Crude Oil Characterization

Embed Size (px)

Citation preview

  • 8/9/2019 Crude Oil Characterization

    1/51

    Petroleum Refining –  Chapter 4: Characterization

    4-1

    Chapter 4 Characterization & properties estimation

    of crude oil and petroleum products

    Introduction

      There is no analytical technique available to determine

    (either quantitatively or quantitatively) all the tens of

    thousands of chemical species in petroleum and its

    fractions.

      Only the low-boiling components C1-C5 can becompletely identified using gas chromatography analysis.

      For the white fractions (e.g. Naphtha), only a limited

    number of components can be completely identifiedusing PINA, PIONA, or Detailed HC GC analyzers

    (Table 2.3 –  2.6).

      To overcome this shortcoming, petroleum refiners resortto define (characterize) petroleum and its fractions usingglobal (bulk) properties.

      This traditional way of oil characterization, though old, is

    still being used today.

      This type of characterization is used as basis for

    assigning a price for crude oils and petroleum fractions

    and in design of petroleum processes.

    Sulfur content & API gravity have the greatest influence on the value of

    crude oil, although N2 and metals content are increasing in importance.

    The price of petroleum fractions is influence by other properties in

    addition 

  • 8/9/2019 Crude Oil Characterization

    2/51

    Copyrights © 2001 –  2012, Dr. Tareq Albahri, Chem. Eng. Dept., Kuwait University

    4-2

    API Gravity (API) 

      A measure of crude oil density/specific gravity.

    141.5API = 131.5sp.gr.  

      (4.1)

    oil

    water 

     (60 )

    sp.gr. =(60 )

     F 

     F 

      

      

      (4.2)

      Light crude have lower density (sp.gr.)→ API is higher.

    10 < API < 50(or less) (or more)

      High API crude produces more distillates (valuable) thanit does residue (less valuable).

    Distillation Range (Curve)

      The boiling point range is an alternate method torepresent the composition of petroleum and its products.

      It gives an indication of the quantities and qualities of the

    various products present in crude oil (i.e. naphtha,kerosene, diesel, gas oil, residue, etc).

    -  Can be used to determine themost desirable processing

    sequence to obtain therequired products.

    -  Can be used to determinewhether the crude is

    suitable for asphalt orlube oil manufacture.

    CrudeOil

    GasesLPG

     Naphtha

    Kerosene

    Diesel

    Residue

  • 8/9/2019 Crude Oil Characterization

    3/51

    Petroleum Refining –  Chapter 4: Characterization

    4-3

  • 8/9/2019 Crude Oil Characterization

    4/51

    Copyrights © 2001 –  2012, Dr. Tareq Albahri, Chem. Eng. Dept., Kuwait University

    4-4

      Types of distillation curves

    1. TBP (True Boiling Point) distillation curve.

    2. ASTM (D86/D1160) distillation curve.3. EFV (Equilibrium Flash Vaporization)

  • 8/9/2019 Crude Oil Characterization

    5/51

    Petroleum Refining –  Chapter 4: Characterization

    4-5

      TBP is the most useful.

    -  However, no standard test exists for measuring the

    TBP.

    -  Most common TBP test is Hempel & D-285.

    (Neither specifies # of stages or reflex ratio used).

    -  Trend is toward 15/5 distillation (D-2892) to stand

    for TBP (assumed to be the same as TBP).

    -  An estimate of the composition of the butane and

    lighter components is frequently added to the low- boiling end or the IBP of the TBP curve to

    compensate for the loss during distillation.

      ASTM is more common because it is simple to

    determine in the laboratory. Kuwait refineries use ASTM

    curve (Which is then converted to TBP curve).

  • 8/9/2019 Crude Oil Characterization

    6/51

    Copyrights © 2001 –  2012, Dr. Tareq Albahri, Chem. Eng. Dept., Kuwait University

    4-6

    Example 4.1:

    Estimate the true boiling point (TBP) distillation curve of the petroleum fraction having the following ASTM D86

    distillation temperatures:

    Vol % T (ºF)IBP -

    5% -10% 400

    30% 42050% 438

    70% 46090% 485 → 490 

    95% -FBP -

    Recovery = -

    Solution:

    Using Fig. 3A1.1 from the API technical Data Book

    (1)  Correct the ASTM D86 distillation temperatures above

    475 ºF for cracking using Hadden equation.

    Log D = –  1.587 + 0.00473 T

    where, T & D are in ºF

    For the 90% temp. → Log D = –  1.587 + 0.00473 (485) =

    0.707

    D = 5 ºF

    The corrected 90% temp. becomes = 485 + 5 = 490 ºF

  • 8/9/2019 Crude Oil Characterization

    7/51

    Petroleum Refining –  Chapter 4: Characterization

    4-7

    (2)  Find the atmospheric TBP mid (50%) temperature using

    the mid temp of the ASTM D86 and the lower part ofFigure 3A1.1.

    438 ºF on the x-axis → ∆T= 2 ºF on the y-axis

    [correction]

    Therefore, the TBP 50% T =ASTM 50% T  + ∆T = 438+2= 440 ºF

    (3)  Find the temp for each segment of the TBP curve using

    upper part of Figure 3A1.1.

    Segment of

    Curve (Vol

    %)

    ASTM ∆T (ºF) 

    [from table above]

    TBP ∆T (ºF) 

    [Figure 3A1.1]

    TBP (ºF) Vol %

    0 to 10

    10 to 3030 to 50

    2018

    3931

    409 –  39 = 370440 –  31 = 409

    IBP

    10%30%

    440 50%

    50 to 70

    70 to 90

    90 to 100

    22

    30

    33

    40

    440 + 33 = 473

    473 + 40 = 513

    70%

    90%

    FBP

     Note: it is possible to convert TBP temperatures to ASTMD86 using Figure 3A2.1 from the API technical data

     book, which involves a trial and error procedure.

  • 8/9/2019 Crude Oil Characterization

    8/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-8

  • 8/9/2019 Crude Oil Characterization

    9/51

    Petroleum Refining –  Chapter 4: Characterization

    4-9

  • 8/9/2019 Crude Oil Characterization

    10/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-10

      Crude oil analysis are reported in 2 parts,

    1. D-86, atmospheric, (IBP up to 527 ºF end point 760

    mmHg)

    2. D-1160, vacuum, (392 to 572 ºF end point at 40 mmHg)

    equivalent to 580 to 790 ºF at 1 atm.

    -  Vacuum Distillation is necessary to prevent excessive

     pot (  وع ) temperatures, which cause cracking of the

    crude oil.

    -  To combine the two results in one curve, the distillation

    temperatures at 40 mmHg reported in the analysis must

     be corrected to 760 mmHg pressure using Figure 3.6

    from text.

      The 572 ºF end point at 40 mmHg corresponds to 790 ºF at 760

    mmHg.

  • 8/9/2019 Crude Oil Characterization

    11/51

    Petroleum Refining –  Chapter 4: Characterization

    4-11

    Figure 4.1: Boiling point distribution curve

      Estimation of the TBP curve above 790 ºF can be obtained by

    1. Extrapolating of probability graph (Figure 3.7 in text) to

    1100ºF or higher FBP.

  • 8/9/2019 Crude Oil Characterization

    12/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-12

    Figure 4.2: Crude oil TBP Distillation Curve Probability Chart.

  • 8/9/2019 Crude Oil Characterization

    13/51

    Petroleum Refining –  Chapter 4: Characterization

    4-13

    Example 4.2: construction of the TBP & API Curves

    Draw the TBP and API curves for the following crude assay

  • 8/9/2019 Crude Oil Characterization

    14/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-14

    Solution:

    1. Results in the table are in TBP not ASTM so there is no need

    for conversion.

    2. On a graph paper, plot the sum percent (column 4) as your x-

    axis and the cut temperature (column 2) as your y-axis untilyou reach the temperature 527 ºF (this is the atmospheric

    distillation data).

    3. To plot the vacuum distillation data on the same graph you

    would need to correct the vacuum distillation temperatures(at 40 mmHg) to atmospheric pressure (i.e. convert from

    D1160 to D86 test pressure) using the following equation,

    T b (1atm) = 126.14 + 1.169 T b (40 mmHg)

    then continue plotting the curve as above.

    4. Plot all the data in step 1 and 2 above on the probabilitygraph extending the straight line to the FBP. Read the valuesof x (sum percent) and y (temperature) above 572 ºF and list

    them in a table. Use the new values to continue the rest of

    your distillation curve.

    5.  Plot on the same graph the API (column 6) versus cut mid%

    calculated as follows;

    Mid% cut 1 = 0.8/2 = 0.4 → API = 78.8 

    Mid% cut 2 = 0.8 + 1.0/2 = 1.3 → API = 75.1 Mid% cut 3 = 1.8 + 3.0/2 = 3.3 → API = 63.7 

    Mid% cut 4 = 4.8 + 3.4/2 = 6.5 → API = 55.9 etc. 

  • 8/9/2019 Crude Oil Characterization

    15/51

    Petroleum Refining –  Chapter 4: Characterization

    4-15

    2. Better results are obtained when using the probability densityfunction shown below instead of Figure 4.2.

    1/B

    o

    o

    A 1T-T = ln

    B 1-xT

      (4.3)

    Where x is the volume fraction distilled, T is the distillation

    temperature, and To, A and B are constants determined byregression using the solver function in Microsoft Excel or any

    curve fitting program. Once the constant are determined, the

    function may be used in the above equation to construct therest of the boiling point diagram.

    When applied to the crude in example 4.2 the following

    values are obtained for the constantsTo = 30.788

    A = 4986.5

    B = 2.5131

      Using these constants into the above equation, the followingTBP curve is predicted.

      Hints: when applying the same to your own crude oil, use the

    above values as initial guess. Also, add an absolute to theabove equation to avoid getting errors

    1/B

    o

    o

    A 1T-T = ln

    B 1-xT

    abs   (4.4)

  • 8/9/2019 Crude Oil Characterization

    16/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-16

    vol % T (ºF) x T calculated abs diff  

    0.8   122   0.008 122 123.43632 1

    1.8   167   0.018 167 158.976516 8

    4.8   212   0.048 212 221.339965 9

    8.2   257   0.082 257 268.288313 11

    11.3   302   0.113 302 302.429928 0

    15.2   347   0.152 347 339.126056 8

    20.1   392   0.201 392 379.358772 13

    26.9   437   0.269 437 428.88685 8

    34.9   482   0.349 482 482.000019 0

    53.1 584 0.531 584 596.320067 12

    60.9 637 0.609 637 646.905867 10

    67.1 690 0.671 690 689.704546 0

    72.8 742 0.728 742 732.454459 10

    79.7 795 0.797 795 791.401438 3

    85   846   0.85 846 845.847377

    90   911   0.9 911 911.151517

    95   1008   0.95 1008 1008.33677

    98   1118   0.98 1118 1117.85398

    99.9   1394   0.999 1394 1393.84728

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 20 40 60 80 100

    Vol. %

    TBPTemperature(F)

  • 8/9/2019 Crude Oil Characterization

    17/51

    Petroleum Refining –  Chapter 4: Characterization

    4-17

    Characterization & Classification

    Characterization Factors

      Correlate between the yield and the aromaticity & paraffinicity of petroleum oils.

      Several correlations exist,

    1. UOP or Watson characterization factor (K w )

    B

    13

    w@60 F

    T =K  (sp.gr.)

      (4.5)

      More commonly used.

      TB is the normal boiling point of the pure compound orthe mean average boiling point of a petroleum fraction

    in ºR [ºF+460].

      Higher for lighter components and petroleum fractions

    e.g. K w ≈ 12.1 (Naphtha), K w ≈ 11.9 (Diesel)

      For petroleum fractions 10 < K w < 15

    ↑  ↑ 

    contain containhighly highly

    aromatic paraffinic

    compounds compounds

  • 8/9/2019 Crude Oil Characterization

    18/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-18

      For crude oil 10.5 < K w < 12.9↑  ↑ 

    highly highly

    naphthenic paraffiniccrude crude

      For pure hydrocarbons

    K w = 13 for paraffins.

    K w = 12 for HC with equivalent chain and ringweights.

    K w = 11 for pure naphthenes.

    K w = 10 for pure aromatics.

    2. US Bureau of Mines “Correlation Index” 

    B

    @60 F= + 473.7 (sp.gr.) 456.8CIT

    87,552    (4.6)

    -  TB & sp.gr. as above.

    -  Useful in evaluating individual fractions from oils (e.g.

    naphtha, kerosene, diesel, etc.).

    -  The CI scale starts with 0 for straight-chain paraffins

    and 100 for benzene.

    0 → highly paraffinic

    100 → highly naphthenic/aromatic

    -  CI values are not quantitative.

    Low CI values→ high conc. of paraffins in the fraction.

  • 8/9/2019 Crude Oil Characterization

    19/51

    Petroleum Refining –  Chapter 4: Characterization

    4-19

    Higher CI values → high conc. of naphthenes &aromatics.

    Example 4.3: Watson K for pure components

    Calculate the Watson characterization factor and correlation index for n-

     pentane.

    Solution:For n-pentane, the boiling point is 97 ºF and sp.gr. is 0.63

    Using equation (5.3) above

    13

    w

    (97+460) = = 13.06K  (0.63)

     

    Using equation (5.4) above

    = + 473.7 (0.63) 456.8 0CI87,552

    (97+460)   

    Table 5.4: Comparison of K w and CI for pure components

    Compound TB (ºF) Sp.gr. K w  CI

    n-Hexane

    2-Methylpentane

    CyclohexaneBenzene

     Naphthalene

    155.72

    140.47

    177.29176.18

    884

    0.664

    0.658

    0.78350.8845

    1.176

    12.8

    12.8

    11.09.7

    8.16

    0

    0.7

    51.799.8

    199.2

  • 8/9/2019 Crude Oil Characterization

    20/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-20

    Classification of crude oil

    -  Paraffinic base

    -   Naphthenic base-  Asphalt base

    -  Mixed base-  Aromatic base (up to 80% in the far east)

    These classifications convey the nature of the products to be

    expected and the processing necessary.

    US Bureau of Mines Classification

      Based on the properties of the residue left from non-destructive atmospheric and vacuum distillation tests.

      Fraction (1) from 482-527 ºF atm. distillation (760 mmHg)1.

      Fraction (2) from 527-572 ºF vac. distillation (40 mmHg)2.

      The gravity of these two fractions, obtained from Figure 3.8,

    is used to classify crude as shown in table below.

    ClassificationKey fractions, ºAPI

    Fraction (1) Fraction (2)

    ParaffinParaffin, Intermediate

    Intermediate, Paraffin

    Intermediate

    Intermediate, Naphthene Naphthene, Intermediate

     Naphthene

    4040

    33 –  40

    33 –  40

    33 –  4033

    < 33

    3020 –  30

    30

    20 –  30

    2020 –  30

    < 20

    1&2 Both from TBP curve

  • 8/9/2019 Crude Oil Characterization

    21/51

    Petroleum Refining –  Chapter 4: Characterization

    4-21

    Crude Suitable for Asphalt Manufacture: 

      There are certain characteristics of crude oils that indicate if

    they are possible sources of Asphalt.

      Not 100% accurate as experimental tests.

      A crude oil is usually suitable for asphalt manufacture if itmeats the three following criteria:

    (1)  The crude oil gravity < 35 ºAPI

    (2)  Contains a residue (MeABP=750ºF) with a Watson

    characterization factor < 11.8.

    (3)  If (KW)550ºF  –  (KW)750ºF  < 0.15

    If > 0.15, the residue may contain too much

    wax to meet most asphalt specifications.

  • 8/9/2019 Crude Oil Characterization

    22/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-22

    Example 4.4:

    Classify the following crude using the US bureau of mines classification

    then specify whether it is suitable for asphalt manufacture. (See chapter 3)

    Solution:

    Figure. TBP and gravity-mid percent curves

    Fraction (1) from 482-527 ºF atm. distillation (760 mmHg).

    Fraction (2) from 527-572 ºF vac. distillation (40 mmHg)2.

    The gravity of these two fractions, obtained from above figure, is used to

    classify crude as shown in table below.

    Fraction 1 → 33 ºAPI 

    Fraction 2 → 22 ºAPI 

    2 Equivalent to 740-790 ºF atm. distillation (760 mmHg).

    0

    200

    400

    600

    800

    1000

    1200

    0 20 40 60 80 100

    Percent Distilled

    Temperature(F

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    APIGravit

  • 8/9/2019 Crude Oil Characterization

    23/51

    Petroleum Refining –  Chapter 4: Characterization

    4-23

    From the table above, this crude would be classified as → Naphthene,

    Intermediate

    For the crude oil to be suitable for asphalt manufacture it should satisfy the

    following

    (1) API < 35 (specified in the data sheet for crude oil)

    (2) (KW)550ºF –  (KW)750ºF < 0.15

    at 750 ºF → API = 25 → SG = 0.904 

    1/3

    w

    (750+460)K = 11.79

    (0.904)

     

    at 550 ºF → API = 32 → SG = 0.865 

    1/3

    w

    (550+460)K = 11.6

    (0.865)  

    ∆K w = 11.79 –  11.6 = 0.19 (> 0.15)

    0

    200

    400

    600

    800

    1000

    1200

    0 20 40 60 80 100

    Percent Distilled

    Temperature(F

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    APIGra

    vit

  • 8/9/2019 Crude Oil Characterization

    24/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-24

    (3) Residue (MeABP = 750 ºF) (Kw < 11.8).

    Calculate as above, only for the 790 ºF+ residue

    The TBP curve for resid is first reconstructed as follows;

    IBP is the final T reached by vac. distill. = 790 ºF

    10 % T is 0.1(100-79) + 79 = 81.1%, T = 800 ºF

    30 % T is 0.3(100-79) + 79 = 85.3%, T = 820 ºF

    50 % T is 0.5(100-79) + 79 = 89.5%, T = 890 ºF

    70 % T is 0.7(100-79) + 79 = 93.7%, T = 930 ºF

    90 % T is 0.9(100-79) + 79 = 97.9%, T = 1030 ºF

    FBP remains the same as before at about 1100 ºF

    as an alternative, using computer program

    (petrochem toolkit) API = 19 → MeABP = 860 ºF

    Kw = 11.67 Ok

    0

    200

    400

    600

    800

    1000

    1200

    0 20 40 60 80 100

    Percent Distilled

    Temperature(F

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    APIGravit

  • 8/9/2019 Crude Oil Characterization

    25/51

  • 8/9/2019 Crude Oil Characterization

    26/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-26

      Molal average boiling point

    n

    i bii=1

    MABP =x T   (4.8)

    xi = mole fraction of component i.

    T bi = normal boiling point of component i (ºF or R).

      Weight average boiling point

    n

    wi bii=1

    WABP = x T   (4.9) 

    xwi = weight fraction of component i.

    T bi = normal boiling point of component i (ºF or R).

      Cubic average boiling point [R]

    3

    1/3

     bi

    n

    vii=1

    CABP = x T   (4.10)

    T bi = normal boiling point of component i (R only).

      Mean average Boiling point

    MABP + CABPMeABP =

    2

      (4.11) 

    Watson characterization factor

    1/3

    @60 Fw

    (MeABP)K =

    (sp.gr.)     (4.12)

  • 8/9/2019 Crude Oil Characterization

    27/51

    Petroleum Refining –  Chapter 4: Characterization

    4-27

    -  The Watson K is an approximate index of paraffinicity,with high values corresponding to high degrees of

    saturation.

      For multicomponent mixtures for which the composition isknown.

    n

    iwi

    i=1

    K = x K w     (4.13)

    Example 4.5:

    Calculate the Watson characterization factor and the correlation index for

    the following LPG mixture.

    Vol %

    C3 45

    n-C4 50n-C5 5

    Solution:

    LPG is at high pressure, but the laboratory analysis for gas composition

    are done at atmospheric pressure. This is close to ideal conditions and the

    volume % is equal to the mole %.

    mole % MW sp.gr. Boiling Point, ºF (ºR)C3 45 44 0.507 - 43.75 (416)

    n-C4 50 58 0.584 31 (491)

    n-C5 5 72 0.63 97 (557)

    Average Sp.gr. = (0.45)(0.507)+(0.5)(0.584)+(0.05)(0.63) = 0.552

    VABP = (0.45)(416)+(0.5)(491)+(0.05)(557) = 460.7 R

    MABP = VABP (for ideal gas)

  • 8/9/2019 Crude Oil Characterization

    28/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-28

    C3 wt% = (0.45*44)/[(0.45*44)+(0.5*58)+(0.05*72)] = 37.8 wt%

    C4 wt% = (0.5*58)/[(0.45*44)+(0.5*58)+(0.05*72)] = 55.3 wt%

    C5 wt% = (0.05*72)/[(0.45*44)+(0.5*58)+(0.05*72)] = 6.9 wt%

    WABP = (0.378)(416)+(0.553)(491)+(0.069)(557) = 467.3 ºR

    31/3 1/3 1/3

    CABP = 459.40.45(416) 0.5(491) 0.05(557)

     R

    MeABP = (MABP+CABP)/2 = (460.7+459.4)/2 = 460 R

    Into equation (3) above1

    3

    w

    (460) = = 13.9K  (0.552)  

    orn

    iwi

    i=1

    K = x K w   = 0.378(14.7) + 0.553(13.5) + 0.069(13.03) = 13.92

    Into equation (4) above

    = + 473.7 (0.552) 456.8 5CI

    87,552

    (460)   

    Example 4.6: Watson K for petroleum fractions 

    For the following SR Naphtha,

    69.1 ºAPI & ASTM D86 distillation3 

    Vol % T (ºF)

    IBP 925% 11810% 128

    30% 164

    50% 198

    70% 23090% 262

    95% 272

    3 D1160 can’t be used 

  • 8/9/2019 Crude Oil Characterization

    29/51

    Petroleum Refining –  Chapter 4: Characterization

    4-29

    FBP 300Recovery = 98.8 vol.%

    Calculate,

    (1)  The volumetric average boiling point, VABP(2)  The weight average boiling point, WABP

    (3)  The molal average boiling point, MABP

    (4)  The cubic average boiling point, CABP

    (5)  The mean average boiling point, MeABP

    (6)  The Watson characterization factor, Kw

    (7)  The US bureau of mines correlation index, CI.

    Solution:

     No correction for temperature is required (since T < 475 ºF).

    The volumetric average boiling point, VABP90

    i

    10

    T

    VABP5

     

    10% 30% 50% 70% 90%

    5

    T T T T TVABP =

     

    128+164+198+230+262 = = 196.45

     ºF

    Assuming ASTM curve is linear between 10 & 90%

    90% 10% 262 128T TASTM slope = 1.67590 10 80

     

     

    From Figure 2B1.1 API data book

    For MABP → ∆T = -17 ºFFor CABP → ∆T = -3 ºF

    For WABP → ∆T = +4 ºF For MeABP → ∆T = -10 ºF

  • 8/9/2019 Crude Oil Characterization

    30/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-30

    Using the corrections

    MABP = 196.4 –  17 = 179.4 ºFCABP = 196.4 –  3 = 193.4 ºF

    WABP = 196.4 + 4 = 200.4 ºFMeABP = 196.4 –  10 = 186.4 ºF

    or = (179.4+193.4)/2 = 186.4 ºF

    The Watson characterization factor, Kw

    Sp.gr. = 141.5/(69.1+131.5) = 0.705

    1/3 1/3

    @60 Fw

    (MeABP) (186.4+460)K = 12.3

    (sp.gr.) (0.705)  (mainly saturated)

    The US bureau of mines correlation index, CI.

    = + 473.7 (0.705) 456.8 0.7CI87,552

    (186.4+460)

       (paraffinic)

  • 8/9/2019 Crude Oil Characterization

    31/51

    Petroleum Refining –  Chapter 4: Characterization

    4-31

  • 8/9/2019 Crude Oil Characterization

    32/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-32

    Coordination Number (Hydrogen Deficiency) or “Z” Number

    Cn H 2n+Z 

    As Z-number decreases, density increases.

    Group Z

    Paraffins

    Olefins

     NaphthenesAromatics

    2

    0

    0-6

    Examples of Z-values for Aromatic compounds

    C6H6

    Z = -6

    C10H8

    Z = -12 

    C14H10

    Z = -18 

    C10H12Z = -8

    C10H10Z = -10 

    C24H12Z = - 36 

  • 8/9/2019 Crude Oil Characterization

    33/51

    Petroleum Refining –  Chapter 4: Characterization

    4-33

    Properties Estimation of Petroleum Fractions

    1. Graphical Methods.

    2. Correlations.

    Example 4.7: Graphical Method 

    For the following SR Naphtha; 69.1 ºAPI & ASTM D86 distillationVol % T (ºF)

    IBP 92

    5% 118

    10% 128

    30% 164

    50% 198

    70% 230

    90% 26295% 272

    FBP 300

    Recovery = 98.8 vol.%

    Calculate the MW, aniline point, H/C ratio, the true and pseudocritical

    temperatures and pressures.

    Solution:

    Previously calculated, the mean average boiling point,

    MeABP = 186.4 ºF

    Using Figure 2B2.1 from the API technical data book

    The molecular weight, MW = 96

    and the Watson characterization factor K W = 12.2(Compare to 12.3 calculated previously).

  • 8/9/2019 Crude Oil Characterization

    34/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-34

    The aniline point = 125 ºF.

    H/C ratio = 5.5

    MABP = 179.4 ºF → Figure 4A1.2 → T pc = 490 ºF.

    WABP = 200.4 ºF → Figure 4A1.2 → Tc = 510 ºF.

    MeABP = 186.4 ºF → Figure 4B1.2 → P pc = 440 psia.

    Tc/T pc = (510+460)/(490+460) = 970/950 = 1.02

    P pc = 440 & Tc/T pc = 1.02 → Figure 4B1.1 → Pc = 520 psia.

  • 8/9/2019 Crude Oil Characterization

    35/51

    Petroleum Refining –  Chapter 4: Characterization

    4-35

  • 8/9/2019 Crude Oil Characterization

    36/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-36

  • 8/9/2019 Crude Oil Characterization

    37/51

    Petroleum Refining –  Chapter 4: Characterization

    4-37

  • 8/9/2019 Crude Oil Characterization

    38/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-38

  • 8/9/2019 Crude Oil Characterization

    39/51

    Petroleum Refining –  Chapter 4: Characterization

    4-39

    Liquid Viscosity 

    1. The absolute (or dynamic) viscosity.

      Defined as the ratio of shear resistance to the shear velocitygradient.

      This ratio is constant for Newtonian fluids.

      Expressed in Pa.s (poise)

      Commonly used unit is mPa.s (centipoise, cP)

    2. The kinematic viscosity.

      Defined as the ratio between the absolute viscosity and thedensity.

      Expressed in mm2/s (centistokes, cSt)

     The liquid dynamic viscosities at 100 ºF and 210 ºF are used

    to characterize (heavy) petroleum fractions.

     Viscosities can be estimated by the relation of Abbott et al.

    2

    100log 4.39371 1.94733 0.12769

    W W  K K       

    4 2 2

    3.2629.10 1.18246.10W 

     A K A

     

  • 8/9/2019 Crude Oil Characterization

    40/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-40

    2 2(8.0325.10 1.24899 0.19768 )

    ( 26.786 2.6296 )

     K A A

     A K 

      (4.14)

    210

    4 2 3

    2 2

    log 0.463634 0.166532

      5.13447.10 8.48995.10

    (8.0325.10 1.24899 0.19768 ) 

    ( 26.786 2.6296 )

     A

     A K A

     K A A

     A K 

      

      (4.15)

    whereK w = Watson characterization factor

    A = API gravity

    v100 = viscosity at 100 ºF [mm2/s]

    v210 = viscosity at 210 ºF [mm2/s]log = common logarithm (base 10)

    notes:

      Should not be used if K w < 10 and A < 0.

      Recommended for the following range;

    0.5

  • 8/9/2019 Crude Oil Characterization

    41/51

    Petroleum Refining –  Chapter 4: Characterization

    4-41

    1. From the normal BP and standard specific gravity.

      Riazi method: for light fractions

    (sp.gr. < 0.97 & T b < 840 K).

    M = 42.965 (T b1.26007 S4.98308)

    [exp(2.097.10-4

     T b  –  7.78712 S + 2.08476.10-3

     T b S)]

      Lee-Kesler: for heavy petroleum fractions

    (T b > 600 K & 60 < MW < 650).

    7

    2

    12

    2

    3

    12272.6 9486.4 (8.3741 5.9917 )

    10 222.466  (1 0.77084 0.02058 ) 0.7465

    10 17.3354  (1 0.80882 0.02226 ) 0.32284

    b

    b b

    b b

     M S T S 

    S S T T 

    S S T T 

     

    Where

    M = Molecular weight [kg/kmol].

    T b = Normal boiling point [K].

    S = Standard specific gravity.

  • 8/9/2019 Crude Oil Characterization

    42/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-42

    2. From the viscosities at 210 ºF and 100 ºF and the standardspecific gravity (ave. error is 10%).

    (1.1228 1.2435) (3.4758 3.038 ) 0.6665

    100 210223.56  S S 

     M    S    

     

    where

    M = Molecular weight [kg/kmol].

    v100 = viscosity at 100 ºF [mm2/s].

    v210 = viscosity at 210 ºF [mm2/s].

    S = Standard specific gravity.

    Pseudo-Critical Constants for Petroleum Fractions.

      To make use of the principle of corresponding states.

      Use the method of Lee-Kesler (ave. error 10%)

    1. Pseudo-Critical Temperature.

    189.8 450.6 (0.4244 0.1174 )

    (14,410 100,688 ) 

    C b

    b

    T S T S  

     

    where,

  • 8/9/2019 Crude Oil Characterization

    43/51

    Petroleum Refining –  Chapter 4: Characterization

    4-43

    Tc = Pseudo-critical temperature [K].

    T b = Normal boiling point [K].

    S = Standard specific gravity.

    2. Pseudo-Critical Pressure

    3

    2

    7 2

    2

    10 3

    2

    0.0566ln 5.68925

    4.12164 0.213426  10 0.436392

    11.819 1.53015  10 4.75794

    9.901  10 2.45055

    b

    b

    b

     P S 

    T S S 

    S S 

    T S 

     

    where,

    Pc = Pseudo-critical pressure [bar].

    ln = Napierian logarithm

    T b = Normal boiling point [K].

    S = Standard specific gravity.

  • 8/9/2019 Crude Oil Characterization

    44/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-44

    Acentric Factor for Petroleum Fractions.

      For T r  < 0.8

    2

    7.904 0.1352 0.007465

    1.408 0.1063  8.359

    W W 

    br 

    br 

     K K 

     K T 

     

     

    b

    br 

    c

    T  T   

    where

    ω = acentric factor.

    T br  = reduced boiling point temperature.

     K w = Watson characterization factor.

      For T r  > 0.8 (use Edmister's equation)

    3

    (log 1.0057)7 1   c x

     P  x

     

     

    where b

    c

    T  x

    T   

    and

    Pc = Pseudo-critical pressure [bar].

    Tc = Pseudo-critical temperature [K].

  • 8/9/2019 Crude Oil Characterization

    45/51

    Petroleum Refining –  Chapter 4: Characterization

    4-45

    log = common logarithm (base 10)

    T b = Normal boiling point [K].

    Specific Heat of Petroleum Fraction in the Ideal Gas State

    5432325.2   FT  ET  DT CT  BT  A H  gp    

    432 5432185.4   FT  ET  DT CT  BC  pgp    

    '8.1   T T     

     

     

     

     

    S  K  B

    2846.029502.002972.035644.0    

     

    '24

    05543.05524.19247.22

    10C  K  K C 

    W W  

     

     

      

     

    S C 

      0694.50283.6

    '   

     0844.06946.13

    10  7

     D  

    2

    410.7.0885.0

    1011

    8.12

     

      

     

     

      

        S S 

     K  K W W 

       

    Kw = Watson characterization factor

  • 8/9/2019 Crude Oil Characterization

    46/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-46

    S = standard specific gravity

    Flash Point

    The API method (error 5°C) 

    T T 

     f  

    ln 1010

     0034254.0

    84947.2

    02421.0

    1

     

    T10 = temperature at the 10% volume distilled point from ASTM

    D86 [k].

    Liquid EnthalpyHL = A1   7.259T   A2   22 7.259T   A3  33 7.259T   

    A1= 10-3

     

        

        W 

     K  K 

      4653582.1149)907.24722.23(26.1171  

    A2= 10-6

     

     

     

     

     

      

    817.13086.56)82463.00.1(   W  K   

    A3= -10-9

     

     

      

     

      

    3653.26757.9)82463.00.1(   W  K   

    Temperature (T)

    Specific Gravity (SG)

    Characterization Factor (Kw)

  • 8/9/2019 Crude Oil Characterization

    47/51

    Petroleum Refining –  Chapter 4: Characterization

    4-47

    Vapor enthalpy

     266.5507.4 512.0 

    64.0 8.0

    33

    3

    22

    21

     

      

       

    O

    C C  LV 

     RT 

     H  H 

     MW 

     RT 

    T T  B

    T T  BT T  B H  H 

     

     

        

        

     BW 

     B   K   46.248

    02.2953

    1041

    72.2944.356  

         

     BW W 

     B   K  K    46.25342.3016102   4)772.262.77(24.146

    4

    95.2487.569

    103

      B B  

     

    2

    4

    4 107.0885.00.10

    0.10.18.12

     

      

     

     

      

        S S 

     K  K W W 

     B  

    HL  Liquid Enthalpy of Petroleum Fractions

    T Temperature

    Tc Critical Temperature

    R Gas Constant

    MW Molecular Weight

    ω Acentric Factor

    S Specific Gravity

    K W Watson Characterization Factor

    (Ho- H)/RTC Pressure Effect on Enthalpy

  • 8/9/2019 Crude Oil Characterization

    48/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-48

    Hv Vapor Enthalpy of Petroleum Fractions

    Calculation of Density by the Lee and Kesler Method

     RT  z 

     PM 

    V T 

    V V c

    Vri

     Di

    Vri

    Ci

    Vri

     Bi

    Tr 

    Vri zi

    d d  D

    c

    ccC 

    b

    b

    bb B

    ww

    ww Z  Z  Z  Z 

     Z  Z w Z  Z 

    rir 

    ri

    ii

    ri

    ii

    i

    ii

    i

    i

    ii

    i

    i

    i

    ii

      

        

    23

    224

    52

    21

    3

    321

    3

    4

    2

    321

    12

    1121

    121

    )exp()(

    1Pr 

    )(

    )('''5138.2

     

    Pressure for Saturation

    exp[ ( , )]m m s c r m

     P P f T       

    0 0( , ) ln ln

    mr m r m r  T P P     

    6

     0

    6.09648ln 5.92714 1.28862ln 0.169347

    m m

    m

    r r r 

     P T T 

     

  • 8/9/2019 Crude Oil Characterization

    49/51

    Petroleum Refining –  Chapter 4: Characterization

    4-49

    1

    615.6875ln 15.2518 13.4721ln 0.43577r m m

    m

    r r 

     P T T T 

     

    Pressure Correction for Density

    1 ln1

     s

     s

     B P C 

     B P 

       

     

    0.0861488 0.0344483m

    C       

    4

    1

    a 1k 

    cm k 

     B P     

     

    1/ 3

    1mr 

    T      

    Estimation of the pour point (page 172):

    )333.031.0(

    100

    )474.0612.0(971.247.130  S S 

     EC    v M S T  

     

    Estimation of the I nterfacial Tension of Petroleum fractions:

    (page 167)

     Kw

    Tcf   f  

    232.1]

    15.2931[7.673  

        

    Thermal Conductivities of L iquids: (page 132)

    T  E l 

      4418.117.0      

    Influence of Pressure on the Viscosity of Liquids (Kouzel's

    method):

  • 8/9/2019 Crude Oil Characterization

    50/51

    Copyright © 2001-2014 Dr. Tareq Albahri, Chemical Engineering Dept., Kuwait University, All rights reserved

    4-50

    )4479.14829.5)((log   181.0   E  Ms E  Ps P  Ms

     M  

    Specific Heats for liquid Petroleum Fractions (Lee Kessler

    1975) Page 121:

    ))410*508.5310*467.1(16734.03065.0)(055.035.0(185.4   S T S  Kwl 

    Cp 

     

  • 8/9/2019 Crude Oil Characterization

    51/51

    Petroleum Refining –  Chapter 4: Characterization

    Exercises

    4.1.  Repeat example 4.5 using another method by calculating K w for

     pure components to find the same for the mixture.

    4.2.  Classify the crude oil handed out to you using the US bureau of

    mines classification.

    4.3.  Is your crude oil suitable for asphalt or lube oil manufacture?

    4.4.  Draw the TBP and API curves for the crude oil assay handed out to

    you. Use the probability density function to construct the heavier

     portion of your TBP curve.

    4.5.  Estimate the MW, aniline point, and H/C ratio for the crude oil

    handed out to you.