David Hatton

  • Upload
    avca65

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 7/27/2019 David Hatton

    1/25

  • 7/27/2019 David Hatton

    2/25

    2

    2

    Does size matter?

    How do you predict the flotation response of a circuit

    due to a change in feed grind?

  • 7/27/2019 David Hatton

    3/25

    3

    3

    Does size matter?

    How do you predict the flotation response of a circuit

    due to a change in feed grind?

    From a flotation test:

    SGSs Mineral Flotation Test (MFT)

    And a plant survey

    For circuit calibration in IGS

    (Copies available at the SGS booth)

  • 7/27/2019 David Hatton

    4/25

    4

    4

    The Theory: Flotation by size

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

  • 7/27/2019 David Hatton

    5/25

    5

    5

    Theory: Grind size distribution

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    CummulativePer

    centPassing

  • 7/27/2019 David Hatton

    6/25

    6

    6

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    CummulativePerc

    entPassing

  • 7/27/2019 David Hatton

    7/25

    77

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    CummulativePerc

    entPassing

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300

    P80 (um)

    FloatablePerce

    ntageofCopper

  • 7/27/2019 David Hatton

    8/25

    88

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300

    P80 (um)

    FloatablePerce

    ntageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    CummulativePerc

    entPassing

  • 7/27/2019 David Hatton

    9/25

    99

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    CummulativePerc

    entPassing

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300

    P80 (um)

    FloatablePercentageofCopper

  • 7/27/2019 David Hatton

    10/25

    1010

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    CummulativePer

    centPassing

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300

    P80 (um)

    FloatablePerce

    ntageofCopper

  • 7/27/2019 David Hatton

    11/25

    1111

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    CummulativePercentPassing

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300P80 (um)

    FloatablePercentageofCopper

  • 7/27/2019 David Hatton

    12/25

    1212

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000Particle size (um)

    CummulativePerc

    entPassing

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300

    P80 (um)

    FloatablePercentag

    eofCopper

  • 7/27/2019 David Hatton

    13/25

    1313

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000Particle size (um)

    CummulativePerc

    entPassing

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300P80 (um)

    FloatablePercentageofCopper

  • 7/27/2019 David Hatton

    14/25

    1414

    What is the difference?

    Individual Particles Overall Distribution

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300Particle size (um)

    FloatablePercentageofCopper

    70

    75

    80

    85

    90

    95

    100

    0 50 100 150 200 250 300P80 (um)

    FloatablePercentageofCopper

  • 7/27/2019 David Hatton

    15/25

    1515

    Floatable percentage by size

    SGS Laboratory Flotation Test, the MFT

    Froth crowder and high scraping rate high froth recovery

    Extended residence to recover all floatable material

    Size concentrates are collected

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    FloatablePercentageofCopper

  • 7/27/2019 David Hatton

    16/25

    1616

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    CopperRe

    covery

    Overall recovery by size Includes entrainment

    Entrainment Total Recovery

  • 7/27/2019 David Hatton

    17/25

    1717

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 50 100 150 200 250 300

    Particle size (um)

    CopperRe

    covery

    Recovery by size Includes entrainment

    Entrainment

    Floatable

    Proportion

  • 7/27/2019 David Hatton

    18/25

    1818

    Particle size distribution

    Grinding Simulations

    Rossin-Rammler fitted to obtain P80, m

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    Particle size (um)

    Cummu

    lativePercentPassing

    m

    80P

    x6094.1exp100100xP

  • 7/27/2019 David Hatton

    19/25

    1919

    Validation

    MFTs were conducted at a P80 of 180 m

    From these the floatable proportion was calculated

    -20

    -15

    -10

    -5

    0

    5

    10

    50 100 150 200 250 300

    Grind P80 [um]

    FloatableCudeviation(%)

    T1 measured T7 measured T10 measured

  • 7/27/2019 David Hatton

    20/25

    2020

    Validation

    From the procedure the floatable proportion was

    predicted at a range of P80s

    -20

    -15

    -10

    -5

    0

    5

    10

    50 100 150 200 250 300

    Grind P80 [um]

    FloatableCudeviation(%)

    T1 predicted T1 measured T7 predicted

    T7 measured T10 predicted T10 measured

  • 7/27/2019 David Hatton

    21/25

    2121

    Validation MFTs were also conducted at P80s of 90, 130 and 240 m

    -20

    -15

    -10

    -5

    0

    5

    10

    50 100 150 200 250 300

    Grind P80 [um]

    FloatableCudeviation(%)

    T1 measured T7 measured T10 measured

  • 7/27/2019 David Hatton

    22/25

    2222

    Validation MFTs were then conducted at P80s of 90, 130 and 240 m

    The results confirmed the predictions

    -20

    -15

    -10

    -5

    0

    5

    10

    50 100 150 200 250 300

    Grind P80 [um]

    FloatableCudeviation(%)

    T1 predicted T1 measured T7 predicted

    T7 measured T10 predicted T10 measured

  • 7/27/2019 David Hatton

    23/25

    2323

    Circuit Simulations

    A flotation circuit was calibrated in IGS from MFTs

    conducted on the plant feed and from plant survey data

    At the target concentrate grade simulations predicted a

    3% increase in recovery from a 50 m finer grind

  • 7/27/2019 David Hatton

    24/25

    2424

    Plant Trial

    Plant surveys were done at baseline conditions

    Plant tonnage reduced by 30% to achieve 50 m finer

    grind

    Plant surveyed at finer grind

    Equal flotation residence time in both surveys

    Surveys mass balanced and compared

    Final concentrate grade differed between baseline and

    finer grind surveys

    Change in grade was corrected for by trade-off

    simulations (in IGS) to obtain the actual change in

    recovery

  • 7/27/2019 David Hatton

    25/25

    2525

    Results

    The predictions were accurate (within 0.2% recovery)

    The MFT thus provides a cost effective method for predicting the

    change in plant performance with change in grind

    Recovery GradeDifference Difference

    Simulations based on MFTs 3.0% -0.2%

    Plant Trial 4.5% -4.6%

    Grade adjusted Plant Trial 3.2% 0.0%

    Evaluation Method