38
Daniele Ielmini Logic and neuromorphic computing with resistive switches Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano [email protected]

Daniele Ielmini, Logic and neuromorphic computing with resistive

Embed Size (px)

Citation preview

Daniele Ielmini

Logic and neuromorphic computing with

resistive switches

Daniele Ielmini

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano

[email protected]

Daniele Ielmini

Outline

• Introduction

• Logic computing with resistive switches

Logic gates

1-bit adder

• Neuromorphic computing with resistive switches

2T1R synapse

1T1R synapse

Demonstration of unsupervised learning

• Conclusions

2

G-ReRAM Workshop

Daniele Ielmini

Extending Moore’s law 3

MEMS RF CMOS Image sensors

III-V semiconductors Tunnel FET

2D semiconductors

Spintronics Quantum computing Memristor

G-ReRAM Workshop

ITRS 2013

Daniele Ielmini

RRAM device 4

Set Reset

VA VA < 0

VA TiN

TiN

HfO2 Ti Set

Reset

IC = 9 mA

VA > 0

G-ReRAM Workshop

Daniele Ielmini

Outline

• Introduction

• Logic computing with resistive switches

Logic gates

1-bit adder

• Neuromorphic computing with resistive switches

2T1R synapse

1T1R synapse

Demonstration of unsupervised learning

• Conclusions

5

G-ReRAM Workshop

Daniele Ielmini

Input/output variables 6

G-ReRAM Workshop

D. Nikonov, IEDM

Shourt Course 2013

Daniele Ielmini

Conditional switching: the HP approach 7

G-ReRAM Workshop

• Apply voltages Vcond and Vset:

p=0 unconditional set

p=1 no change in q

• Issues:

All other logic functions must be constructed from IMP

Transfer missing

J. Borghetti, et al.,

Nature 464, 873 (2010)

Daniele Ielmini

AND gate 8

G-ReRAM Workshop

Enable pulse

P = 0

Q = 0

P’ = 0

Q’ = 0

P = 1

Q = 1

P’ = 1

Q’ = 1

P = 0

Q = 1

P’ = 0 Q’ = 0

P = 1

Q = 0 P’ = 0

Q’ = 0 P

Q

I VQ VP

V

P’ Q = 0

P = 1

Q’ = 0

P’ = 0

V V

VQ VP

P Q

I

VP

VQ

V

Q = 0

P = 0

Q’ = 0

P’ = 0

V > 0 V

V

P

I VP

Q’

VQ

Q

V

Q = 1

P = 0

Q’ = 0

P’ = 0

V

VP

P Q

I VQ

V

Q = 1

P = 1

Q’ = 1

P’ = 1

V V

P' = Q' = P*Q

AND condition:

Vset < V < 2Vset

P Q P'=P*Q Q'=P*Q

0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

Q = 1: bit transfer

S. Balatti, et al., IEEE

T-ED 62, 1831 (2015)

Daniele Ielmini

Material implication (IMP) 9

G-ReRAM Workshop

V

Enable pulse

V V

|V|

P

I VQ VP

Q = 0*

P = 1

Q’ = 0*

P’ = 1

V

P

I VP

Q

VQ

|V|

Q = 1

P = 0

Q’ = 1

P’ = 0

V V

VP

P Q

I VQ

|V|

Q = 1

P = 1

Q’ = 1

P’ = 1

Q' = PQ

IMP condition:

Q = 0*: NOT gate

V VQ VP

P Q = 0*

I

|V|

Q’ VP

VQ Q = 0*

P = 0

Q’ = 1

P’ = 0

V < 0

P = 0

Q = 0* P’ = 0

Q’ = 1

P = 1

Q = 1

P’ = 1

Q’ = 1

P = 0

Q = 1

P’ = 0

Q’ = 1

P = 1

Q = 0*

P’ = 1

Q’ = 0*

|V| > |Vreset|

P Q P'=P Q'=PQ

0 0* 0 1

0 1 0 1

1 0* 1 0*

1 1 1 1

Daniele Ielmini

State 0* 10

G-ReRAM Workshop

VC

V

Vset

VC

V

Vset

VC

V

Vset

0 0

0* 1

Q = 0*

P = 0

Q’ = 1

P’ = 0

P = 0

Q = 0

P, Q ?

Unpredictable

reset

Regeneration of state 0*:

Daniele Ielmini

OR and XOR 11

G-ReRAM Workshop

𝐴 + 𝐵 = 𝐴 ∗ 𝐵 𝐴𝐵 = 𝐴𝐵 ∗ 𝐵 𝐴

Daniele Ielmini

1-bit adder 12

G-ReRAM Workshop

S. Balatti, et al., IEEE Trans. Electron Devices 62, 1839 (2015)

Daniele Ielmini

Experimental/simulation demonstration 13

G-ReRAM Workshop

Daniele Ielmini

Logic computing: summary

• Resistive-switch logic demonstrated with input variable =

output variable = R

• Advantages:

Universal logic gate as opposed to topogical gates

such as CMOS

Ultrahigh density in 3D crosspoint array

Zero static power thanks to nonvolatile switch

Logic-in-memory overcoming the memory bottleneck of

traditional Von Neumann architecture

• Disadvantages:

Resistive switching is slow and power hungry

Limited endurance

Switching variability

14

G-ReRAM Workshop

Daniele Ielmini

Outline

• Introduction

• Logic computing with resistive switches

Logic gates

1-bit adder

• Neuromorphic computing with resistive switches

2T1R synapse

1T1R synapse

Demonstration of unsupervised learning

• Conclusions

15

G-ReRAM Workshop

Daniele Ielmini

Neuromorphic computing 16

G-ReRAM Workshop

• Neuromorphic architectures aim at

replicating cognitive behaviors

(learning, recognition, decision

making)

• Density in the human cortex

Cells = 107 cm-2

Synapses = 1011 cm-2 (104 average

connectivity)

In vivo In silico

Neuron CMOS

Axons/dendrites Interconnect

Synapses RRAM/memristors

Daniele Ielmini

17

Pre-synaptic

neuron

Post-synaptic

neuron

Potentiation

Dt > 0

Depression

Dt < 0

Dt=tpost - tpre

DG

Synapse PRE POST

Spike timing dependent plasticity (STDP)

G-ReRAM Workshop

Daniele Ielmini

Spike timing dependent plasticity (STDP) 18

G-ReRAM Workshop

Memristor + control logic for time-

voltage conversion

S. H. Jo, et al., Nano Lett. 10 (2010)

G.-Q. Bi and M.-M. Poo,

J. Neuroscience 18, 1998

Daniele Ielmini

2-transistor/1-resistor (2T1R) approach 19

G-ReRAM Workshop

Fire gate PRE VCG

Communication

gate BE

VTE

- +

VTE

VCG

POST

C

Integrate Fire

Vint

VFG

Daniele Ielmini

Communication 20

G-ReRAM Workshop

Fire gate PRE VCG

Communication

gate BE

VTE

- +

VTE

VCG

POST

C

Integrate Fire

Vint

VFG

t

t

VTE

VCG

VTE,max

VTE,min

150ms

1ms

Daniele Ielmini

t

t

VTE

VFG

Dt > 0

Long-term potentiation (LTP) 21

G-ReRAM Workshop

Fire gate PRE VCG

Communication

gate BE

VTE

- +

VTE

VCG

POST

C

Integrate Fire

Vint

VFG

VTE,max

VTE,min

150ms

1ms

Daniele Ielmini

t

t

VTE

VFG

Dt < 0

Long-term depression (LTD) 22

G-ReRAM Workshop

Fire gate PRE VCG

Communication

gate BE

VTE

- +

VTE

VCG

POST

C

Integrate Fire

Vint

VFG

VTE,max

VTE,min

150ms

1ms

Daniele Ielmini

STDP dependence on HRS and LRS

• STDP demonstrated for both partial LRS (variable IC) and

partial HRS (variable Vstop)

• Analytical model accounts for measurements

23

G-ReRAM Workshop

|Vstop|

|Vstop|

S. Ambrogio, et al., IEEE T-ED 61 (2014)

IC

Daniele Ielmini

STDP dependence on random state

• STDP demonstrated in 2T1R synapses

• Suitable for unsupervised learning

• Issue: 2T1R circuit might be too large to achieve high density

synaptic networks

24

G-ReRAM Workshop

Measured Calculated

0

1

0.75

0.5

0.25

Z.-Q. Wang, et al., Front. Neurosci. 8(438) 2015

Daniele Ielmini

1T1R synapse 25

PRE

-

VG

POST

Integrate Fire

Vint

VG BE

+

VTE Synapse

G-ReRAM Workshop

Daniele Ielmini

26

PRE

- +

VG

Synapse PRE spike

VTE = const.

VTE

Integrate Fire

BE VG

POST

Vint

Communication

G-ReRAM Workshop

Daniele Ielmini

27

-

PRE

Synapse

VG

VTE+

BE VG

VTE

+

VTE-

POST

Integrate Fire

Vint

POST spike

PRE spike

Plasticity

G-ReRAM Workshop

Daniele Ielmini

Depression (Dt < 0) 28

-

Dt<0

Reset

PRE

Synapse

VG BE

+

VTE

POST spike

PRE spike

VG

POST

Integrate Fire

Vint

PRE spike

G-ReRAM Workshop

Daniele Ielmini

Potentiation (Dt > 0) 29

-

Dt>0

PRE

VG BE

+

VTE

VG

Set

POST

Integrate Fire

Vint

Synapse

POST spike

PRE spike

PRE spike

G-ReRAM Workshop

Daniele Ielmini

STDP characteristics

• State-dependent STDP characteristics can be reproduced by our

analytical RRAM model

• Squared STDP is not quite bio-realistic: can it learn?

30

Data Simulations

S. Ambrogio, et al. IEEE T-ED, 61(7) (2014)

G-ReRAM Workshop

Daniele Ielmini

31

First layer (64

neurons)

Pattern

Synapses

PRE

POST 1

1

2

3

64

Learning demonstration by simulations

G-ReRAM Workshop

Daniele Ielmini

32

Abrupt set/reset transitions make learning unstable

Unsupervised pattern learning

G-ReRAM Workshop

Daniele Ielmini 33

B

A

C A

C B

Stochastic set emulates gradual set

VA

HRS

LRS

Set variability

G-ReRAM Workshop

Daniele Ielmini

34

Improved learning with 50% set probability

Pattern learning by stochastic STDP

G-ReRAM Workshop

Daniele Ielmini

35

Second layer

(4 neurons)

Inhibitory synapses

Pattern First layer

(3600 neurons)

Synapses

Pesi N1 Pesi N2

Pesi N3 Pesi N4

Input

G-ReRAM Workshop

Learning of multiple patterns

Daniele Ielmini

• Logic gates for multiple

operations (AND, IMP OR,

etc.), transfer, cascading

• STDP demonstrated with

RRAM using 2T1R and

1T1R synapses

• Pattern learning, forgetting

and recognition

demonstrated through

simulations

36

G-ReRAM Workshop

Summary

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Initial state Final state

Measured Calculated

0

1

0.75

0.5

0.25

P

Q

I VQ VP

V

P’

Q = 0

P = 1

Q’ = 0

P’ = 0

V V

Daniele Ielmini

Acknowledgments

• Postdocs: S. Balatti, N. Ciocchini, Z.-Q. Wang

• Students: S. Ambrogio, M. Laudato, R. Carboni,

V. Milo, A. Taddei, A. Amirkhani, S. Ozdem,

A. Bricalli, G. Pedretti, E. Ambrosi, F. Polino

• Support:

37

G-ReRAM Workshop

2014 Consolidator Grant:

RESCUE – Resistive-switch computing beyond CMOS

Daniele Ielmini

A new ReRAM book 38

G-ReRAM Workshop