12
CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE NO. 08520 HYDROTECHNICAL DESIGN BRIEF MOTI PROJECT 24798 Prepared for: BC Ministry of Transportation and Infrastructure Southern Interior Region Kamloops, BC Prepared by: Northwest Hydraulic Consultants Ltd. Kamloops, BC 20 December, 2019 NHC Ref No. 3004231‐01

CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

  • Upload
    others

  • View
    23

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

 

CORTIANA CULVERTS REPLACEMENT PROJECT 

STRUCTURE NO. 08520 

HYDROTECHNICAL DESIGN BRIEF  

MOTI PROJECT 24798 

 

 

 

Prepared for: 

BC Ministry of Transportation and Infrastructure Southern Interior Region 

Kamloops, BC 

 

Prepared by: 

Northwest Hydraulic Consultants Ltd. Kamloops, BC 

20 December, 2019 

NHC Ref No. 3004231‐01 

 

 

Page 2: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520
Page 3: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  ii Hydrotechnical Design Brief 

TABLE OF CONTENTS 

DISCLAIMER .................................................................................................................................................... I 

LIST OF TABLES .............................................................................................................................................. II 

LIST OF APPENDICES ...................................................................................................................................... II 

1  INTRODUCTION...................................................................................................................................... 1 1.1  Design codes and references ........................................................................................................... 1 1.2  Information provided by MoTI ......................................................................................................... 2 1.3  Information from other sources ...................................................................................................... 2 

2  INONOAKLIN CREEK DESCRIPTION ........................................................................................................ 3 2.1  Watershed and crossing reach physical characteristics .................................................................. 3 2.2  Streamflow estimates ...................................................................................................................... 3 

3  HYDRAULIC ANALYSIS OF PROPOSED WATERWAY ............................................................................... 3 3.1  Hydraulic summary .......................................................................................................................... 4 3.2  Design flood level and required bridge clearance ........................................................................... 4 3.3  Aggradation, degradation and scour ............................................................................................... 5 3.3.1  Aggradation................................................................................................................................. 5 3.3.2  Degradation ................................................................................................................................ 5 3.3.3  Scour ........................................................................................................................................... 5 

3.4  Rock riffle grade control................................................................................................................... 5 3.5  Riprap protection for streambanks .................................................................................................. 6 

4  REFERENCES ........................................................................................................................................... 7 

LIST OF TABLES 

Table 1. Summary of the hydraulic model results for the new channel and bridge ..................................... 4 

LIST OF APPENDICES 

APPENDIX A  Set of one (1) Drawing –Waterway Opening and Channel Improvement Design 

 

Page 4: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  1 Hydrotechnical Design Brief 

1 INTRODUCTION 

The Cortiana Culverts Structure No. 08520 (Cortiana Culverts) convey Inonoaklin Creek across Highway 6 

approximately 102 km east of Vernon, BC and about 33 km west of the Arrow Lakes Ferry at 

Needles, BC.  The BC Ministry of Transportation and Infrastructure (MoTI) is concerned that the existing 

structure is undersized to convey the design stream flow, for which the current standard is the 200‐year 

peak instantaneous flow.  There is also concern that some or all the culverts may not have been 

constructed properly.  Scour of the creek bed and erosion of the banks at the outlet have been an 

ongoing concern, and from time to time there has been settlement of the road prism, indicating that 

piping has likely occurred.  In general, these problems have been intensifying over the past decade.   

Northwest Hydraulic Consultants Ltd. (NHC) was retained by MoTI (under Contract No. 831CS0995) to 

carry out a hydrotechnical assessment and the hydrotechnical design of a replacement for the Cortiana 

Culverts.  Given the findings presented in Cortiana Culverts Replacement Project 24798 – Hydrotechnical 

Assessment and Preliminary Design Report (NHC 2019), a clear span rectangular bridge opening was 

selected as the preferred replacement option. This report provides the detailed hydraulic design of the 

bridge and approach channel.    

1.1 Design codes and references 

The following design codes and reference documents form the basis of the hydrotechnical study and 

establishment of design constraints: 

Design Codes: 

CAN/CSA‐S6‐14 in conjunction with the BC MoTI Supplement to CHBDC S6‐14 (2016) 

BC MoTI Supplement to TAC Geometric Design Guide (2019) 

BC Ministry of Transportation and Infrastructure Standards and Guidelines: 

BC MoTI Standard Specifications for Highway Construction (2016) 

BC MoTI Resilient Infrastructure Engineering Design – Adaptation to the Impacts of Climate 

Change and Weather Extremes (2019) 

Other Applicable Federal and Provincial Guidelines: 

BC Ministry of Forests, Lands and Natural Resource Operations, and Fisheries and Oceans 

Canada, Fish‐stream Crossing Guidebook (2012). 

Hydrotechnical Design Guidelines: 

TAC Guide to Bridge Hydraulics (2001) 

Page 5: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  2 Hydrotechnical Design Brief 

Hydraulic Design of Stable Flood Control Channels (NHC, 1984) 

Professional Practice Guidelines – Legislated Flood Assessments in a Changing Climate in BC 

(V2.1) (EGBC, 2018) 

1.2 Information provided by MoTI 

The following reference drawings, reports and survey data were provided by MoTI: 

photos of the crossing taken during the 2018 flood event. 

1.3 Information from other sources 

The following reference drawings, reports and survey data were obtained from other sources: 

Ground surveys and base plan (WSP Canada Inc. 2018) 

   

Page 6: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  3 Hydrotechnical Design Brief 

2 INONOAKLIN CREEK DESCRIPTION 

2.1 Watershed and crossing reach physical characteristics 

The crossing reach, where the subject crossing exists, is considered to extend about 125 m upstream of 

the Cortiana Culverts to the confluence of Inonoaklin Creek with Banting Creek, and 30 m downstream 

to a bedrock fall. The following information summarizes baseline physical characteristics of the 

Inonoaklin Creek watershed and the crossing reach. 

Watershed area to the crossing:  107.3 km2 

Maximum watershed elevation:  1996 m 

Median watershed elevation:  1569 m 

Elevation at crossing:    1135 m 

Channel morphology at crossing:  Non‐alluvial bedrock and/or riprap‐protected 

channel, tightly confined by road and building infrastructure 

Channel slope:      2.0 percent (0.02 m/m) 

Existing Channel bottom width:  3.5 – 4.5 m 

Bed material D50    250 mm 

2.2 Streamflow estimates 

Peak Flood flow estimates for Inonoaklin Creek are based on a set of flood curves developed by NHC.  

For background on the development of the curves please refer to Cortiana Culverts Replacement Project 

24798 – Hydrotechnical Assessment and Preliminary Design Report (NHC 2019). The following flow 

estimates were used in the design of the permanent crossing, with the future 200‐year peak 

instantaneous flow estimate being the basis for sizing the clear span bridge. 

Mean annual flow:    1.38 m3/s 

2‐year annual peak flow:    15.3 m3/s 

10‐year annual peak flow:    25.3 m3/s 

100‐year annual peak flow:    37.9 m3/s 

200‐year annual peak flow:    41.8 m3/s 

200‐year design flow*:    46.0 m3/s 

 

*Includes a 10 percent increase to account for the effects of climate change. 

3 HYDRAULIC ANALYSIS OF PROPOSED WATERWAY 

The preferred option for replacement of Structure No. 08520 is a clear span, rectangular bridge, with 

vertical abutment walls.  The new waterway design consists of a trapezoidal channel with a bottom 

width of 4.5 m and 1.5H:1V side slopes.   

Page 7: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  4 Hydrotechnical Design Brief 

Channel improvements (regrading, widening and armouring) are required for approximately 80 m 

upstream and 35 m downstream of Highway No. 6. Refer to the drawing in Appendix A for details.  

The waterway design includes lowering the creek invert from the outlet of the existing culverts to about 

40 m upstream of the crossing. The recommended lowering is expected to extend to/be close to the 

underlying bedrock surface, resulting in a 3.5 percent grade through the crossing and about 0.8 m of 

additional vertical clearance for the replacement structure. The grade control for the newly steepened 

channel section will be provided by a rock riffle grade control composed of 500‐kg, void‐filled riprap at a 

10 percent slope to tie into the upstream channel. Additional 500‐kg void‐filled riprap is recommended 

for 11.5 m along the 3.5 percent channel to tie the downstream bedrock channel into the grade control.  

From approximately 80 m to 35 m upstream of the crossing, 500‐kg riprap with a nominal thickness of 

1.2 m is recommended along the left bank of the approach channel, adjacent to the highway. The 

remaining left bank and concrete retaining wall leading up to the bridge is protected with 1000‐kg 

riprap, sloped at 1.5H:1V. The same riprap specification is used for both left and right banks downstream 

of the bridge opening. The right bank directly upstream of the bridge opening is located along an outer 

bend, where channel velocities are expected to peak. Therefore, 1000‐kg riprap sloped at 2H:1V is 

recommended with a nominal thickness of 1.8 m to tie into the bridge and the existing upstream 

bedrock. 

3.1 Hydraulic summary 

The following table summarizes the hydraulic performance of the proposed permanent crossing (see 

NHC, 2019 for a more in‐depth discussion of the hydraulic analysis of existing crossing). 

Table 1. Summary of the hydraulic model results for the new channel and bridge 

Peak Flow  

Return Period  Peak Flow (m3/s) Flood 

Level1, (El., m) 

Average 

Velocity2 

(m/s) 

2‐year  15.3  1135.8  2.4 

10‐year  25.3  1136.2  2.7 

100‐Year  37.9  1136.7  3.0 

200‐Year  41.8  1136.8  3.1 

200‐Year Design Flow3  46.0  1136.9  3.2 

Notes: 1. The flood levels shown are at the downstream side of the proposed new bridge.  2. Average velocities are maximum average values within the hydraulic opening.  3. Includes a 10 percent increase to account for the effects of climate change. 

 

3.2 Design flood level and required bridge clearance 

MOTI standard for flood clearance is 1.5 m above the 200‐year design flood level, El. 1136.9 m. 

Therefore, the minimum bridge soffit elevation required for flood clearance at both bridges shall be El. 

Page 8: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  5 Hydrotechnical Design Brief 

1138.4 m. It should be noted that the recommended clearance is measured at the downstream face of 

bridge due to the flat flood profile through the crossing and the super elevation of the bridge. 

3.3 Aggradation, degradation and scour 

3.3.1 Aggradation 

NHC expects cycles of aggradation to continue in the upper portion of the bridge reach (between the 

bedrock outcrop and Banting Creek confluence) as it has in the past.  Sediment transport capacity will be 

significantly higher through the lower portion of the reach with a new bridge replacing the existing 

culverts.  The plunge pool downstream of the bedrock falls is expected to partially infill with coarse 

sediment and wood debris over time, which may reduce the aesthetics of the area for local landowners.  

3.3.2 Degradation 

Degradation and head cut erosion may be prone to occur in the upper portion of the reach due to 

elimination of the backwater effect that exists with the Cortiana culverts. To counteract this, NHC has 

designed the 500‐kg, void‐fill riprap grade control.  The degradation potential through the bridge and 

downstream of it is nil since the new channel will be at or near the bedrock surface. 

3.3.3 Scour 

Natural scour occurs in streams even if the channel is not constricted or controlled to a significant 

degree.  The causes of natural scour can include: i) an unusually large flood; ii) accelerated, deep flow 

along the outside of a bend; iii) lateral shifting of the channel thalweg; iv) flow alongside or impinging 

upon rock outcrops, debris jams, other hard points or rigid materials along the channel boundaries; and 

iv) sudden concentrations of flow such as the confluence of two or more channels.  

At the Cortiana site, the new invert of the creek through the bridge will be at or near the bedrock 

surface, which will minimize or eliminate scour potential.  However, the left bank of the approach 

channel (currently protected with 100‐kg riprap) may still be susceptible to natural scour.  At this 

location, the 200‐year natural scour elevation has been estimated using the Modified Blench procedure 

(TAC 2004). The resulting natural scoured depth is 2.2 m below the 200‐year design flood level, or to El. 

1,136.3 m, suggesting there is moderate natural scour potential at this location. 

Although the remaining riprap protection is expected to be placed on bedrock within the channel, the 

exact extent of bedrock within the channel is unknown. Therefore all riprap has been designed to 

protect against natural scour, in the event there is no bedrock encountered in the channel. 

3.4 Rock riffle grade control 

The rock riffle grade control shall be constructed using void‐filled, Class 500‐kg riprap, which is a 

composite, placed mixture of riprap pieces and streambed material. The grade control has been 

designed to tie the new bridge channel into the existing upstream channel.  The void‐filled riprap shall 

Page 9: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  6 Hydrotechnical Design Brief 

be constructed along the full width of the channel bed at a thickness of 1.2 m. The protection should be 

constructed in layers, with a layer of streambed material added (and possibly washed in) to the riprap to 

seal voids.  

3.5 Riprap protection for streambanks 

For rectangular bridge openings, and for approach and exit channels to the bridge, riprap armouring 

protection is required to prevent the loss of embankment and approach fill material and to protect the 

bridge abutments. The size for graded riprap has been determined using the U.S Army Corps of 

Engineers method (USACE, 1991; TAC, 2004). The hydraulic conditions vary through the proposed 

channel design and therefore the riprap specifications vary depending on the location of the proposed 

riprap protection.  

500‐kg riprap sloped at 1.5:H:1V is suitable for the protection of the left bank approach channel, 

upstream of the bridge, extending from river station 0+010 to 0+050. 1000‐kg riprap is recommended 

along the remainder of the approach channel. The left bank riprap is suitable to remain sloped at 

1.5H:1V, whereas the right bank riprap, location along the outside of the bend, is designed as 2.0H:1V 

and 1.8 m nominal thickness to account for the increase in velocity along the right bank. Downstream of 

the bridge opening, 1000‐kg riprap sloped at 1.5H:1V is designed along both right and left banks. 

The toe of all riprap shall be keyed into the channel bed to protect against scour. If bedrock is present, 

the riprap shall be secured to the bedrock with rock anchors to prevent sliding.  

   

Page 10: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

Cortiana Culverts Replacement Project  7 Hydrotechnical Design Brief 

4 REFERENCES 

Arcement, G.J. and Schneider, V.R. (1984). Guide for Selecting Manning’s Roughness Coefficients for 

Natural Channels and Flood Plains. U.S. Geological Survey, Water Supply Paper 2339. Washington, D.C.  

CSA International. (2000). National Standard of Canada, Canadian highway Bridge Design Code, 

CAN/CSA‐S6‐00 

EGBC. 2019. “Legislated Flood Assessments in a Changing Climate in BC, Version 2.1.” 

https://www.egbc.ca/getmedia/4264e239‐5720‐40c7‐80fa‐cf0f03eda400/V2‐0‐Leg‐Flood‐Assessments‐

in‐BC‐FINAL_2018‐07‐16‐Web.pdf.aspx. 

Mastin, M.C., Konrad, C.P., Veilleux, A.G., and Tecca, A.E., 2016. Magnitude, frequency, and trends of 

floods at gauged and ungauged sites in Washington (ver 1.2, November 2017): U.S. Geological Survey 

Scientific Investigations Report 2016–5118, 70 p. 

Ministry of Forests Lands and Natural Resource Operations (MFLNRO). (2012). Fish‐stream Crossing 

Guidebook, Revised Edition. 

Ministry of Transportation and Infrastructure (MoTI). (2007). BC Supplement to TAC Geometric Design 

Guide, 2007 Edition. 

Northwest Hydraulic Consultants Ltd. (NHC)., 2019 Cortiana Culverts Replacement Project 24798, 

Hydrotechnical Assessment and Preliminary Design Report R1 

Northwest Hydraulic Consultants (NHC). (1984). Hydraulic Design of Stable Flood Control Channels. II‐

Draft Guidelines for Preliminary Design. Prepared for U.S Army Corps of Engineers Seattle District.  

Obedkoff, W. (2001). Streamflow in the Kootenay Region, June 2001, Water Inventory Section, Resources 

Inventory Branch, Ministry of Environment Lands and Parks, Province of British Columbia. 

Schmocker, L. and Hager, W.H. (2010). Drift accumulation at river bridges. River Flow 2010. 

Transport Association of Canada (TAC). (2001). Guide to Bridge Hydraulics (2nd Edition). Thomas Telford, 

London. 

U.S Army Corps of Engineers. (1991). Hydraulic Design of Flood Control Channels. Engineering and 

Design Manual EM‐1110‐2‐1601, Washington, D.C.  

USACE (1994). Channel Stability Assessment for Flood Control Projects. EM 1110‐2‐1418. 31 October 

1994. 

USACE. (2015). HEC‐RAS River Analysis System (Version 5.03). Hydrologic Engineering Center, Davis CA 

Page 11: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

 

 

APPENDIX A  

Design Drawing Detailed Waterway Opening and Channel Improvements 

                         

 

Page 12: CORTIANA CULVERTS REPLACEMENT PROJECT STRUCTURE … · Cortiana Culverts Replacement Project 1 Hydrotechnical Design Brief 1 INTRODUCTION The Cortiana Culverts Structure No. 08520

1130

1135

1140

1145

1130

1135

1140

1145

0+10 0+20 0+30 0+40 0+50 0+60 0+70 0+80 0+90 1+00 1+10 1+20 1+30

Q200 (DESIGN)

10%3.5%

1.200

PROFILE ALONG CREEK CENTRELINE - INONOAKLIN CREEKSCALE = 1:250

1.500

WP7

WP103.5%

13.000 11.500

EXISTING CREEK BED

DESIGN CHANNEL

GRADE CONTROL500-KG VOID-FILLED RIPRAP

EXISTING CULVERTS AND FILL TO BE REMOVED

DESIGN TOP OF RIPRAP

1000-KG BANK RIPRAP500-KG BANK RIPRAPPROPOSED BRIDGE

101+00101+50

P

I

D

0

1

6

-

4

9

5

-

5

1

9

D

L

1

4

0

2

9

D

L

1

6

3

2

9

0+000

0+010 0+020 0+030 0+040 0+050 0+060 0+070

0+080

0+09

0

0+10

0

0+1100+120

0+13

00+

133

WP1

WP2

WP3

WP4

WP5

WP6

WP8

WP9 WP10

WP11

WP12

WP13

WP14

WP15

WP17

WP18WP19

WP20 WP21 WP22WP23

WP24

WP25

WP26

WP27

WP28

WP29

WP30

WP7

WP16

1000-KGRIPRAPGRADE CONTROL

500-KG VOID-FILLED RIPRAP

PLACE RIPRAP AGAINST WALL AS REQUIREDPLACE RIPRAP AGAINSTWALL AS REQUIRED

TRIM BACK OF RIPRAP TO MINIMIZEENCROACHMENT INTO PROPERTY

BLEND RIPRAP TOEXISTING BEDROCK

BLEND RIPRAP INTO EXISTINGBEDROCK OUTCROP

500-KG RIPRAP

1000-KGRIPRAP

BRIDGE AND RETAINING WALL(SEE NOTE 4)

FIELD FIT TRIBUTARY TIE-IN(EG. USE VOID-FILLED RIPRAP TO CREATESEMI-IMPERVIOUS CHANNEL BOTTOM)

FIELD-FITSMOOTHTIE-IN WITHEXISTINGVEGETATEDBANK

WRAP RIPRAP AROUND WALL

1.51

1.51

1.200

1.500

1.500

1.800

1.51

21

1.51 1.5

11.500

1.500

SECTION 1

SECTION 2

SECTION 3

SECTION 4

Q200

Q200

Q200

Q200

SEE NOTE 14

SEE NOTE 14

SEE NOTE 14

WP17

WP16

WP24WP26

WP25

SCALE = 1:100

SCALE = 1:100

SCALE = 1:100

SCALE = 1:100

WP23

WP13

4.500

1.200

0.600

0.300

0.300

0.300

1.200

1.200

1.500

1.500

0.600

1.500

1.500 1.500

1.500

0.6000.600

4.500

VARIES

11

0.700

1.000

0.5000.500

11

11

WP14

1000-KG RIPRAP(SEE NOTES 6 TO 10)

1000-KG RIPRAP(SEE NOTES 6 TO 10)

500-KG RIPRAP(SEE NOTES 6 TO 10)

500-KG VOID-FILLED RIPRAP

1000-KG RIPRAP(SEE NOTES 6 TO 10)

1000-KG RIPRAP(SEE NOTES 6 TO 10)

EXISTING BUILDING EDGE

TRIM BACK OF RIPRAPTO SIT FLUSH WITH WALL

TRIM BACK OF RIPRAPTO SIT FLUSH WITH WALL

TRIM BACK OF RIPRAPTO SIT FLUSH WITH WALL

SEE NOTE 4

CAP THE 500-KG RIPRAP WITH 10-KG RIPRAP, WRAP IN GEOTEXTILE,AND REINSTATE SHOULDER OVERTOP (SEE DETAIL 1)

CAP THE 1000-KG RIPRAP WITH 10-KG RIPRAP, WRAP INGEOTEXTILE, AND REINSTATE BANK MATERIAL OVERTOP(SEE DETAIL 1)

EXISTING EDGE OF PAVEMENT

CAP THE 1000-KG RIPRAP WITH10-KG RIPRAP AND REINSTATEPAVEMENT OVERTOP AS REQUIRED(SEE DETAIL 1)

SEE NOTE 4

1000-KG RIPRAP(SEE NOTES 6 TO 10)

TRIM RIPRAP AS REQUIREDTO AVOID ENCROACHMENTINTO EXISTING PROPERTY

TIE INTOEXISTINGBEDROCK

SEE NOTE 4

GEOTEXTILE COVEREDWITH 150mm COMMON FILL

GEOTEXTILE COVEREDWITH 150mm COMMON FILL

GEOTEXTILE COVEREDWITH 150mm COMMON FILL(BOTH SIDES)

GEOTEXTILE COVEREDWITH 150mm COMMON FILL(BOTH SIDES)

500-KG VOID-FILLED RIPRAP

500-KG VOID-FILLED RIPRAP

WORKPOINTS

WP

WP1

WP2

WP3

WP4

WP5

WP6

EASTING

403529.80

403525.70

403537.64

403533.19

403541.16

403536.69

NORTHING

542140.21

542137.29

542123.80

542121.59

542115.69

542113.48

ELEVATION

1139.97

1136.61

1139.62

1136.30

1139.47

1136.14

WORKPOINTS

WP

WP7

WP8

WP9

WP10

WP11

WP12

EASTING

403538.86

403548.26

403543.90

403550.29

403543.77

403546.10

NORTHING

542105.48

542099.34

542097.01

542083.76

542068.22

542081.14

ELEVATION

1137.21

1138.53

1134.87

1135.65

1138.18

1133.84

WORKPOINTS

WP

WP13

WP14

WP15

WP16

WP17

WP18

EASTING

403554.55

403550.38

403560.89

403552.89

403556.76

403570.62

NORTHING

542087.74

542085.51

542076.09

542061.30

542069.30

542058.22

ELEVATION

1137.66

1134.50

1133.65

1138.12

1133.68

1137.79

WORKPOINTS

WP

WP19

WP20

WP21

WP22

WP23

WP24

EASTING

403565.26

403570.94

403574.25

403578.70

403585.26

403588.03

NORTHING

542068.07

542082.00

542075.93

542067.72

542057.03

542059.03

ELEVATION

1133.14

1136.31

1133.28

1132.94

1134.74

1132.46

WORKPOINTS

WP

WP25

WP26

WP27

WP28

WP29

WP30

EASTING

403596.63

403592.41

403596.44

403597.68

403600.07

403596.16

NORTHING

542065.24

542062.20

542043.80

542049.44

542059.83

542057.01

ELEVATION

1135.93

1132.46

1135.95

1132.62

1135.45

1132.79

AA

A

A

A

DETAIL 2 - RIPRAP ANCHORING TO BEDROCKSCALE = N.T.S.

A

GROUND ANCHOR POINTUSE DYWIDAG THREADBAR 25 DIAMETER ASTM A615GRADE 517MPa WITH EYE NUTS FLUSH MOUNTED TOROCK, OR EQUIVALENT(SEE NOTE 12 FOR ANCHORAGE)

MIN. 1000mm BOULDER, DRILLED

58" 6 x 19 FIBRE CORE WIRE ROPE (OR CHAIN)

CONFORMING TO CSA G4. CABLES SHALL BE UNSPLICED.

EXISTING BEDROCKSECTIONS OF ANCHOREDRIPRAP MUST BEGIN ANDFINISH WITH ANCHORS

INSTALL WIREROPE CLIPS ONBOTH SIDES OFANCHORS

SEE NOTE 10 TO 12

MAXIMUM THREE BOULDERSBETWEEN ANCHORS

RIPRAP ANCHORLOCATIONS TO BEFIELD-FIT

1135

1140

1145

1135

1140

1145

101+30 101+40 101+50 101+60 101+70

PROFILE ALONG L100 - HIGHWAY No. 6SCALE = 1:250

Q200 EL. 1136.9(DOWNSTREAM)

PROPOSED CHANNEL BEDEL. 1134.8

1.51

1.200

DETAIL 1 - GEOTEXTILE WRAP AND TOE ANCHORING

Q200

SCALE = N.T.S.

0.3000.300

A

0.150RIPRAP(SEE NOTES 6 TO 10)

GEOTEXTILE BEHIND SLOPING RIPRAPTO WRAP OVER 10-KG RIPRAP AND BECOVERED WITH COMMON FILL

ANCHORED BOULDERINSTALLED FIRST ONBEDROCK PRIOR TOCONSTRUCTION OFRIPRAP

GEOTEXTILE COVEREDWITH 150mm COMMON FILL

Southern Interior Region

Ministry of TransportationBRITISHCOLUMBIA & Infrastructure

NOTES:1. REFER TO NOTES 2 TO 5 ON DWG R2-1101-101 FOR NOTES ON SURVEY DATUM.2. UTILITY DATA SHOWN ARE FROM FIELD EVIDENCE AND BC ONE CALL INFORMATION. UTILITIES OTHER THAN

THOSE SHOWN MAY EXIST.3. ALL LEGAL BOUNDARIES ARE APPROXIMATE AND WERE LOCATED USING ICIS CADASTRAL MAPPING, HYDRO POLE

AND ROADWAY CL TIES.4. REFER TO DRAWINGS 8520-12 (GENERAL ARRANGEMENT) AND 8520-13, 14, 15, 16, 17 AND 18 (RETAINING WALLS).5. REFER TO PROBE HOLE TABLE ON DRAWING 8520-25 FOR DEPTH TO INFERRED BEDROCK.6. RIPRAP SPECIFICATIONS AND INSTALLATION SHALL CONFORM TO THE MOTI STANDARD SPECIFICATION FOR

HIGHWAY CONSTRUCTION SS 205.7. ALL SLOPING RIPRAP SHALL BE UNDERLAIN WITH CLASS 1, NON-WOVEN GEOTEXTILE.8. RIPRAP APRON MAY BE FIELD-FIT OR OMITTED IN LOCATIONS WHERE BEDROCK IS ENCOUNTERED.9. WHERE TOE OF RIPRAP IS IN CONTACT WITH BEDROCK, THE RIPRAP TOE BOULDERS SHALL BE ANCHORED INTO

THE BEDROCK (SEE DETAIL 2).10. ROCK ANCHORS SPECIFICATIONS AND INSTALLATION SHALL CONFORM TO THE MOTI STANDARD SPECIFICATION.

ANCHOR LOCATIONS TO BE CONFIRMED AND APPROVED IN THE FIELD.11. ROCK ANCHORS TO BE HOT DIP GALVANIZED IN CONFORMANCE TO ASTM A123 OR A153.12. ROCK ANCHORS TO BE DRILLED AND FIXED INTO ROCK w/GROUT. MIN. 1000mm EMBEDDED WITH TWO

CENTRALIZERS AT TOP AND BOTTOM OF BAR INTO A 75mm Ø x 1200mm HOLE AND INSTALLED IN ACCORDANCEWITH SPECIAL PROVISIONS.

13. CHANNEL ALIGNMENT PROVIDED BY ALLNORTH.14. FINISHED HIGHWAY DESIGN SURFACE BY ALLNORTH NOT SHOWN.

PLAN VIEWSCALE = 1:250

400 - 253 1st AvenueKamloops, BC V2C 3J4Canadawww.nhcweb.com

AutoCAD SHX Text
INONOAKLIN CREEK
AutoCAD SHX Text
TO CHERRYVILLE
AutoCAD SHX Text
TO FAUQUIER
AutoCAD SHX Text
HIGHWAY No. 6
AutoCAD SHX Text
L100 LINE
AutoCAD SHX Text
LIGHTNING PEAK ROAD
AutoCAD SHX Text
BC HYDRO R.O.W.
AutoCAD SHX Text
CANCEL PRINTS BEARING PREVIOUS LETTER
AutoCAD SHX Text
H-308j-r2-c(07-08)
AutoCAD SHX Text
PREPARED UNDER THE DIRECTION OF
AutoCAD SHX Text
ENGINEER OF RECORD
AutoCAD SHX Text
DATE
AutoCAD SHX Text
FILE No.
AutoCAD SHX Text
PROJECT No.
AutoCAD SHX Text
DRAWING No.
AutoCAD SHX Text
REG.
AutoCAD SHX Text
R E V I S I O N S
AutoCAD SHX Text
DESIGNED
AutoCAD SHX Text
CHECKED
AutoCAD SHX Text
DRAWN
AutoCAD SHX Text
DATE
AutoCAD SHX Text
DATE
AutoCAD SHX Text
DATE
AutoCAD SHX Text
SCALE
AutoCAD SHX Text
NEGATIVE No.
AutoCAD SHX Text
Date
AutoCAD SHX Text
Rev
AutoCAD SHX Text
Description
AutoCAD SHX Text
Init
AutoCAD SHX Text
Consultant Logo
AutoCAD SHX Text
CORTIANA BRIDGE
AutoCAD SHX Text
CHANNEL IMPROVEMENTS
AutoCAD SHX Text
WEST KOOTENAY HIGHWAY DISTRICT
AutoCAD SHX Text
HIGHWAY No. 6
AutoCAD SHX Text
AS NOTED
AutoCAD SHX Text
MB
AutoCAD SHX Text
2019.12.18
AutoCAD SHX Text
DJG
AutoCAD SHX Text
2019.12.18
AutoCAD SHX Text
KEH
AutoCAD SHX Text
2019.12.18
AutoCAD SHX Text
MEG BROSWICK, P. Eng.
AutoCAD SHX Text
24798-0001
AutoCAD SHX Text
2
AutoCAD SHX Text
8520-23
AutoCAD SHX Text
18th DECEMBER, 2019