πΆβ(1,0), πβ(2.5, 0.5), π½β(1.5, 1.5)
c. πΆβ(1,0.5), πβ(2.5, 1.5), π½β(2, 1.5)
d. πΆβ(1,1.5), πβ(2, 0.5), π½β(0.5, 1.5)
20. π = 2
a. π·β(β2, 0), πβ(0, 4), πβ(4, β2)
b. π·β(2, 0), πβ(2, β2), πβ(1, β2)
c. π·β(β1, 0), πβ(0, 2), πβ(2, β1)
d. π·β(β2, 2), πβ(2, 4), πβ(0, β2)
21. π = 1
4
a. π΄β(0.25, 0.5), πΏβ(2.25, 1.25), πβ(1.75, 1.25)
b. π΄β(1.5, 0.25), πΏβ(1.75, 0.75), πβ(1.75, 0.25)
c. π΄β(0.25, 0.5), πΏβ(1.25, 0.75), πβ(1.25, 1.75)
d. π΄β(0.5, 0.25), πΏβ(1.25, 0.25), πβ(1.25, 0.75)
22. π = 1.5
a. π½β(β0.5, β1.5), πβ(0.5, 4.5), πΏβ(2, 3), πβ²(0, 4.5)
b. π½β(β1.5, β1.5), πβ(1.5, 4.5), πΏβ(3, 3), πβ²(0, 4.5)
c. π½β(1.5, 1.5), πβ(1.25, 4.5), πΏβ(3, 3.5), πβ²(0, β4.5)
d. π½β(β2.5, β1.25), πβ(β1.5, 4), πΏβ(3, β3), πβ²(0, 4)
23. Describe the sequences required for the following transformation below:
24. Quadrilateral ABCD is rotated 90ο° counterclockwise (or 270 clockwise) about the origin. Name the new
coordinates.
Original Coordinates A (1, 3) B (3, 4) C (6, 5) D (1, 5)
New Coordinates
25. Find the Center of Dilation and the Scale Factor for the following:
a)
b)
26. Find the coordinates of the vertices of the figure after a dilation of k = 2 centered at the point (1, -3) and graph the image.
X(______, _______) β Xβ (_____, ______)
Y(______, _______) β Yβ (_____, ______)
Z(______, _______) β Zβ (_____, ______)
-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8
x
y
X
Y
Z
27.
28.