81
PROJECTO DE SANEAMENTO Castelo Branco Lisboa, Setembro de 2010 DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA José Saldanha Matos (Responsável) Ana Fonseca Galvão Mestrado em Eng. do Ambiente

DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA … · Competências no domínio dos conceitos: ... • Bases quantitativas de Projectos de abastecimento e saneamento

Embed Size (px)

Citation preview

PROJECTO DE SANEAMENTO

Castelo Branco

Lisboa, Setembro de 2010

DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA

José Saldanha Matos (Responsável)

Ana Fonseca Galvão

Mestrado em Eng. do Ambiente

SANEAMENTO

Objectivos da Disciplina:

Competências de conceber e dimensionar infra-estruturas de abastecimento de

água e de drenagem de águas residuais, em zonas urbanas, nomeadamente:

• Sistemas de adução e reserva de abastecimento de água;

• Sistemas de distribuição de água;

• Sistemas de drenagem de águas residuais.

Competências no domínio dos conceitos:

de drenagem pluvial em meio urbano;

de órgãos especiais em sistemas de drenagem.

Projecto de Saneamento [A1.1]

SANEAMENTO

Programa da Disciplina:

Projecto de Saneamento [A1.2]

1 - Âmbito e objectivos do saneamento ambiental: conceitos fundamentais

2 - Sistemas de abastecimento de água: perspectiva histórica e conceitos fundamentais

2.1 - Obras de captação e adução;

2.2 - Instalações elevatórias;

2.3 - Reservatórios;

2.4 - Redes de distribuição de água.

3 - Sistemas de águas residuais: perspectiva histórica e actual

3.1 - Origem, quantificação e natureza das águas residuais;

3.2 - Concepção e dimensionamento de redes gerais de drenagem de águas residuais;

3.3 - Órgãos das redes gerais de drenagem;

3.4 - Instalações elevatórias.

4 - Introdução à drenagem pluvial em meio urbano

SANEAMENTO

Metodologia de Avaliação:

Exame final no fim do semestre (40%);

(Nota mínima 8,5)

Avaliação dos 2 projectos desenvolvidos ao longo das aulas práticas, com

discussão (60%).

Projecto 1: Estudo de um Sistema Adutor (6 semanas; 35%);

Projecto 2: Projecto Base de uma rede de abastecimento e de uma rede

de drenagem (8 semanas ; 65%).

Projecto de Saneamento [A1.3]

SANEAMENTO

Planeamento das Aulas:

Planeamento das Aulas:

14 semanas de aulas;

1 Aulas Teórica/semana de 2h;

1 Aula Prática/semana de 3h;

Grupos de (3 ou) 4 alunos.

Projecto de Saneamento [A1.4]

SISTEMAS DE ABASTECIMENTO E DE SANEAMENTO

Ciclo Urbano da Água – Impacto nos aquíferos

Projecto de Saneamento [A1.5]

SISTEMAS DE ABASTECIMENTO E DE SANEAMENTO

Evolução histórica do abastecimento de água e do saneamento

Projecto de Saneamento [A1.6]

SISTEMAS DE ABASTECIMENTO E DE SANEAMENTO

Ciclo Urbano da Água - Constituição dos Sistemas

Projecto de Saneamento [A1.7]

Componentes Órgãos Objectivo / função

Captação Obras de captação Captar água bruta nas origens (superficiais e subterrâneas), de acordo com as disponibilidades e as necessidades.

Tratamento Estações de tratamento de água (ETA)

Produzir a água potável a partir de água bruta, obedecendo às normas de qualidade (Decreto-Lei 243/01, de 1 de Agosto - Anexo VI).

Elevação Estações elevatórias e sobrepressoras

Bombar água (bruta ou tratada) entre um ponto de cota mais baixa e um ou mais pontos de cota mais elevada.

Transporte ou adução

Adutores, aquedutos e canais

Conjunto de obras destinadas a transportar a água desde a origem à distribuição. O transporte pode ser: em pressão (por gravidade e por bombagem); com superfície livre (aquedutos e canais).

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Constituição dos Sistemas

Projecto de Saneamento [A1.8]

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Constituição dos Sistemas

Componentes Órgãos Objectivo / função

Armazenamento Reservatórios Servir de volante de regularização, compensando as flutuações de consumo face à adução.Constituir reservas de emergência (combate a incêndios ou em casos de interrupção voluntária ou acidental do sistema de montante).Equilibrar as pressões na rede de distribuição.Regularizar o funcionamento das bombagens.

Distribuição Rede geral pública de distribuição de água

Conjunto de tubagens e elementos acessórios, como sejam juntas, válvulas de seccionamento e de descarga, redutores de pressão, ventosas, bocas de rega e lavagem, hidrantes e instrumentação (medição de caudal, por exemplo), destinado a transportar água para distribuição.

Ligação domiciliária Ramais de ligação Asseguram o abastecimento predial de água, desde a rede pública até ao limite da propriedade a servir, em boas condições de caudal e pressão.

Distribuição interior Redes interiores dos edifícios

Conjunto de tubagens e elementos acessórios para distribuição de água no interior dos edifícios.

Projecto de Saneamento [A1.9]

SISTEMAS DE DRENAGEM E DESTINO FINAL

Constituição dos Sistemas

Componentes Órgãos Objectivo / função

Rede interior de drenagem

Rede de drenagem interior dos edifícios

Conjunto de tubagens e elementos acessórios para recolha de águas residuais do interior dos edifícios.

Ligação domiciliária Ramais de esgoto Asseguram a recolha das águas residuais, desde o limite da propriedade a servir e a rede pública.

Sistema de Drenagem Rede geral pública de drenagem de águas residuais

Conjunto de tubagens e elementos acessórios, como caixas de visita destinado a recolher as águas residuais para os interceptores e emissários.

Transporte para ETAR e destino Final

Interceptores e Emissários

Conjunto de tubagens e elementos acessórios, como caixas de visita, destinado a transportar as águas residuais para as ETAR ou para destino final.

Tratamento de Águas Residuais

Estação de tratamento de águas Residuais (ETAR)

Tratar a água residual de forma a produzir um efluente compatível com a respectiva reutilização ou com a capacidade de assimilação do meio receptor.

Projecto de Saneamento [A1.10]

SANEAMENTOAula 2 - Sumário

AULA 2• Bases quantitativas de Projectos de abastecimento e saneamento.

• Captações de águas subterrâneas. Captações de águas superficiais.

Estações de Tratamento (ETA).

• Estações Elevatórias. Reservatórios. Redes de distribuição. Redes

interiores.

Projecto de Saneamento [A2.1]

Objectivo:

Avaliação, o mais correcta possível, das quantidades de água para as quais se deve

projectar as componentes dos sistemas.

Principais elementos:

A) Horizonte de Projecto;

B) População de Projecto;

C) Caudais de Projecto;

D) Área de Projecto;

E) Hidrologia de Projecto.

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos de Abastecimento e Saneamento

Projecto de Saneamento [A2.2]

Definição:

Número de anos durante os quais o sistema ou as estruturas e os equipamentos que o

compõem têm que servir em boas condições.

Factores:

Vida útil das obras de construção civil e equipamento;

Facilidade ou dificuldade de ampliação;

Taxa de juro durante o período de amortização do Investimento;

Previsão da Evolução da População;

Funcionamento da Instalação nos primeiros anos de exploração;

Capacidade financeira da entidade gestora;

Disponibilidade em recursos hídricos.

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Horizonte de Projecto

Projecto de Saneamento [A2.3]

Tipo de obraDuração provável

(anos)

Horizonte de Projecto

(anos)

Furos e poços 50 a 60 20 a 30

Tomadasde água 40 a 50 20 a 40

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Vida Útil e Horizonte de Projecto

Projecto de Saneamento [A2.4]

Tipo de obraDuração provável

(anos)

Horizonte de Projecto

(anos)

Grandes adutoras 60 a 80 40 a 50

Reservatórios e torres

de pressão80 a 100 20 a 40

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Vida Útil e Horizonte de Projecto

Projecto de Saneamento [A2.5]

Tipo de obraDuração provável

(anos)

Horizonte de Projecto

(anos)

Estações elevatórias

(construção civil) 40 a 60 20 a 40

Grupos electobomba

e equipamento electromecânico

25 a 35 20 a 25

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Vida Útil e Horizonte de Projecto

Projecto de Saneamento [A2.6]

Tipo de obraDuração provável

(anos)

Horizonte de Projecto

(anos)

Instalações de tratamento

(construção civil) 40 a 60 20 a 40

Instalações de tratamento

(equipamento)20 a 30 20 a 25

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Vida Útil e Horizonte de Projecto

Projecto de Saneamento [A2.7]

Tipo de obraDuração provável

(anos)

Horizonte de Projecto

(anos)

Redes dedistribuição

de água30 a 40

Máxima expansão

urbana

Redes de drenagem de

águas residuais30 a 40

Máxima expansão

urbana

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Vida Útil e Horizonte de Projecto

Projecto de Saneamento [A2.8]

Definição:

População a servir no horizonte de projecto.

Factores:Métodos de extrapolação ou de regressão;

Comparação;

Extrapolação Visual;

Taxa de crescimento crescente;

a. Linear P20= P0 + Ka ( t20 - t0 )

b. Geométrica P20= P0 (1+Kg )(t20 - t0)

Taxa de crescimento decrescente;

Curva logística;

Análise parcelar;

Previsão de emprego;

Planos Directores.

Elementos de base:

Censos e o recenseamento eleitoral.

Problemas: Migrações.

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / População de Projecto

Projecto de Saneamento [A2.9]

Componentes dos consumos:

População a servir no horizonte de projecto.

Capitação:

Relação entre o consumo anual total pelo número de habitantes e pelo número de dias

do ano [L/(hab.dia)].

Componentes de consumo:Componentes de consumo:

População temporária ou flutuante;

População permanente;

Actividades comerciais;

População residente;

Entidades públicas;

Componentes de consumo:Componentes de consumo:

Combate a incêndios;

Indústria;

Perdas.

Actividades agrícolas e pecuárias;

Emergências;

A capitação é uma característica média de consumo;

Difícil a atribuição de um valor em Projecto.

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Caudais de Projecto

Projecto de Saneamento [A2.10]

Factores que influenciam a capitação:1. População

Consumos mínimos fixados pelo Regulamento Geral dos Sistemas Públicos e Prediais de Distribuição de Água e de Drenagem de Águas Residuais (RGAAR):

125 L/(hab.dia)

80 L/(hab.dia)

175 L/(hab.dia)

100 L/(hab.dia)

150 L/(hab.dia)de 10 000 hab. até 20 000 hab.

até 1000 hab.

acima de 50 000 hab.

de 1000 hab. até 10 000 hab.

de 20 000 hab. até 50 000 hab.

2. Condições climáticas

3. Hábito de higiene individual

4. Existência ou não de redes interiores

5. Tipo de drenagem de águas residuais

6. Estado de conservação do sistema

7. Estrutura tarifária

8. Inclusão ou não de pequenas actividades comerciais, públicas (5 a 20 L/(hab. dia)) ou industriais.

9. Perdas (valor mínimo (RGAAR) 10% do caudal total)

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Caudais de Projecto

Projecto de Saneamento [A2.11]

Tipo de estabelecimento ConsumosAdegasEscolasEscritóriosEstações de serviçoGaragensLacticíniosLavandariasMatadouro (animais de grande porte)Matadouro (animais de médio porte)PadariasPensões (sem cozinha, nem lavandaria)Restaurantes

5 L /litro de produto50 L /(aluno.dia)50 L /(trabalhador.dia)150 L /(veículo.dia)50 L /(veículo.dia)4-12 L/(kg de produto)30 L/(kg de roupa)300 L/(cabeça)150 L/(cabeça)0,6 L/(kg de farinha)120 L/(hóspede.dia)25 L/refeição

Tipo de animal Capitação

BovinosCaprinosOvinosEquídiosGalinhasPerusSuínosBovinos (vacas leiteiras)

40 (L/animal/dia)8 (L/animal/dia)8 (L/animal/dia)

40 (L/animal/dia)0,4 (L/animal/dia)

0,75 (L/animal/dia)10 (L/animal/dia)75 (L/animal/dia)

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Caudais de Projecto

Projecto de Saneamento [A2.12]

Caudal médio anual:

Produto da população pela capitação:

Qm = Capitação x População [L3/T-1]Caudais de ponta:

Definem as características extremas de consumos;

Determinam-se multiplicando o caudal médio pelo correspondente factor de ponta:

Qp = fp x Qm [L3/T-1]

Usualmente definem-se:

Caudal de ponta horário (caudal médio da hora de maior consumo).

Caudal de ponta diário (caudal médio do dia de maior consumo);

Caudal de ponta mensal (caudal médio do mês de maior consumo);

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Bases Quantitativas de Projectos / Caudais de Projecto

Projecto de Saneamento [A2.13]

CAPTAÇÕES DE ÁGUA

Captação de Águas Subterrâneas

Nascente Poço Radial

Projecto de Saneamento [A2.14]

CAPTAÇÕES DE ÁGUA

Captação de Águas Subterrâneas

Problemas nas zonas costeiras: intrusão salina

Projecto de Saneamento [A2.15]

CAPTAÇÕES DE ÁGUA

Captação de Águas Superficiais

Tomada de água em rio ou albufeira (corte longitudinal)

Tomada de água e estação elevatória(planta)

Projecto de Saneamento [A2.16]

Bombas centrífugas de eixo verticalem tomada de água directa

Tomadas de água móveis

Tomada de água flutuante

CAPTAÇÕES DE ÁGUA

Captação de Águas Superficiais

Projecto de Saneamento [A2.17]

Captação em albufeira

Captação directa no paramento de montante duma barragem de terra

CAPTAÇÕES DE ÁGUA

Captação de Águas Superficiais

Projecto de Saneamento [A2.18]

Torre de tomada de água em albufeira

CAPTAÇÕES DE ÁGUA

Captação de Águas Superficiais

Projecto de Saneamento [A2.19]

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Tratamento

Mistura rápida

Floculadores

Filtros

Oficinas

Saturadoresde cal

Espessadores

Desidrataçãode lamas

Armazenamentode cloro e CO2

Edifíciodos reagentes

Edifíciode exploração

Projecto de Saneamento [A2.20]

Grupos electrobomba

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Elevação (Estações Elevatórias)

Projecto de Saneamento [A2.21]

Câmara de manobras de reservatório com duas células

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Armazenamento

Projecto de Saneamento [A2.22]

Rede de distribuição de água em planta

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Distribuição

Projecto de Saneamento [A2.23]

Rede interior de um edifício – sistema tipo de alimentação de água fria

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Distribuição interior

Projecto de Saneamento [A2.24]

SANEAMENTOAula 3 - Sumário

AULA 3• Traçado de sistemas adutores.

• Dimensionamento hidráulico de sistemas adutores.

• Dimensionamento das condutas à pressão.

• Características e materiais das tubagens.

Projecto de Saneamento [A3.1]

Aspectos de traçado:

Obstáculos especiais:

SISTEMAS DE ADUÇÃO DE ÁGUA

Escoamentos com Superfície Livre

Problemas topográficos:adaptação do traçado do canal / aqueduto àtopografia do terreno.

Travessias de vales pronunciados

sifões invertidos

Travessias de serras ou montanhasTúneis ou galerias

Aquedutos

Projecto de Saneamento [A3.2]

Aspectos de traçado:

O estudo duma adutora pressupõe a análise das condições de traçado, em planta e em perfil longitudinal.

Condicionantes:

Extensão (o mais curta possível e nos grandes diâmetros com grandes raios de curvatura);

Pressões de serviço nos troços;

Facilidade de construção, reparação e vigilância;

Transposição de obstáculos topográficos (linhas de água, vales e linhas de cumeada);

Inclinações mínimas nos trechos ascendentes (3 ‰) e descendentes (5 ‰);

Profundidade mínima de assentamento das tubagens (1 m);

SISTEMAS DE ADUÇÃO DE ÁGUAEscoamentos em Pressão

0.5% 0.5% 0.5%0.3%0.3%ar ar ar ar

Projecto de Saneamento [A3.3]

Fonte: Water Supply and Waste-Water Disposal – Fair et al.

SISTEMAS DE ADUÇÃO

Perfil longitudinal duma adutora, em pressão, por gravidade

Projecto de Saneamento [A3.4]

Duração do transporte:

Transporte por bombagem:

A não ser em casos especiais, 16 h diárias como período máximo diário de adução (NP 837);

A fiabilidade dos sistemas mecânicos permite 20 h/dia, com segurança razoável.

Transporte gravítico:

Período máximo diário de adução de 24 h/dia.

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Adução / Dimensionamento Hidráulico de Adutoras

Projecto de Saneamento [A3.5]

Caudais de dimensionamento:

Dimensionamento para o dia de maior consumo:

Qdim = Kt x Kp x f D x Qm

em que:

Dimensionamento para o mês de maior consumo:

Qdim = Kt x Kp x fM.Qm

Kt – factor de duração de transporte = (24 h/nº de horas de transporte);

Kp – factor de perdas na adução (1,05 a 1,10);

fM ; fD – factor de ponta mensal ou factor de ponta diário;

Qm – caudal médio anual.

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Adução / Dimensionamento Hidráulico de Adutoras

Projecto de Saneamento [A3.6]

Limitações à velocidade do escoamento:

Razões para a limitação da velocidade máxima:

Sobrepressões provocadas pelo regime variável;Custo de Energia (€)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800

Perdas de carga excessivas e anti-económicas.

Qualidade da água nas condutas;

Auto-limpeza e deposição de sólidos.

Razões para a limitação da velocidade mínima:

Velocidade do escoamento:Troços em pressão por bombagem

0,6 m/s ≤ V ≤ 1,5 m/sTroços em pressão por gravidade

0,3 m/s ≤ V ≤ 1,5 m/s

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Adução / Dimensionamento Hidráulico de Adutoras

Projecto de Saneamento [A3.7]

Escolha dos diâmetros tecnicamente viáveis:

QdimQdim (m3/s) (m3/s) => => Q = V.S Q = V.S =>=> Intervalo de Diâmetros Intervalo de Diâmetros

VmaxVmax, , VminVmin (m/s) (m/s) => => S = pi.DS = pi.D22/4 => /4 => D (m) = (4 Q / D (m) = (4 Q / pi.Vpi.V))0.50.5

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Adução / Dimensionamento Hidráulico de Adutoras

Dmin DmaxD1 D2 D3

Gravítico (Qdim 40)

Dmin DmaxD1 D2

Elevatório(Qdim 20)

(Qdim 40)

Di = diâmetros comerciais cujo diâmetro interior está no intervalo

Projecto de Saneamento [A3.8]

DIMENSIONAMENTO DE CONDUTAS ADUTORASEscolha do diâmetro

No sistema puramente gravítico (sem elevação)A Escolha dos diâmetros tecnicamente viáveis é função da energia disponível - Cálculo de Jmáx = Δz / L - Por fórmula de perda de carga (Fórmula de Colebrook-White),

cálculo de Dmín’

Dmin DmaxD1 D2 D3

Gravítico (Qdim 40)

Dmin’

Diâmetro mais económico é o diâmetro mínimo (ou a combinação de diâmetros) que está dentro do intervalo Dmin e Dmax (verifica os dois critérios) e que permite transportar a água para a cota desejada.

ΔzL

Jmax1

Dmin’

D<Dmin’

Linha de energia dinâmica (LED)

D>Dmin’

Projecto de Saneamento [A3.9]

DIMENSIONAMENTO DE CONDUTAS ADUTORASEscolha do diâmetro económico

Em sistemas elevatórios ou num sistema misto (em vale)

Conceito de diâmetro económico

Para determinar o Diâmetro mais económico é necessário contabilizar, para além dos custos da instalação da tubagem, os custos com a energia.

Assim, retém-se todos os diâmetros tecnicamente viáveis (D1 e D2) e contabiliza-se os encargos energéticos das diferentes soluções viáveis.

DN

€Custo Total

Custo Condutas

Custo Exploração (Energia)

Dec

Qdim 40

Dmin DmaxD1 D2

Qdim 20

Projecto de Saneamento [A3.10]

• Fórmula de Colebrook- White– mais rigorosa +/-15% de erro– Mais adequada para sistemas adutores (normalmente sistemas longos e com muitas

perdas de carga contínuas)

• Fórmula de Manning Strickler– Adequada para redes de distribuição e sistemas com superficie livre (redes de

drenagem ou canais/rios)

DIMENSIONAMENTO DE CONDUTAS ADUTORASCálculo das Linhas de Energia

2/13/2 JRSKQ S=

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎟⎠

⎞⎜⎜⎝

⎛= −

+ JDgDDk

gJQD

nnnn 2

51,27,32

2 5/210

5/2

πlog

⎟⎟⎠

⎞⎜⎜⎝

⎛+= −

+n

n JDgDDk

DgUJ

251,2

7,382

10

2

log

Ks PE,PVC = 100-120 m1/3s-1

ν(água20ºC) = 10-6 m2s-1

kPE,PVC = 0,003-0,02 mm

kFFD,aço = 0,01-0,1 mm Quintela (1981), p.140

Quintela (1981), p.153

Ks PE,PVC = 75 - 90 m1/3s-1

Projecto de Saneamento [A3.11]

Determinação das pressões de serviço das tubagens:

Condutas adutoras gravíticas:

Altura piezométrica estática

Condutas adutoras por bombagem:

Altura piezométrica dinâmica

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Adução / Dimensionamento Hidráulico de Adutoras

Projecto de Saneamento [A3.12]

Características:Duronil \ Tubagens

Tubagem em PVC (policloreto de vinilo) rígida de parede compacta fabricada por extrusão.

As tubagens de Duronil são apresentadas nas classes de pressão:PN6 kgf/cm2 (0,6 MPa);PN10 kgf/cm2 (1,0 MPa);PN16 kgf/cm2 (1,6 MPa).

Diâmetros exteriores (mm):63; 75; 90;110; 125; 140; 160; 200; 250; 315; 400; 500; 630

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Tubagens / Policloreto de Vinilo (PVC)

Projecto de Saneamento [A3.13]

Características:PEAD \ Tubagens

A tubagem em PEAD de parede compacta é fabricada por extrusão.

As tubagens de PEAD são apresentadas nas classes de pressão de:

PN4 kgf/cm2 (0,4 MPa) a PN16 kgf/cm2 (1,6 MPa)

Diâmetros exteriores (mm):63; 75; 90;110; 125; 140; 160; 200; 250; 315; 400; 500; 630

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Tubagens / Polietileno de Alta Densidade (PEAD)

Projecto de Saneamento [A3.14]

Características:PRFV \ Tubagens

As tubagens de PRFV são fabricadas através de um processo de centrifugação automático.

Diâmetros interiores (mm):150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 900; 1000; 1100;…; 2400

A tubagem é formada por diversas camadas, variando as quantidades de matérias primas usadas em cada uma.

No fabrico da tubagem entram quatro componentes:

Resina de poliester: actua como ligante e é formada por uma resina de poliester não saturada e não dissolvente;Filler (cabornato de sódio): mistura-se com a resina para melhorar a carga estrutural;Areia de sílica: como carga estrutural para melhorar as suas propriedades mecânicas;Fibra de vidro: como reforço da resina de poliester utilizam-se fibras de vidro de alta qualidade.

As tubagens de PRFV são apresentadas nas classes de pressão de 0,2 MPa a 2,5 MPa

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Tubagens / Poliester Reforçado com Fibra de Vidro (PRFV)

Projecto de Saneamento [A3.15]

Características:

FERRO FUNDIDO DÚCTIL

FFD \ Tubagens

As tubagens de ferro fundido dúctil (FF) caracterizam-se por serem tubagens de grande longevidade.

Diâmetros interiores (mm):

150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 900; 1000; …

Podem ter vários revestimentos interiores.

As tubagens de FF são apresentadas nas classes de pressão de:

3,2 MPa a 4,0 MPa

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Tubagens / Ferro Fundido Dúctil (FFD)

Projecto de Saneamento [A3.16]

Características:Aço \ Tubagens

As tubagens de aço podem ser dimensionadas com várias espessuras e são normalmente utilizadas para trechos com elevadas pressões e em trechos em que a tubagem não esteja enterrada.

Diâmetros interiores (mm):

150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 900; 1000; …

Podem ter vários revestimentos interiores.

As tubagens de aço são apresentadas nas classes de pressão de:

3,2 MPa a 4,0 MPa

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Tubagens / Aço

Projecto de Saneamento [A3.17]

Outras tubagens plásticas:

Fibrocimento

É um material em desuso, mas do qual existem extensões significativas nas redes mais antigas.

Classes de pressão: CL6, CL12; CL18; CL24; CL30

Betão armado (pré-esforçado ou com alma de aço)

É um material competitivo nos grandes diâmetros com o ferro fundido dúctil.

Polipropileno

Resiste a altas pressões (20 kgf/cm2) e permite o escoamento e fluidos a altas temperaturas.

Outros tipos \ Tubagens

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Tubagens / Outros Tipos

Projecto de Saneamento [A3.18]

SANEAMENTOAula 4 - Sumário

AULA 4• Regime variável.

• Dispositivos de Perda de carga.

• Exemplos de alternativas em sistemas adutores.

Projecto de Saneamento [A4.1]

Sobrepressões provocadas pelo regime variável:

Redução instantâneas de velocidade.

com

gVVaH )( 10 −

) (3,48

9900 1−

+= sm

eDk

a

a – celeridade (m/s)Vi – velocidade do escoamento (m/s)k – constante, que depende do tipo de material

da tubagem (aço = 0,50; ferro fundido = 1,0; betão = 5,0; plástico = 18)

e – espessura da conduta (m)D – diâmetro da conduta (m)

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

Adução / Dimensionamento Hidráulico de Adutoras

Projecto de Saneamento [A4.2]

SOBREPRESSÕES E SUBPRESSÕESPROVOCADA POR PARAGEM DE GRUPOS ELEVATÓRIOS

Tempo de anulação do caudal

Fórmula de Rosich (1970)

comC – parâmetro que depende do declive da conduta elevatória:

Ht/L ≤ 20% => C = 1sHt/L > 40% => C = 0s

K – coeficiente adimensional, dependente do comprimento:

L – comprimento da condutaU0 – velocidade do escoamentoHt – altura de elevação

tHgULKCT

... 0+=

L(m) <500 ~500 500<L<1500 ~1500 >1500

K(-) 2 1,75 1,5 1,25 1,0

Projecto de Saneamento [A4.3]

SOBREPRESSÕES E SUBPRESSÕESPROVOCADA POR PARAGEM DE GRUPOS ELEVATÓRIOS

Subpressão máxima (Michaud):

gUaH

aLT 0.2

−=Δ⇒<

TgULH

aLT

.

.22 0−=Δ⇒>

Normalmente, é necessário proceder à protecção da conduta através de acessórios de

protecção contra os efeitos do golpe de aríete.

Volante de inércia Válvula de escape Reservatório dear comprimido

(RAC)

Projecto de Saneamento [A4.4]

SOBREPRESSÕES E SUBPRESSÕESPROVOCADA POR PARAGEM DE GRUPOS ELEVATÓRIOS

Exemplo:

Fecho instantâneo:

mxgUaH 85

8,94,1600. 0 ==−=Δ

Tempo de anulação do caudal

Ht = 50 m

L = 1000 mV = 1,4 m/sPEAD

sx

xxHgULKCT

t

3,5508,9

4,110005,11... 0 =+=+=

sxaLT 3,3

600100022

==>Subpressãomáxima

Logo

mgT

ULH 54..2 0 =−=Δ

Corte de corrente no grupo electrobomba:

Projecto de Saneamento [A4.5]

DISPOSITIVOS DE PERDA DE CARGA

Projecto 1: Estudo Prévio de um Sistema Adutor

FUNÇÃO: Órgãos destinados a reduzir a cota piezométrica.

TIPOS:

Câmaras de Perda de Carga (CPC) Válvulas Redutoras de Pressão (VRP)

CPC

LEE

LED

VRP

LEE

LED

Projecto de Saneamento [A4.6]

DISPOSITIVOS DE PERDA DE CARGA

Projecto 1: Estudo Prévio de um Sistema Adutor

FACTORES QUE CONDICIONAM A INSTALAÇÃO:

pressões bastantes elevadas devido ao grande desnível topográfico entre o ponto de

origem e o ponto de destino da conduta adutora;

pressões exageradas em certos troços da conduta adutora.

CPC

LEE

LED

VRP

LEE

LED

Projecto de Saneamento [A4.7]

Dispositivos de Perda de CargaCâmaras de perda de carga

CPC

LEE

LED

FORMA DE FUNCIONAMENTO:

um reservatório intermédio, em que uma parte da energia hidráulica do escoamento é dissipada, àentrada, através de uma válvula (perda de carga localizada;

a nova cota de partida para o jusante é a cota do terreno.

Projecto de Saneamento [A4.8]

Dispositivos de Perda de CargaVálvulas Redutoras de Pressão (VRP)

VRP

LEE

LED

• Tipos de válvulas– de mola, pistão e diafragma

FORMA DE FUNCIONAMENTO:

destinam-se a manter uma dada pressão, a jusante, que seja menor do que a de montante, quando esta exceda determinado valor;

Vantagem (em relação às CPC) de não perder a energia toda a jusante.

Projecto de Saneamento [A4.9]

Projecto 1: Estudo Prévio de um Sistema Adutor

Soluções AlternativasSistema puramente gravítico

LEE

LED

Cenário Base Cenário Alternativo

Dmenor

D1

D2

LEE

LED

CPC

CPC

CPC

CPC

CPCCPC

Diâmetro mínimo

Combinação de Diâmetros

1, 2, 3, 4 CPC

Projecto de Saneamento [A4.10]

Cenário Base Cenário Alternativo

Alterar o diâmetro ou

LEE

D1D2

1 ou 2 EE (2 ou 3 EE)

LEE

D1D1

D1

EEEstação Elevatória

EE

EE

Projecto 1: Estudo Prévio de um Sistema Adutor

Soluções AlternativasSistema elevatório

Projecto de Saneamento [A4.11]

D1 (e.g. Dec40)

Diâmetro menor (D1)

Cenário Base Cenário Alternativo

D2 >D1D2 >D1

Diâmetro maior (D2) que o do Cenário Base

Projecto 1: Estudo Prévio de um Sistema AdutorSoluções AlternativasSistema misto

Projecto de Saneamento [A4.12]

SANEAMENTOAula 5 - Sumário

AULA 5• Estudo económico de Sistemas Adutores. Valor Actual Líquido (VAL).

• Diâmetro económico de sistemas elevatórios.(Slides 80 a 95).

Projecto de Saneamento [A5.1]

ESTUDO ECONÓMICO DE SISTEMAS DE ADUÇÃO E RESERVA

Custos de InstalaCustos de Instalaçção:ão:

Custos de exploraCustos de exploraçção e manutenão e manutençção:ão:

Tubagem

Estações elevatórias

Órgãos acessórios

Reservatórios

Dispositivos redutores de pressão (CPC ou VRP);Ventosas;Descargas de fundo;Válvulas de seccionamento.

Construção civil;Equipamento electromecânico.

Levantamento e reposição de pavimentos;Movimento de terras;Fornecimento, instalação e montagem (incl. acessórios).

Energia;Encargos com pessoal;Manutenção.

Projecto de Saneamento [A5.2]

ESTUDO ECONÓMICO DE SISTEMAS DE ADUÇÃO

Sistemas adutores gravSistemas adutores gravííticosticos::

( ) ( )⎩⎨⎧

=+=+

11211

1121212111111 ..LLL

HDJLDJL

( ) ( )⎩⎨⎧

=+=+

totalLLLHDJLDJL

21

222111 ..

( ) ( )⎩⎨⎧

=+=+

22221

2222222212121 ..LLL

HDJLDJL

Projecto de Saneamento [A5.3]

ESTUDO ECONÓMICO DE SISTEMAS DE ADUÇÃO

Sistemas adutores com condutas elevatSistemas adutores com condutas elevatóóriasrias::

Determinação do diâmetro económico

Projecto de Saneamento [A5.4]

• Análise a preços constantes – Os preços unitários são constantes ao longo da vida do projecto

(não há inflação, ti=0);

– Os custos em cada ano só podem ser somados quando actualizados a um ano de referência (ano 0) através da taxa de actualização ou juro (ta);

– Utilizada para comparar soluções alternativas.

0 1 2 3 .... n .... HP

C0 C0 C0 C0 .... C0 .... C0

1 / (1+ta) 1 / (1+ta) nn1 / (1+ta) 1 / (1+ta) 33 1 / (1+ta) 1 / (1+ta) HPHP

CCactualizado_anoactualizado_ano 00 = C= C00 / (1+ta) / (1+ta) nn

ESTUDO ECONÓMICO DE SOLUÇÕES

Projecto de Saneamento [A5.5]

• Análise a preços correntes – Os preços unitários aumentam em cada ano com a taxa de inflação (ti);

– Os custos em cada ano só podem ser somados quando actualizados a um ano de referência (ano 0) através da taxa de actualização ou juro (ta);

0 1 2 3 .... n .... HP

C0 C1 C2 C3 .... Cn .... CHP

1 / (1+ta) 1 / (1+ta) nn1 / (1+ta) 1 / (1+ta) 33 1 / (1+ta) 1 / (1+ta) HPHP

CCnn = C= C00 * (1+ti) * (1+ti) nn

CCactualizado_anoactualizado_ano 00 = C= CNN / (1+ta) / (1+ta) nn

(1+ti) (1+ti) nn (1+ta) (1+ta) HPHP

ESTUDO ECONÓMICO DE SOLUÇÕES

Projecto de Saneamento [A5.6]

ESTUDO ECONÓMICO DE SISTEMAS DE ADUÇÃO E RESERVA

Custos com energiaCustos com energia::

ηγ ti

iHVE ..

=Energia consumida no ano i:

Custo da energia no ano i:

Volume elevado no ano i:

Preço unitário da energia

iti

i VKpHVCE ...==

ηγ pHK t

ηγ .

=

diasCapPopV iii 365..=

Elevam-se volumes diferentes ao longo do período de projecto;

Para calcular o total da energia anual não é necessário conhecer o tempo médio de bombagem em cada ano.

Projecto de Saneamento [A5.7]

ESTUDO ECONÓMICO DE SISTEMAS DE ADUÇÃO E RESERVA

ActualizaActualizaçção dos encargos com energiaão dos encargos com energia::

Custo total da energia actualizada

Ano Valor no ano Valor actualizado

1

2

3

: :

N

1.VK

2.VK

3.VK

NVK.

)1/(. 1 atVK +2

2 )1/(. atVK +3

3 )1/(. atVK +

NaN tVK )1/(. +

∑ =+

N

ii

ai tVK1

)1/(.∑ =

N

i iVK1

.

Projecto de Saneamento [A5.8]

ACTUALIZAÇÃO DOS ENCARGOS COM ENERGIA

HipHipóótesetese::

Custo total da energia actualizada

Os volumes elevados anualmente crescem de acordo com uma lei geométrica.

Ano Volume elevado no ano Custo da energia actualizado

1

2

3

: :

N

)1(01 gtVV +=

220 )1/()1(. ag ttVK ++

=++∑ =

N

ii

ai

go ttVK1

)1/()1(.

202 )1( gtVV +=

303 )1( gtVV +=

NgN tVV )1(0 +=

)1/()1(. 0 ag ttVK ++

330 )1/()1(. ag ttVK ++

Na

Ng ttVK )1/()1(. 0 ++

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

+−

+=

N

a

g

ga

go t

tttt

VK11

1)()1(

.

Projecto de Saneamento [A5.9]

Custo total do sistema de abastecimento de águaAnálise a Preços constantes

• Custo total = = Investimento em Capital fixo + Encargos de exploração

• Investimento em capital fixo– Condutas adutoras ……….. Ano 0 – Reservatórios ………… Ano 0– Construção civil EE ………… Ano 0– Equip. electromecânico EE ……...... Anos 0 e 20– CPC ………… Ano 0

• Encargos de Exploração– Operação e manutenção ………… 1 - 40 anos

• Condutas adutoras • Reservatórios • Construção civil EE • Equipamento electromecânico EE

– Energia (de bombagem) ………… 1 - 40 anos

Projecto de Saneamento [A5.10]

Custo total do sistema de abastecimento de águaAnálise a Preços constantesInvestimento em capital fixo

• Condutas– definido por metro linear

de conduta (QUADRO A.1 – Enunciado)

• Reservatórios– definidos por m3

C =1 400 .Vol 0,75

Diâmetro nominal

(mm)FFD Aço

revestido

PVC PEAD

PN6 PN10 PN16 PN6 PN10 PN16

60 53.97

63 27.64 27.98 28.99 28.89 30.24 32.02

75 30.42 31.43 34.51 29.54 31.03 33.06

80 57.97 71.32

100 64.45 77.66

800 536.33 513.44 490.70 740.88 425.33 572.35

Projecto de Saneamento [A5.11]

Custo total do sistema de abastecimento de águaAnálise a Preços constantesInvestimento em capital fixo

• Estações elevatórias– Definidos em função do caudal de dimensionamento e altura de elevação

Construção civil Ccc(€) = 39904 + 374 x Q +0.15 x Q x HEquipamento Ceq (€) = 1317 x Q0.769 x H0.184 + 2092 x (QxH)0.466

Sendo Q – caudal (l/s) e H – altura de elevação (m)

– O custo da construção civil • adquirida no ano 0 é calculado com Qdim40 e Hdim40

– O custo do equipamento • adquirido no ano 0 é calculado com Qdim20 e Hdim20• adquirido no ano 20 é calculado com Qdim40 e Hdim40

e deverá ser actualizado ao ano 0 multiplicando o valor por 1 / (1+ ta) 20

• Câmaras de perda de carga– Custo unitário = 15 000€

Projecto de Saneamento [A5.12]

Custo total do sistema de abastecimento de águaAnálise a Preços constantesEncargos de Exploração

• Operação e manutenção– Definidos em percentagem do Investimento por ano

• Condutas adutoras com ligações por juntas ……… 1% Inv /ano • Condutas adutoras com ligações por soldadura ….. 0.75% Inv /ano • Reservatórios e CPC …………………. 1% Inv /ano• Construção civil EE……………………………….. 1% Inv /ano• Equip. electromecânico EE …….. ……………….. 2.5% Inv /ano

– Têm de ser calculados ano a ano ao longo de 40 anos (anos 1 a 40) e actualizados ao ano 0:

Custo actualizado_ano_0 = Custo ano_n * 1 / (1+ ta) n

sendo ta = taxa de actualização (e.g. 6%)

Projecto de Saneamento [A5.13]

Custo total do sistema de abastecimento de águaAnálise a Preços constantesEncargos de Exploração (continuação)

• Energia (1º Processo de cálculo)–Deverá ser calculado ano a ano, ao longo de 40 anos (anos 1 a 40), e actualizado ao ano 0

• Energia anual consumida no ano i - Sousa (2001) – Adução, p.32–Eano_i = Potência * Tempo_Func_ano_i

= ( γ * Qdim * Hdim / μ ) * Tempo_Func_ano_i

= ( γ * Hdim / μ ) * (Qdim *Tempo_Func_ano_i)= ( γ * Hdim / μ ) ∗ Vmda_ano_i

• Custo da energia anual consumida no ano i–CEano_i (€) = Eano_i (kWh) * preço_unitário (€/kWh)

• Custo da energia anual consumida no ano i actualizada ao ano 0–CEactualizado_ano_0 (€) = CEano_i (€) * 1/(1+ta)i

Nota: Atenção à conversão de unidades: 1 joule = W.s

Constante: do ano 1 ao 20 (Hdim20)do ano 21 ao 40 (Hdim40)

Variável do ano i = Popano i * Capano i

Projecto de Saneamento [A5.14]

Custo total do sistema de abastecimento de águaAnálise a Preços constantesEncargos de Exploração (continuação)

• Energia (2º Processo de cálculo)– Poderá ser calculada como a soma de n termos de uma progressão geométrica:

• Sn = U1 * ( 1-Rn) / (1-R)– U1 corresponde ao 1º termo– R corresponde à razão do da progressão geométrica

– Corresponderá a duas somas• 1-20 anos e de 21-40 anos

– Por exemplo de 1-20 anos temos

– Sendo tg1 = taxa geométrica de crescimento do volume consumido de 1-20 anos dada por:tg1 = (V20/V0)(1/20) -1

na expressão homóloga para o período de 21 a 40 esta taxa será dada por:tg2 = (V40/V20)(1/20) -1

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

+−

+=

201

1

120dim0_)201( 1

11

)()1(

...

a

g

ga

goanoacta t

tttt

VpHCEη

γ

Projecto de Saneamento [A5.15]

Custo total do sistema de abastecimento de águaAnálise a Preços constantesEncargos de Exploração (continuação)

• Custo Total Actualizado dum Sistema Elevatório para um dado diâmetro D1:

2020_)4021(

0_)201(2040_

20_40_0_ )1()1(1.._

a

anoactaanoacta

a

anoeqanoeqanocctubagemanoact t

CECE

tEE

EEEECDElevSistC+

+++

+++=

em que:

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

+−

+=

201

1

120dim0_)201( 1

11

)()1(

...

a

g

ga

goanoacta t

tttt

VpHCEη

γ

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

+−

+=

202

2

220

40dim20_)4021( 1

11

)()1(

...

a

g

ga

ganoacta t

tttt

VpHCEη

γ

20 termos (ano 1 a ano 20) actualizados ao ano imediatamente anterior ao início da série (ano 0)

20 termos (ano 21 a ano 40) actualizados ao ano imediatamente anterior ao início da série (ano 20)

O mesmo cálculo terá que ser efectuado para o D2 (se existir).

O diâmetro mais económico é o que apresentar o C_Sist.Elev.act_ano0 menor

Projecto de Saneamento [A5.16]