D3.2 Noise vibration and harshness

  • View
    219

  • Download
    1

Embed Size (px)

Text of D3.2 Noise vibration and harshness

  • Towards a REgulatory FRamework for the usE of Structural new materials in railway passenger and freight

    CarbOdyshells

    Grant Agreement no.: 605633

    WP 3.2 Noise vibration and harshness

    Deliverable: D 3.2 Due date of deliverable: D[30 11 2014] Submission date: [30 11 2014] Version: [Issue 1]

    Project co-funded by the European Commission within the Seventh Framework Programme

    D3.2 Proposal of NVH strategy for structural composite parts based on material properties

    1

  • REFRESCO Deliverable D3.2 was produced by UTC and received contributions from

    the following members of the consortium:

    [BT]

    [DLR]

    This document should be referenced as:

    REFRESCO- Proposal of NVH strategy for structural composite parts based

    on material properties,D3.2,version1"

    QUALITY CONTROL INFORMATION

    Issue Date Description Revising Authorship Draft 6 11 2014 Draft version of REFRESCO D

    for TMT COMMENT Sbastien Personne, Nicolas Dauchez,UTC

    Final 30 11 2014 Submission of REFRESCO D final version to the EC

    Sbastien Personne, Nicolas Dauchez,UTC

    DOCUMENT HISTORY Issue Date Pages Comment

    1 30/11/2014 67 Initial issue

    2

    3

    4

    5

    DISSEMINATION LEVEL

    PU Public x

    PP Restricted to other programme participants (including the

    Commission Services)

    RE Restricted to a group specified by the consortium (including the

    Commission Services)

    CO Confidential, only for members of the consortium (including the

    Commission Services)

    D3.2 Proposal of NVH strategy for structural composite parts based on material properties

    2

  • TABLE OF CONTENTS

    Executive summary ................................................................................................. 10

    1. Introduction ...................................................................................................... 13

    2. Composite for light weight car body state of the art .......................................... 14

    2.1. Light weight structure in Railway ............................................................... 14

    2.1.1. Composites ........................................................................................ 16

    2.1.2. Sandwich structures ........................................................................... 17

    2.1.3. Examples of composite carbody construction ..................................... 18

    2.2. Carbody functions ..................................................................................... 20

    2.2.1. Mechanical constraints ....................................................................... 21

    2.2.2. Acoustical constraints ........................................................................ 22

    2.2.3. Objectives of the report ...................................................................... 26

    3. Vibro-acoustic behaviour of a panel, single and double layer ........................... 27

    3.1. Radiation efficiency ................................................................................... 27

    3.2. The transmission loss................................................................................ 28

    3.2.1. Single wall panel ................................................................................ 28

    3.2.2. Double wall ........................................................................................ 30

    3.3. Sound insulation and excitation type. ........................................................ 31

    3.3.1. Oblique wave and diffuse acoustic field .............................................. 32

    3.3.2. Turbulent Boundary Layer .................................................................. 32

    3.3.3. Rain on the roof ................................................................................. 33

    3.4. Specificities of composite panels ............................................................... 33

    3.5. Experimental analysis of composite structure ............................................ 35

    4. Modelling for acoustical criteria ........................................................................ 37

    4.1. Approaches for vibro-acoustic simulation .................................................. 37

    4.1.1. Global approach ................................................................................. 37

    4.1.2. Multilayer modelling ........................................................................... 39

    4.1.3. Local model for layers ........................................................................ 40

    D3.2 Proposal of NVH strategy for structural composite parts based on material properties

    3

  • 5. Main drawbacks / advantages of using composite from vibroacoustic point of

    view, and how to face the drawbacks ...................................................................... 41

    5.1. Drawback and countermeasures ............................................................... 42

    5.1.1. Airborne transmission: ....................................................................... 42

    5.1.2. Structure borne transmission ............................................................. 49

    5.2. Advantages ............................................................................................... 49

    5.3. Cases study with TMM approach .............................................................. 51

    5.4. Role of joints on vibro-acoustic design ...................................................... 54

    6. Conclusion ....................................................................................................... 56

    Bibliography ............................................................................................................ 57

    Appendix I: Composite structure from literature review ............................................ 61

    Appendix II: Datasheet for honeycomb .................................................................... 64

    Appendix III: Parametric study ................................................................................. 65

    D3.2 Proposal of NVH strategy for structural composite parts based on material properties

    4

  • LIST OF TABLES

    TABLE 1 : WP2 MATERIAL BENCHMARKING FOR LIGHTWEIGHT STRUCTURE IN TRAIN ...................... 13 TABLE 2 : COMPOSITIONS OF COMPOSITE PANELS WITH HONEY COMB OR FOAM CORE AND FOR FLOOR

    OR ROOF APPLICATIONS CASES. ......................................................................................... 22 TABLE 3 : CONTRIBUTION OF THE THREE MAJOR GLOBAL NOISE SOURCES IN % OF ,, AT

    300KM/H (LEFT) AND 360KM/H (RIGHT) ............................................................................... 23 TABLE 4: EVALUATION OF PANEL VIBRO-ACOUSTIC BEHAVIOUR WITH NOVA.................................... 52 TABLE 5 : MATERIAL PROPERTIES FOR SIMULATION ...................................................................... 52 TABLE 6 : TYPICAL FREQUENCY FUNCTION OF PANELS STRUCTURE .............................................. 53

    LIST OF FIGURES

    FIGURE 1: A) MASS RATIO BY PASSENGER FOR DIFFERENT TRANSPORT MEANS (WENNHAGE 2005);

    B) EVOLUTION OF CO2 EMISSIONS (TRANSPORT 2010) ........................................................ 14 FIGURE 2 : REPARTITION OF THE CARBODY WEIGHT (WENNBERG 2011) ........................................ 15 FIGURE 3 : SUBSTITUTION OF CORRUGATED STAINLESS STEEL BY COMPOSITE PANEL (WENNBERG,

    STICHEL ET PER 2012) ...................................................................................................... 15 FIGURE 4: WEIGHT AND COST SAVING IN THE FUTURE USING COMPOSITES IN TRANSPORT (ROBINSON

    ET CARRUTHERS 2005) ..................................................................................................... 15 FIGURE 5 : TYPES OF MATERIALS USED IN TRANSILIEN (PATRICK 2013)........................................ 16 FIGURE 6 : EXAMPLE OF A LAYER REINFORCE WITH UNIDIRECTIONAL FIBRES (WENNBERG 2011) .... 16 FIGURE 7 : COMPOSITION OF A LAMINATE PANEL. (WENNBERG 2011) ........................................... 17 FIGURE 8 : SANDWICH STRUCTURE (WENNBERG 2011) ................................................................ 17 FIGURE 9 : COMPARISON OF STRESS REPARTITION BETWEEN SANDWICH AND UNIFORM BEAM

    (WENNBERG 2009) ........................................................................................................... 18 FIGURE 10 : MECHANICAL PROPERTIES FUNCTION OF CORE THICKNESS (ZENKERT 1997) .............. 18 FIGURE 11 : A) TTX, B)THE C20FICA BY BOMBARDIER (WENNBERG 2011). ................................. 18 FIGURE 12 : A) SANDWICH PANELS AND FRAME STRUCTURE (KIM, LEE ET SHIN 2007) , B)MODELLING

    PROCESS FOR THE CARBODY (JUNG-SEOK ET JONG-CHEOL 2006) ...................................... 19 FIGURE 13 : STAINLESS STEEL FRAMEWORK FOR SIDE AND ROOF (JUNG-SEOK ET JONG-CHEOL

    2006) AND FLOOR (JUNG-SEOK, JONG-CHEOL ET SANG-JIN 2007) ..................................... 19 FIGURE 14: SANDWICH STRUCTURE FOR THE C20 (WENNBERG 2011) .......................................... 20 FIGURE 15 : SCHEMATIC VIEW OF FUNCTIONS THAT THE CARBODY HAS TO FULFIL (WENNBERG 2013)

    ........................................................................................................................................ 20 FIGURE 16 : REPLACEMENT OF THE CORRUGATED PANEL FOR THE FLOOR BY A SANDWICH COMPOSITE

    PANEL (WENNBERG, STICHEL ET WENNHAGE 2012) ........................................................... 22 FIGURE 1

Recommended

View more >