31
DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

  • View
    225

  • Download
    2

Embed Size (px)

Citation preview

Page 1: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

DESIGNING A SCALABLE NETWORK INFRASTRUCTUREDr. Natheer Khasawneh

Rafat A. Dasan

Page 2: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

This chapter will cover…• DC's structured cabling and outline the importance of a well-

organized physical hierarchy.

• Explain the differences between common cabling media, suggests which are most appropriate in various scenarios, and presents best practices for installation and testing.

Page 3: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Topics to be covered …

Importance of the Physical Network Cabling Hierarchy Cable Characteristics

Cabling Costs Storage Area Networks (SANs)

Determining Connectivity Requirements

Network Redundancy Networking Room Common Termination Options

Building-to-Building Connectivity

Recommended Installation Practices

Testing and Verifying Structured Cabling

Wire Management Common Problems

Page 4: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Importance of the Physical Network• A DC's usability is greatly affected by the following:

• Cabling media choices• How many connections are provided• How cable terminations are organized

• DC's physical cabling network Design Tips:• Build the entire structured cabling system during initial construction -

Running cabling to all cabinet locations during initial construction makes the room easier to manage and avoids subjecting servers to potential downtime later when additional cabling is run. An up-front installation is also ultimately less expensive than adding cabling piecemeal since labor costs invariably rise over time.

• Use shorter cable runs whenever possible - Shorter cables are less expensive and provide better performance

• Choose the right cabling media for the right connection

Page 5: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cabling Hierarchy• DC's physical network layout approaches:

Approach 1 (Direct-Connect Cabling Hierarchy) :Structured cable runs routed directly to each server cabinet location - This works moderately well in a smaller server environment, say a room with fewer than 25 server cabinet locations.

Page 6: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cabling Hierarchy• DC's physical network layout approaches:

Approach 2 (Distributed Cabling Hierarchy):A network substation established at strategic locations in the DC and then cable from the network row (also called Room distributor, Special distribution framework, Home row, Main street and Network hub) to the server cabinet locations by way of the substation.

Page 7: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cabling Hierarchy – cont.• Approach 2 benefits & Challenges :

• Benefits :• Keep structured cabling better organized• Provide a level of distribution and redundancy for the DC network. • By installing a highly available network device into each substation

instead of consolidating them within the network row, each row of servers can be supported by a different networking device rather than having them all connect to one or two in the network row.

• Limits the scope of downtime - if an infrastructure problem arises at one cabinet location, you can immediately relocate servers to another row supported by identical infrastructure and networking devices.

• Using networking devices at each server row also enables server connections to be aggregated and cable runs back to the network row to be greatly reduced. Fewer cable runs can, in turn, lead to improved airflow below the raised floor.

Page 8: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cabling Hierarchy – cont.• Approach 2 benefits & Challenges :

• Challenges:• data connections must pass through an additional patching field at the

network substation. Every additional connection point along a cable run causes a slight degradation in the signal. So, passing through fewer termination points generally means better performance

• Network substations in a DC also occupy floor space that can otherwise be used as server cabinet locations.

• the more network substations you include in a DC design, the more networking equipment you must purchase.

Page 9: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics• cabling media types :

• Copper• Fiber

• The speed at which data can travel across a cable is measured in kilobits per second (Kbps), megabits per second (Mbps), or gigabits per second (Gbps).

• The capacity of information that a cable can carry, its bandwidth or frequency, is measured in megahertz (MHz).

• The water pipe example. A larger pipe, enabling a greater volume of water to pass through, equates to greater bandwidth (MHz). More water pressure equates to higher speed (Mbps).

Page 10: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont.• Copper Cabling:

• Copper is a reliable medium for transmitting information over shorter distances; its performance is only guaranteed up to 109.4 yards (100 meters) between devices.

• Copper cables come in two configurations:• Solid cables— Provide better performance and are less susceptible to interference,

making them the preferred choice for use in a server environment.• Stranded cables— More flexible and less expensive, and typically only used in

patch cord construction.

• TIA is the Telecommunications Industry Association; EIA is the Electronics Industries Alliance. Both are trade organizations that develop industry technology standards for electronics, telecommunications, and information technology equipment.• Consider TIA/EIA 568 and its addendums your bible for recommended DC cabling

practices. Installation practices, performance standards, and testing procedures are all covered by it.

Page 11: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont. Category Type

Frequency Bandwidth

Applications Notes

Cat1 0.4 MHz Telephone and modem linesNot described in EIA/TIA recommmendations. Unsuitable for modern systems.[5]

Cat2 ? MHz Older terminal systems, e.g. IBM 3270Not described in EIA/TIA recommmendations. Unsuitable for modern systems.[5]

Cat3 UTP[6] 16MHz[6] 10BASE-T and 100BASE-T4 Ethernet[6] Described in EIA/TIA-568. Unsuitable for speeds above 16 Mbit/s. Now mainly for telephone cables[6]

Cat4 UTP[6] 20MHz[6] 16 Mbit/s[6] Token Ring Not commonly used[6]

Cat5 UTP[6] 100MHz[6] 100BASE-TX & 1000BASE-T Ethernet[6] Common in most current LANs[6]

Cat5e UTP[6] 100MHz[6] 100BASE-TX & 1000BASE-T Ethernet[6] Enhanced Cat5. Same construction as Cat5, but with better testing standards.

Cat6 UTP[6] 250MHz[6] 1000BASE-T EthernetMost commonly installed cable in Finland according to the 2002 standard. SFS-EN 50173-1

Cat6e250MHz (500MHz according to some)

Not a standard; a cable maker's own label.

Cat6a 500MHz 10GBASE-T Ethernet ISO/IEC 11801:2002 Amendment 2.

Cat7 S/FTP[6] 600MHz[6] Telephone, CCTV, 1000BASE-TX in the same cable. 10GBASE-T Ethernet.

Four pairs, U/FTP (shielded pairs). Standard under development.

Cat7a 1000MHzTelephone, CATV, 1000BASE-TX in the same cable. 10GBASE-T Ethernet.

Four pairs, S/FTP (shielded pairs, braid-screened cable). Standard under development.

Cat8 1200MHz Under development, no applications yet.Four pairs, S/FTP (shielded pairs, braid-screened cable). Standard under development.

Wikipedia

Page 12: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont.

Cat 6 Patch Cord

Page 13: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont. • Fiber-Optic Cable:

• Components of a fiber optic cable :• The core, is a hair-thin strand of glass capable of carrying light. • Cladding a thin layer of slightly purer glass, that contains and refracts

that light. • Coating of plastic to protect them from dust or scratches. • Strengthening fibers are then added to protect the core during

installation. • Jacket is wrapping all in plastic or other protective substance

Page 14: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont. • Fiber cabling has several advantages over copper:

• Fiber cabling can handle connections over a much greater distance than copper cabling, 50 miles (80.5 kilometers) or more in some configurations.

• Fiber provides faster connection speeds.• Fiber isn't prone to electrical interference or vibration.• Fiber is thinner and lighter weight, so more cabling can fit in to the

same size bundle or limited spaces.• Signal loss over distance is less along optical fiber than copper

wire.

• Fiber Cables Types:• Multimode Fiber• Singlemode Fiber

Page 15: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont. • Multimode Fiber

• Multimode fiber is commonly used to provide connectivity over moderate distances, such as those in most DC environments or among rooms within a single building. A light-emitting diode (LED) is its standard light source. The term multimode refers to the several rays of light that proceed down the fiber.

Page 16: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont. • Single mode Fiber

• Single mode fiber is used for the longest distances, such as among buildings on a large campus or between sites. It has a smaller core than multimode fiber, and a laser is its standard light source. It also has the highest bandwidth.

Page 17: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cable Characteristics – Cont.

Page 18: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Cabling Costs• Copper is generally the less-expensive solution over shorter

distances, say the length of your DC's server rows, while fiber is less expensive for longer distances such as connections among buildings on a campus. That's because the copper cabling material itself is more expensive than fiber, but the electronic components used in the physical network—namely the network interface cards in each server—are more expensive for fiber than copper. Installations with long cable runs can offset the higher electronics costs, not to mention take full advantage of fiber's greater performance capabilities.

Page 19: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Storage Area Networks (SANs)• A growing number of server environments now incorporate a storage

area network (SAN) into their design. A SAN enables data from different servers to be transmitted over a dedicated network and stored, as needed, on various storage devices. Without a SAN, a server must be cabled directly to its own storage unit. With a SAN, any server in the network can potentially connect to any storage device in the network. This enables greater management of storage resources and, because data isn't residing on the servers themselves, frees up their processing abilities for other tasks.

Page 20: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Determining Connectivity Requirements

• If you organize equipment in your DC by type of server, then research what connectivity each server requires and equip accordingly the corresponding rows where you plan to install them.• This approach is simple when a server environment first comes online, but can cause

headaches in the future. It creates different levels of infrastructure in the DC and locks in where equipment must be placed in the room. If you fail to accurately predict how many of a given server your DC is going to host or if technology changes, you must periodically retrofit portions of the DC to keep up.

• If you organize equipment in your DC by function or work group, then choose a level of connectivity that can accommodate most servers and combinations of devices that might be grouped together in a server cabinet. Equip all DC cabinet locations with this amount of cabling.• This might seem a less precise approach because you are designing to a theoretical

average rather than specific equipment. It is a superior design, though, because it leads to a uniform amount of infrastructure rather than to peaks and valleys. Because all server rows are identically equipped and the room is organized by function rather than form, servers with high and low connectivity needs can be mixed together so as not to exceed the amount of cabling provided at any single server cabinet location.

Page 21: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Network Redundancy• As long as you provide abundant structured cabling throughout the

Data Center, you increase redundancy as much as you want by simply installing more networking devices at the network row and network substations. If you want to provide a minimum level of redundancy over the entire Data Center, install a second set of networking devices in the network row and patch to key components at the network substations. If you want to provide an even greater level of redundancy, double the networking devices at each network substation.

Page 22: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Networking Room• The networking room contains one or more rows of

cabinets to house network devices and patch fields. These rows are often configured similarly to the Data Center's network row. Connections here, however, are to other rooms—the Data Center, labs with networks, distribution rooms with cabling for office computers—rather than to server rows.

Page 23: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Common Termination Options• Fiber housings and copper patch panels are used for terminating

structured cabling directly into cabinets.

• Copper Cabling Terminators• Data Center copper cabling typically terminates into connectors and jacks

known as RJ-45s

• Fiber Cabling Terminators• Subscription Channel (SC) jack• Mechanical Transfer Registered Jack (MT-RJ)• Lucent Connector (LC) jack

• Color-Coding Cabling Materials• Consider using different colors of cabling and components to help illustrate

how your Data Center is organized

Page 24: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Building-to-Building Connectivity• A star-and-ring topology, which provides redundant

cabling to each building, is the industry standard configuration for building-to-building connectivity. You always want two different cabling paths into a building, for redundancy. The paths should be at least 50 feet (15.2 meters) apart, and ideally should be on opposite sides of a building.

Page 25: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Recommended Installation Practices• General Installation

• Make sure that all cabling installations are done in a professional manner and comply with applicable building codes for the region where the Data Center is constructed.

• Bundling Structured Cabling• The structured cabling in your Data Center should be gathered into bundles and

organized by destination

• Minimum Bend Radius• Copper— A TIA test that calls for Category 5 cabling to withstand a 1-inch (2.5-

centimeter) bend radius under certain conditions• Fiber— A bend radius that is at least 10 times the diameter of the cable, which

typically works out to somewhere between 1.2 and 2 inches (3 and 5.1 centimeters).

• Reverse Fiber Positioning• Have the cabling contractor flip the strand positions for each connector between the

networking room and Data Center network row, among network rows and each network substation, and between the network substation and each server cabinet location. This practice, known as reverse fiber positioning, enables you to standardize on one straight-through patch cord for all connecting cords on both ends of the system.

Page 26: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Recommended Installation Practices – Cont.

• Labeling the Structured Cabling System

Page 27: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Recommended Installation Practices – Cont.

• Cabinet Installations• First, secure the network cabinets to your Data Center floor, by

running a threaded rod down to the cement and bolting each cabinet at all four corners.

• Second, route structured cabling down the sides of the cabinet. You want to stay within the frame of the cabinet while still leaving as much internal space open for the installation of networking devices as possible.• installation of several horizontal guide rods into each network cabinet

with cable bundles secured to them

Page 28: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Testing and Verifying Structured Cabling

• Although testing requirements differ between copper and fiber cabling, there are certain procedures that you want contractors to follow for both media, including the following:• Provide documentation on what testing procedures and equipment

are being used.• Perform tests on the entire system cabling, not just individual

components.• Provide test results in both hardcopy and computer-readable

format.

Page 29: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Wire Management• A good rule of thumb is wire management that is at least as big as

any copper patch panels and half as big as any fiber housings that it is intended to guide cabling to. If you have a copper patch panel that occupies 2U of cabinet space, make sure that there is a total of 2U of wire management adjacent to it. If the jacks that those copper cables plug in to need that much space, it is a safe bet that the cables themselves need at least that much room. Fiber cables are thinner than the ports they plug in to, which is why the ratio is cut in half for them.

Page 30: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Common Problems• Structured cabling is routed sloppily in the network

cabinets• Incorrect structured cabling is ordered and installed• Strand counts are mistaken as port counts or vice-versa

(2 strands = 1 port)• Labeling of connections is incomplete or unclear• Multimedia boxes aren't fully assembled

Page 31: DESIGNING A SCALABLE NETWORK INFRASTRUCTURE Dr. Natheer Khasawneh Rafat A. Dasan

Summary• There are two approaches to laying out a Data Center's structured cabling. One is cables

directly connected from a network row to server cabinet locations. This can work in small server environments but is difficult to manage and maintain in larger ones. The other is cables run from a network row to a substation at the end of each server row. This is more manageable, shortens the length of cable runs, and adds redundancy to the network.

• Copper and fiber-optic cabling are used to provide Data Center connectivity.

• Copper is used for shorter connections, up to 109.4 yards (100 meters). Copper cabling and components are rated by categories, and Data Center cabling traditionally falls into Category 5, 5E, or 6.

• Fiber is used for longer connections, up to several miles.

• copper cabling terminates into RJ-45 connectors and jacks while fiber cabling terminates into SC, MT-RJ, or LC connectors and jacks.

• Have cabling contractors test cabling materials once they are installed to ensure that they meet expected standards.