60
Designing Scalable, High-Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach Hari Subramoni The Ohio State University E-mail: [email protected] http://www.cse.ohio-state.edu/~subramon Talk at OpenFabrics Workshop (April ‘18) by

Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

Designing Scalable, High-Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach

Hari Subramoni

The Ohio State University

E-mail: [email protected]

http://www.cse.ohio-state.edu/~subramon

Talk at OpenFabrics Workshop (April ‘18)

by

Page 2: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 2Network Based Computing Laboratory

High-End Computing (HEC): Towards Exascale

Expected to have an ExaFlop system in 2019-2021!

100 PFlops in 2016

1 EFlops in 2019-2021?

Page 3: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 3Network Based Computing Laboratory

Big Data (Hadoop, Spark,

HBase, Memcached,

etc.)

Deep Learning(Caffe, TensorFlow, BigDL,

etc.)

HPC (MPI, RDMA, Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!

Increasing Need to Run these applications on the Cloud!!

Page 4: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 4Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC)

– Exploiting Accelerators

• Deep Learning– MPI-level Challenges

– MVAPICH2-GDR Support

– OSU-Caffe

– Out-of-core Processing

HPC and Deep Learning

Page 5: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 5Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory MemoryLogical shared memory

Shared Memory Model

SHMEM, DSMDistributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving importance

Page 6: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 6Network Based Computing Laboratory

Partitioned Global Address Space (PGAS) Models

• Key features- Simple shared memory abstractions

- Light weight one-sided communication

- Easier to express irregular communication

• Different approaches to PGAS- Languages

• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel

- Libraries• OpenSHMEM

• UPC++

• Global Arrays

Page 7: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 7Network Based Computing Laboratory

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on communication characteristics

• Benefits:– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

Kernel 1MPI

Kernel 2MPI

Kernel 3MPI

Kernel NMPI

HPC Application

Kernel 2PGAS

Kernel NPGAS

Page 8: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 8Network Based Computing Laboratory

Supporting Programming Models for Multi-Petaflop and Exaflop Systems: Challenges

Programming ModelsMPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP,

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies(InfiniBand, 40/100GigE,

Aries, and Omni-Path)

Multi-/Many-coreArchitectures

Accelerators(GPU and FPGA)

MiddlewareCo-Design

Opportunities and

Challenges across Various

Layers

PerformanceScalabilityResilience

Communication Library or Runtime for Programming ModelsPoint-to-point

CommunicationCollective

CommunicationEnergy-

AwarenessSynchronization

and LocksI/O and

File SystemsFault

Tolerance

Page 9: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 9Network Based Computing Laboratory

Overview of the MVAPICH2 Project• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,875 organizations in 86 countries

– More than 462,000 (> 0.46 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘17 ranking)• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 9th, 556,104 cores (Oakforest-PACS) in Japan

• 12th, 368,928-core (Stampede2) at TACC

• 17th, 241,108-core (Pleiades) at NASA

• 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Page 10: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 10Network Based Computing Laboratory

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000Se

p-04

Feb-

05

Jul-0

5

Dec-

05

May

-06

Oct

-06

Mar

-07

Aug-

07

Jan-

08

Jun-

08

Nov

-08

Apr-

09

Sep-

09

Feb-

10

Jul-1

0

Dec-

10

May

-11

Oct

-11

Mar

-12

Aug-

12

Jan-

13

Jun-

13

Nov

-13

Apr-

14

Sep-

14

Feb-

15

Jul-1

5

Dec-

15

May

-16

Oct

-16

Mar

-17

Aug-

17

Jan-

18

Num

ber o

f Dow

nloa

ds

Timeline

MV

0.9.

4

MV2

0.9

.0

MV2

0.9

.8

MV2

1.0

MV

1.0

MV2

1.0.

3

MV

1.1

MV2

1.4

MV2

1.5

MV2

1.6

MV2

1.7

MV2

1.8

MV2

1.9

MV2

-GDR

2.0

b

MV2

-MIC

2.0

MV2

-GDR

2.3

aM

V2-X

2.3b

MV2

Virt

2.2

MV2

2.3

rc1

OSU

INAM

0.9

.3

MVAPICH2 Release Timeline and Downloads

Page 11: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 11Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface(MPI)

PGAS(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication RuntimeDiverse APIs and Mechanisms

Point-to-point

Primitives

Collectives Algorithms

Energy-Awareness

Remote Memory Access

I/O andFile Systems

FaultTolerance

Virtualization Active Messages

Job StartupIntrospection

& Analysis

Support for Modern Networking Technology(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODPSR-IOV

Multi Rail

Transport MechanismsShared

MemoryCMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*

Page 12: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 12Network Based Computing Laboratory

MVAPICH2 Software Family High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler integration

OEMT Utility to measure the energy consumption of MPI applications

Page 13: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 13Network Based Computing Laboratory

• Released on 02/19/2018

• Major Features and Enhancements

– Enhanced performance for Allreduce, Reduce_scatter_block, Allgather, Allgatherv through new algorithms

– Enhance support for MPI_T PVARs and CVARs

– Improved job startup time for OFA-IB-CH3, PSM-CH3, and PSM2-CH3

– Support to automatically detect IP address of IB/RoCE interfaces when RDMA_CM is enabled without relying on mv2.conf file

– Enhance HCA detection to handle cases where node has both IB and RoCE HCAs

– Automatically detect and use maximum supported MTU by the HCA

– Added logic to detect heterogeneous CPU/HFI configurations in PSM-CH3 and PSM2-CH3 channels

– Enhanced intra-node and inter-node tuning for PSM-CH3 and PSM2-CH3 channels

– Enhanced HFI selection logic for systems with multiple Omni-Path HFIs

– Enhanced tuning and architecture detection for OpenPOWER, Intel Skylake and Cavium ARM (ThunderX) systems

– Added 'SPREAD', 'BUNCH', and 'SCATTER' binding options for hybrid CPU binding policy

– Rename MV2_THREADS_BINDING_POLICY to MV2_HYBRID_BINDING_POLICY

– Added support for MV2_SHOW_CPU_BINDING to display number of OMP threads

– Update to hwloc version 1.11.9

MVAPICH2 2.3rc1

Page 14: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 14Network Based Computing Laboratory

• Scalability for million to billion processors– Support for highly-efficient inter-node and intra-node communication– Scalable Start-up– Optimized Collectives using SHArP and Multi-Leaders– Optimized CMA-based Collectives– Upcoming Optimized XPMEM-based Collectives– Integrated Network Analysis and Monitoring

• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, …)

• Integrated Support for GPGPUs• Optimized MVAPICH2 for OpenPower (with/ NVLink) and ARM• Application Scalability and Best Practices

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 15: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 15Network Based Computing Laboratory

One-way Latency: MPI over IB with MVAPICH2

00.20.40.60.8

11.21.41.61.8

2 Small Message Latency

Message Size (bytes)

Late

ncy

(us)

1.11

1.19

0.98

1.15

1.04

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch

ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-5-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch

0

20

40

60

80

100

120TrueScale-QDRConnectX-3-FDRConnectIB-DualFDRConnectX-5-EDROmni-Path

Large Message Latency

Message Size (bytes)

Late

ncy

(us)

Page 16: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 16Network Based Computing Laboratory

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch

ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-5-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 IB switch

Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch

Bandwidth: MPI over IB with MVAPICH2

0

5000

10000

15000

20000

25000TrueScale-QDRConnectX-3-FDRConnectIB-DualFDRConnectX-5-EDROmni-Path

Bidirectional Bandwidth

Band

wid

th

(MBy

tes/

sec)

Message Size (bytes)

22,564

12,16121,983

6,228

24,136

0

2000

4000

6000

8000

10000

12000

14000 Unidirectional Bandwidth

Band

wid

th

(MBy

tes/

sec)

Message Size (bytes)

12,590

3,373

6,356

12,35812,366

Page 17: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 17Network Based Computing Laboratory

Startup Performance on KNL + Omni-Path

0

5

10

15

20

25

64 128

256

512 1K 2K 4K 8K 16K

32K

64K

Tim

e Ta

ken

(Sec

onds

)

Number of Processes

MPI_Init & Hello World - Oakforest-PACS

Hello World (MVAPICH2-2.3a)

MPI_Init (MVAPICH2-2.3a)

• MPI_Init takes 22 seconds on 229,376 processes on 3,584 KNL nodes (Stampede2 – Full scale)• 8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)• At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)• All numbers reported with 64 processes per node

5.8s

21s

22s

New designs available since MVAPICH2-2.3a and as patch for SLURM 15, 16, and 17

Page 18: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 18Network Based Computing Laboratory

0

0.1

0.2

0.3

0.4

(4,28) (8,28) (16,28)

Late

ncy

(sec

onds

)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHArP

0

0.05

0.1

0.15

0.2

(4,28) (8,28) (16,28)

Late

ncy

(sec

onds

)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHArP13%

Mesh Refinement Time of MiniAMR

Advanced Allreduce Collective Designs Using SHArP

12%Avg DDOT Allreduce time of HPCG

SHArP Support is available since MVAPICH2 2.3a

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based Multi-Leader Design, SuperComputing '17.

Page 19: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 19Network Based Computing Laboratory

Performance of MPI_Allreduce On Stampede2 (10,240 Processes)

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512 1024 2048 4096

Late

ncy

(us)

Message SizeMVAPICH2 MVAPICH2-OPT IMPI

0200400600800

100012001400160018002000

8K 16K 32K 64K 128K 256KMessage Size

MVAPICH2 MVAPICH2-OPT IMPI

OSU Micro Benchmark 64 PPN

2.4X

• For MPI_Allreduce latency with 32K bytes, MVAPICH2-OPT can reduce the latency by 2.4XM. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based Multi-Leader Design, SuperComputing '17. Available in MVAPICH2-X 2.3b

Page 20: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 20Network Based Computing Laboratory

Optimized CMA-based Collectives for Large Messages

1

10

100

1000

10000

100000

10000001K 2K 4K 8K 16

K32

K64

K12

8K25

6K51

2K 1M 2M 4MMessage Size

KNL (2 Nodes, 128 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

Late

ncy

(us)

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M 2M

Message Size

KNL (4 Nodes, 256 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M

Message Size

KNL (8 Nodes, 512 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

• Significant improvement over existing implementation for Scatter/Gather with 1MB messages (up to 4x on KNL, 2x on Broadwell, 14x on OpenPower)

• New two-level algorithms for better scalability• Improved performance for other collectives (Bcast, Allgather, and Alltoall)

~ 2.5xBetter

~ 3.2xBetter

~ 4xBetter

~ 17xBetter

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist

Performance of MPI_Gather on KNL nodes (64PPN)

Available in MVAPICH2-X 2.3b

Page 21: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 21Network Based Computing Laboratory

Shared Address Space (XPMEM)-based Collectives Design

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M

Late

ncy

(us)

Message Size

MVAPICH2-2.3bIMPI-2017v1.132MVAPICH2-Opt

OSU_Allreduce (Broadwell 256 procs)

• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

73.2

1.8X

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4MMessage Size

MVAPICH2-2.3bIMPI-2017v1.132MVAPICH2-Opt

OSU_Reduce (Broadwell 256 procs)

4X

36.1

37.9

16.8

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Will be available in future

Page 22: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 22Network Based Computing Laboratory

Overview of OSU INAM• A network monitoring and analysis tool that is capable of analyzing traffic on the InfiniBand network with inputs from the

MPI runtime– http://mvapich.cse.ohio-state.edu/tools/osu-inam/

• Monitors IB clusters in real time by querying various subnet management entities and gathering input from the MPI runtimes

• Capability to analyze and profile node-level, job-level and process-level activities for MPI communication– Point-to-Point, Collectives and RMA

• Ability to filter data based on type of counters using “drop down” list

• Remotely monitor various metrics of MPI processes at user specified granularity

• "Job Page" to display jobs in ascending/descending order of various performance metrics in conjunction with MVAPICH2-X

• Visualize the data transfer happening in a “live” or “historical” fashion for entire network, job or set of nodes

• OSU INAM v0.9.3 released on 03/16/2018– Enhance INAMD to query end nodes based on command line option

– Add a web page to display size of the database in real-time

– Enhance interaction between the web application and SLURM job launcher for increased portability– Improve packaging of web application and daemon to ease installation

Page 23: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 23Network Based Computing Laboratory

OSU INAM Features

• Show network topology of large clusters• Visualize traffic pattern on different links• Quickly identify congested links/links in error state• See the history unfold – play back historical state of the network

Comet@SDSC --- Clustered View

(1,879 nodes, 212 switches, 4,377 network links)Finding Routes Between Nodes

Page 24: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 24Network Based Computing Laboratory

OSU INAM Features (Cont.)

Visualizing a Job (5 Nodes)

• Job level view• Show different network metrics (load, error, etc.) for any live job• Play back historical data for completed jobs to identify bottlenecks

• Node level view - details per process or per node• CPU utilization for each rank/node• Bytes sent/received for MPI operations (pt-to-pt, collective, RMA)• Network metrics (e.g. XmitDiscard, RcvError) per rank/node

Estimated Process Level Link Utilization

• Estimated Link Utilization view• Classify data flowing over a network link at

different granularity in conjunction with MVAPICH2-X 2.2rc1• Job level and• Process level

Page 25: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 25Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI +

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs• Optimized MVAPICH2 for OpenPower (with/ NVLink) and ARM• Application Scalability and Best Practices

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 26: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 26Network Based Computing Laboratory

MVAPICH2-X for Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI– Possible deadlock if both runtimes are not progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF– Available with since 2012 (starting with MVAPICH2-X 1.9) – http://mvapich.cse.ohio-state.edu

Page 27: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 27Network Based Computing Laboratory

Application Level Performance with Graph500 and SortGraph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012

05

101520253035

4K 8K 16K

Tim

e (s

)

No. of Processes

MPI-SimpleMPI-CSCMPI-CSRHybrid (MPI+OpenSHMEM)

13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design• 8,192 processes

- 2.4X improvement over MPI-CSR- 7.6X improvement over MPI-Simple

• 16,384 processes- 1.5X improvement over MPI-CSR- 13X improvement over MPI-Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time

0500

10001500200025003000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Tim

e (s

econ

ds)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort Application

• 4,096 processes, 4 TB Input Size- MPI – 2408 sec; 0.16 TB/min- Hybrid – 1172 sec; 0.36 TB/min- 51% improvement over MPI-design

Page 28: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 28Network Based Computing Laboratory

Optimized OpenSHMEM with AVX and MCDRAM: Application Kernels Evaluation

Heat Image Kernel

• On heat diffusion based kernels AVX-512 vectorization showed better performance• MCDRAM showed significant benefits on Heat-Image kernel for all process counts.

Combined with AVX-512 vectorization, it showed up to 4X improved performance

1

10

100

1000

16 32 64 128

Tim

e (s

)

No. of processes

KNL (Default)KNL (AVX-512)KNL (AVX-512+MCDRAM)Broadwell

Heat-2D Kernel using Jacobi method

0.1

1

10

100

16 32 64 128

Tim

e (s

)

No. of processes

KNL (Default)KNL (AVX-512)KNL (AVX-512+MCDRAM)Broadwell

Page 29: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 29Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI +

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs

– CUDA-aware MPI– GPUDirect RDMA (GDR) Support

• Optimized MVAPICH2 for OpenPower (with/ NVLink) and ARM• Application Scalability and Best Practices

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 30: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 30Network Based Computing Laboratory

At Sender:

At Receiver:MPI_Recv(r_devbuf, size, …);

insideMVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Overlaps data movement from GPU with RDMA transfers

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

Page 31: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 31Network Based Computing Laboratory

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3 Releases• Support for MPI communication from NVIDIA GPU device memory• High performance RDMA-based inter-node point-to-point communication

(GPU-GPU, GPU-Host and Host-GPU)• High performance intra-node point-to-point communication for multi-GPU

adapters/node (GPU-GPU, GPU-Host and Host-GPU)• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node

communication for multiple GPU adapters/node• Optimized and tuned collectives for GPU device buffers• MPI datatype support for point-to-point and collective communication from

GPU device buffers• Unified memory

Page 32: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 32Network Based Computing Laboratory

0

2000

4000

6000

1 2 4 8 16 32 64 128

256

512 1K 2K 4K

Band

wid

th (M

B/s)

Message Size (Bytes)

GPU-GPU Inter-node Bi-Bandwidth

MV2-(NO-GDR) MV2-GDR-2.3a

01000200030004000

1 2 4 8 16 32 64 128

256

512 1K 2K 4K

Band

wid

th (M

B/s)

Message Size (Bytes)

GPU-GPU Inter-node Bandwidth

MV2-(NO-GDR) MV2-GDR-2.3a

0

10

20

300 1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K

Late

ncy

(us)

Message Size (Bytes)

GPU-GPU Inter-node Latency

MV2-(NO-GDR) MV2-GDR-2.3a

MVAPICH2-GDR-2.3aIntel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPUMellanox Connect-X4 EDR HCA

CUDA 9.0Mellanox OFED 4.0 with GPU-Direct-RDMA

10x

9x

Optimized MVAPICH2-GDR Design

1.88us11X

Page 33: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 33Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)• HoomdBlue Version 1.0.5

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)

0

500

1000

1500

2000

2500

4 8 16 32

Aver

age

Tim

e St

eps p

er

seco

nd (T

PS)

Number of Processes

MV2 MV2+GDR

0500

100015002000250030003500

4 8 16 32Aver

age

Tim

e St

eps p

er

seco

nd (T

PS)

Number of Processes

64K Particles 256K Particles

2X2X

Page 34: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 34Network Based Computing Laboratory

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 96Nor

mal

ized

Exec

utio

n Ti

me

Number of GPUs

CSCS GPU cluster

Default Callback-based Event-based

00.20.40.60.8

11.2

4 8 16 32

Nor

mal

ized

Exec

utio

n Ti

me

Number of GPUs

Wilkes GPU Cluster

Default Callback-based Event-based

• 2X improvement on 32 GPUs nodes• 30% improvement on 96 GPU nodes (8 GPUs/node)

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content/tasks/operational/meteoSwiss/

Page 35: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 35Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI +

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs• Optimized MVAPICH2 for OpenPower (with/ NVLink) and ARM• Application Scalability and Best Practices

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 36: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 36Network Based Computing Laboratory

0

0.5

1

1.5

0 1 2 4 8 16 32 64 128 256 512 1K 2K

Late

ncy

(us)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

Intra-node Point-to-Point Performance on OpenPower

Platform: Two nodes of OpenPOWER (Power8-ppc64le) CPU using Mellanox EDR (MT4115) HCA

Intra-Socket Small Message Latency Intra-Socket Large Message Latency

Intra-Socket Bi-directional BandwidthIntra-Socket Bandwidth

0.30us0

20

40

60

80

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

0

10000

20000

30000

40000

1 8 64 512 4K 32K 256K 2M

Band

wid

th (M

B/s)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

0

20000

40000

60000

80000

1 8 64 512 4K 32K 256K 2M

Band

wid

th (M

B/s)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

Page 37: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 37Network Based Computing Laboratory

0

1

2

3

4

0 1 2 4 8 16 32 64 128 256 512 1K 2K

Late

ncy

(us)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

Inter-node Point-to-Point Performance on OpenPower

Platform: Two nodes of OpenPOWER (Power8-ppc64le) CPU using Mellanox EDR (MT4115) HCA

Small Message Latency Large Message Latency

Bi-directional BandwidthBandwidth

0

50

100

150

200

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

0

5000

10000

15000

1 8 64 512 4K 32K 256K 2M

Band

wid

th (M

B/s)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

0

10000

20000

30000

1 8 64 512 4K 32K 256K 2M

Band

wid

th (M

B/s)

MVAPICH2-2.3rc1SpectrumMPI-10.1.0.2OpenMPI-3.0.0

Page 38: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 38Network Based Computing Laboratory

05

101520

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K

Late

ncy

(us)

Message Size (Bytes)

INTRA-NODE LATENCY (SMALL)

INTRA-SOCKET(NVLINK) INTER-SOCKET

MVAPICH2-GDR: Performance on OpenPOWER (NVLink + Pascal)

010203040

1 4 16 64 256 1K 4K 16K

64K

256K 1M 4M

Band

wid

th (G

B/se

c)

Message Size (Bytes)

INTRA-NODE BANDWIDTH

INTRA-SOCKET(NVLINK) INTER-SOCKET

0

2

4

6

8

1 4 16 64 256 1K 4K 16K

64K

256K 1M 4M

Band

wid

th (G

B/se

c)

Message Size (Bytes)

INTER-NODE BANDWIDTH

Platform: OpenPOWER (ppc64le) nodes equipped with a dual-socket CPU, 4 Pascal P100-SXM GPUs, and 4X-FDR InfiniBand Inter-connect

0

200

400

16K 32K 64K 128K256K512K 1M 2M 4M

Late

ncy

(us)

Message Size (Bytes)

INTRA-NODE LATENCY (LARGE)

INTRA-SOCKET(NVLINK) INTER-SOCKET

0

10

20

30

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K

Late

ncy

(us)

Message Size (Bytes)

INTER-NODE LATENCY (SMALL)

0200400600800

1000

Late

ncy

(us)

Message Size (Bytes)

INTER-NODE LATENCY (LARGE)

Intra-node Bandwidth: 33.2 GB/sec (NVLINK)Intra-node Latency: 13.8 us (without GPUDirectRDMA)

Inter-node Latency: 23 us (without GPUDirectRDMA) Inter-node Bandwidth: 6 GB/sec (FDR)Available in MVAPICH2-GDR 2.3a

Page 39: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 39Network Based Computing Laboratory

0

10

20

30

40

4 8 16 32 64 128 256 512 1K 2K 4K

Late

ncy

(us)

MVAPICH2-GDR-NextSpectrumMPI-10.1.0.2OpenMPI-3.0.0

Scalable Host-based Collectives with CMA on OpenPOWER (Intra-node Reduce & AlltoAll)

(Nod

es=1

, PPN

=20)

0

50

100

150

200

4 8 16 32 64 128 256 512 1K 2K 4K

Late

ncy

(us)

MVAPICH2-GDR-NextSpectrumMPI-10.1.0.2OpenMPI-3.0.0

(Nod

es=1

, PPN

=20)

Up to 5X and 3x performance improvement by MVAPICH2 for small and large messages respectively

3.6X

Alltoall

Reduce

5.2X

3.2X3.3X

0

400

800

1200

1600

2000

8K 16K 32K 64K 128K 256K 512K 1M

Late

ncy

(us)

MVAPICH2-GDR-NextSpectrumMPI-10.1.0.2OpenMPI-3.0.0

(Nod

es=1

, PPN

=20)

0

2500

5000

7500

10000

8K 16K 32K 64K 128K 256K 512K 1M

Late

ncy

(us)

MVAPICH2-GDR-NextSpectrumMPI-10.1.0.2OpenMPI-3.0.0

(Nod

es=1

, PPN

=20)

3.2X

1.4X

1.3X1.2X

Page 40: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 40Network Based Computing Laboratory

0

1000

2000

16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2-GDR-Next

SpectrumMPI-10.1.0

OpenMPI-3.0.0

3X0

2000

4000

16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

Message Size

MVAPICH2-GDR-Next

SpectrumMPI-10.1.0

OpenMPI-3.0.0

34%

0

1000

2000

3000

4000

16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

Message Size

MVAPICH2-GDR-Next

SpectrumMPI-10.1.0

OpenMPI-3.0.0

0

1000

2000

16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2-GDR-Next

SpectrumMPI-10.1.0

OpenMPI-3.0.0

Optimized All-Reduce with XPMEM on OpenPOWER(N

odes

=1, P

PN=2

0)

Optimized Runtime Parameters: MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=bunch

• Optimized MPI All-Reduce Design in MVAPICH2– Up to 2X performance improvement over Spectrum MPI and 4X over OpenMPI for intra-node

2X

(Nod

es=2

, PPN

=20)

4X48%

3.3X

2X

2X

Page 41: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 41Network Based Computing Laboratory

0

1

2

3

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Late

ncy

(us)

MVAPICH2

Intra-node Point-to-point Performance on ARMv8

0

1000

2000

3000

4000

5000

Band

wid

th (M

B/s) MVAPICH2

0

2000

4000

6000

8000

10000

Bidi

rect

iona

l Ban

dwid

th MVAPICH2

Platform: ARMv8 (aarch64) MIPS processor with 96 cores dual-socket CPU. Each socket contains 48 cores.

0

200

400

600

8K 16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2

Small Message Latency Large Message Latency

Bi-directional BandwidthBandwidth

Available since

MVAPICH2 2.3a

0.74 microsec (4 bytes)

Page 42: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 42Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI +

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs• Optimized MVAPICH2 for OpenPower (with/ NVLink) and ARM• Application Scalability and Best Practices

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 43: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 43Network Based Computing Laboratory

0

50

100

150

200

250

300

350

400

milc leslie3d pop2 lammps wrf2 tera_tf lu

Exec

utio

n Ti

me

in (S

)

Intel MPI 18.0.0

MVAPICH2 2.3 rc1

2%

6%

1%

6%

Performance of SPEC MPI 2007 Benchmarks (KNL + Omni-Path)

Mvapich2 outperforms Intel MPI by up to 10%

448 processeson 7 KNL nodes of TACC Stampede2

(64 ppn)

10%2%

4%

Page 44: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 44Network Based Computing Laboratory

0

20

40

60

80

100

120

milc leslie3d pop2 lammps wrf2 GaP tera_tf lu

Exec

utio

n Ti

me

in (S

)

Intel MPI 18.0.0

MVAPICH2 2.3 rc1

2%

4%

Performance of SPEC MPI 2007 Benchmarks (Skylake + Omni-Path)

MVAPICH2 outperforms Intel MPI by up to 38%

480 processeson 10 Skylake nodes of TACC Stampede2

(48 ppn)

0% 1%

0%

-4%38%

-3%

Page 45: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 45Network Based Computing Laboratory

Application Scalability on Skylake and KNLMiniFE (1300x1300x1300 ~ 910 GB)

Runtime parameters: MV2_SMPI_LENGTH_QUEUE=524288 PSM2_MQ_RNDV_SHM_THRESH=128K PSM2_MQ_RNDV_HFI_THRESH=128K

0

50

100

150

2048 4096 8192

Exec

utio

n Ti

me

(s)

No. of Processes (KNL: 64ppn)

MVAPICH2

0

20

40

60

2048 4096 8192Exec

utio

n Ti

me

(s)

No. of Processes (Skylake: 48ppn)

MVAPICH2

0

500

1000

1500

48 96 192 384 768No. of Processes (Skylake: 48ppn)

MVAPICH2

NEURON (YuEtAl2012)

Courtesy: Mahidhar Tatineni @SDSC, Dong Ju (DJ) Choi@SDSC, and Samuel Khuvis@OSC ---- Testbed: TACC Stampede2 using MVAPICH2-2.3b

0

1000

2000

3000

4000

64 128 256 512 1024 2048 4096No. of Processes (KNL: 64ppn)

MVAPICH2

0

500

1000

1500

68 136 272 544 1088 2176 4352No. of Processes (KNL: 68ppn)

MVAPICH2

0

1000

2000

48 96 192 384 768 1536 3072No. of Processes (Skylake: 48ppn)

MVAPICH2

Cloverleaf (bm64) MPI+OpenMP, NUM_OMP_THREADS = 2

Page 46: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 46Network Based Computing Laboratory

• MPI runtime has many parameters• Tuning a set of parameters can help you to extract higher performance• Compiled a list of such contributions through the MVAPICH Website

– http://mvapich.cse.ohio-state.edu/best_practices/

• Initial list of applications– Amber– HoomDBlue– HPCG– Lulesh– MILC– Neuron– SMG2000

• Soliciting additional contributions, send your results to mvapich-help at cse.ohio-state.edu.• We will link these results with credits to you.

Compilation of Best Practices

Page 47: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 47Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC)

– Exploiting Accelerators

• Deep Learning– MPI-level Challenges

– MVAPICH2-GDR Support

– OSU-Caffe

– Out-of-core Processing

HPC and Deep Learning

Page 48: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 48Network Based Computing Laboratory

• Deep Learning frameworks are a different game altogether

– Unusually large message sizes (order of megabytes)

– Most communication based on GPU buffers

• Existing State-of-the-art– cuDNN, cuBLAS, NCCL --> scale-up performance

– NCCL2, CUDA-Aware MPI --> scale-out performance• For small and medium message sizes only!

• Proposed: Can we co-design the MPI runtime (MVAPICH2-GDR) and the DL framework (Caffe) to achieve both?

– Efficient Overlap of Computation and Communication

– Efficient Large-Message Communication (Reductions)

– What application co-designs are needed to exploit communication-runtime co-designs?

Deep Learning: New Challenges for MPI Runtimes

Scal

e-up

Per

form

ance

Scale-out Performance

cuDNN

NCCL

gRPC

Hadoop

ProposedCo-

Designs

MPIcuBLAS

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

NCCL2

Page 49: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 49Network Based Computing Laboratory

0

10000

20000

30000

40000

50000

512K 1M 2M 4M

Late

ncy

(us)

Message Size (Bytes)

MVAPICH2 BAIDU OPENMPI

0100000020000003000000400000050000006000000

8388

608

1677

7216

3355

4432

6710

8864

1342

1772

8

2684

3545

6

5368

7091

2

Late

ncy

(us)

Message Size (Bytes)

MVAPICH2 BAIDU OPENMPI

1

10

100

1000

10000

100000

4 16 64 256

1024

4096

1638

4

6553

6

2621

44

Late

ncy

(us)

Message Size (Bytes)

MVAPICH2 BAIDU OPENMPI

• 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

MVAPICH2: Allreduce Comparison with Baidu and OpenMPI

*Available with MVAPICH2-GDR 2.3a

~30X betterMV2 is ~2X better

than Baidu

~10X better OpenMPI is ~5X slower than Baidu

~4X better

Page 50: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 50Network Based Computing Laboratory

1

10

100

1000

10000

100000

Late

ncy

(us)

Message Size (Bytes)

NCCL2 MVAPICH2-GDR

MVAPICH2-GDR vs. NCCL2 – Broadcast Operation• Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases

• MPI_Bcast (MVAPICH2-GDR) vs. ncclBcast (NCCL2) on 16 K-80 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b

1

10

100

1000

10000

100000

Late

ncy

(us)

Message Size (Bytes)

NCCL2 MVAPICH2-GDR

~10X better~4X better

1 GPU/node 2 GPUs/node

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 2 K-80 GPUs, and EDR InfiniBand Inter-connect

Page 51: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 51Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Reduce Operation• Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases

• MPI_Reduce (MVAPICH2-GDR) vs. ncclReduce (NCCL2) on 16 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b

1

10

100

1000

10000

100000

Late

ncy

(us)

Message Size (Bytes)

MVAPICH2-GDR NCCL2

~5X better

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect

1

10

100

1000

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Late

ncy

(us)

Message Size (Bytes)

MVAPICH2-GDR NCCL2

~2.5X better

Page 52: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 52Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation• Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b

1

10

100

1000

10000

100000

Late

ncy

(us)

Message Size (Bytes)

MVAPICH2-GDR NCCL2

~1.2X better

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect

1

10

100

1000

4 8 16 32 64 128

256

512 1K 2K 4K 8K 16K

32K

64K

Late

ncy

(us)

Message Size (Bytes)

MVAPICH2-GDR NCCL2

~3X better

Page 53: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 53Network Based Computing Laboratory

• Caffe : A flexible and layered Deep Learning framework.

• Benefits and Weaknesses– Multi-GPU Training within a single node

– Performance degradation for GPUs across different sockets

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training – Enable Scale-up (within a node) and Scale-out (across

multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU-Caffe: Scalable Deep Learning

0

50

100

150

200

250

8 16 32 64 128

Trai

ning

Tim

e (s

econ

ds)

No. of GPUs

GoogLeNet (ImageNet) on 128 GPUs

Caffe OSU-Caffe (1024) OSU-Caffe (2048)

Invalid use case

OSU-Caffe publicly available from

http://hidl.cse.ohio-state.edu/

Support on OPENPOWER will be available soon

Page 54: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 54Network Based Computing Laboratory

High Productivity and High Performance Out-of-Core DNN Training• Large Size Deep Neural Networks (DNNs) cannot be trained on

GPUs due to memory limitation!

– ResNet-50 - state-of-the-art DNN architecture for Image Recognition (Trainable with a small batch size of 45)

– Next generation models like Neural Machine Translation (NMT) are emerging that require even more memory

• Can we design Out-of-core DNN training support using new features in CUDA 8/9 and hardware mechanisms in Pascal/Volta GPUs?

• The proposed framework called OC-Caffe (Out-of-Core Caffe) shows the potential of managed memory designs that can provide performance with negligible/no overhead.

– OC-Caffe eliminates 3,000 lines of code for a high-productivity design by exploiting Unified Memory features

Submission Under Review

Page 55: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 55Network Based Computing Laboratory

• Comparable performance to Caffe-Default for “in-memory” batch sizes

• OC-Caffe-Opt: up to 5X improvement over Intel-MKL-optimized CPU-based AlexNet training on Volta V100 GPU with CUDA9 and CUDNN7

Performance Trends for OC-Caffe

OC-Caffe will be released by the HiDL [email protected]

Out-of-core (over-subscription)Trainable (in-memory)

Submission Under Review

Page 56: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 56Network Based Computing Laboratory

MVAPICH2 – Plans for Exascale• Performance and Memory scalability toward 1-10M cores• Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …)

• MPI + Task*• Enhanced Optimization for GPU Support and Accelerators• Taking advantage of advanced features of Mellanox InfiniBand

• Tag Matching*• Adapter Memory*

• Enhanced communication schemes for upcoming architectures• Knights Landing with MCDRAM*• NVLINK*• CAPI*

• Enhanced Support for Deep Learning• Extended topology-aware collectives• Extended Energy-aware designs and Virtualization Support• Extended Support for MPI Tools Interface (as in MPI 3.0)• Extended FT support• Support for * features will be available in future MVAPICH2 Releases

Page 57: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 57Network Based Computing Laboratory

Three More Presentations from the OSU Group

• Tuesday (04/10/18) at 11:30 am

DLoBD: An Emerging Paradigm of Deep Learning over Big Data Stacks on RDMA-enabled Clusters

• Wednesday (04/11/18) at 11:30 am

Building Efficient Clouds for HPC, Big Data, and Neuroscience Applications over SR-IOV-enabled InfiniBand Clusters

• Thursday (04/12/18) at 04:00 pm

High-Performance Big Data Analytics with RDMA over NVM and NVMe-SSD

Page 58: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 58Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

Equipment Support by

Page 59: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 59Network Based Computing Laboratory

Personnel AcknowledgmentsCurrent Students (Graduate)

– A. Awan (Ph.D.)

– R. Biswas (M.S.)

– M. Bayatpour (Ph.D.)

– S. Chakraborthy (Ph.D.)

– C.-H. Chu (Ph.D.)

– S. Guganani (Ph.D.)

Past Students – A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Rajachandrasekar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist– K. Hamidouche

– S. Sur

Past Post-Docs– D. Banerjee

– X. Besseron

– H.-W. Jin

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– M. Li (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– J. Hashmi (Ph.D.)

– H. Javed (Ph.D.)

– P. Kousha (Ph.D.)

– D. Shankar (Ph.D.)

– H. Shi (Ph.D.)

– J. Zhang (Ph.D.)

– J. Lin

– M. Luo

– E. Mancini

Current Research Scientists– X. Lu

– H. Subramoni

Past Programmers– D. Bureddy

– J. Perkins

Current Research Specialist– J. Smith

– M. Arnold

– S. Marcarelli

– J. Vienne

– H. Wang

Current Post-doc– A. Ruhela

– K. Manian

Current Students (Undergraduate)– N. Sarkauskas (B.S.)

Page 60: Designing Scalable, High -Performance Communication ... · Designing Scalable, High -Performance Communication Runtimes for HPC and Deep Learning: The MVAPICH2 Approach ... applications

OFA (April ’18) 60Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratoryhttp://nowlab.cse.ohio-state.edu/

[email protected]

The High-Performance MPI/PGAS Projecthttp://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Projecthttp://hidl.cse.ohio-state.edu/