38
Corrosion I Objectives 1. Identify oxidation- reduction reaction pairs present in corrosion situation.

Corrosion Ppt 2

Embed Size (px)

Citation preview

Page 1: Corrosion Ppt 2

Corrosion IObjectives

1. Identify oxidation-reduction reaction pairs present in corrosion situation.

Page 2: Corrosion Ppt 2

Corrosion IObjectives

1. Identify oxidation-reduction reaction pairs present in corrosion situation.

2. List and define the basic types of corrosion.

Page 3: Corrosion Ppt 2

Corrosion

Example:

Zn + 2HCl ZnCl2 + H2

Chlorine only peripherally involved

Zn + 2H+ Zn 2+ + H2

Page 4: Corrosion Ppt 2

Example

2 Reactions

Oxidation:

(Anodic RXN) Zn Zn2+ + 2e-

Page 5: Corrosion Ppt 2

Example

2 Reactions

Oxidation:

(Anodic RXN) Zn Zn2+ + 2e-

Reduction:

(Cathodic RXN) 2H+ + 2e- H2

Page 6: Corrosion Ppt 2

Example

Oxidation:

(Anodic RXN) Zn Zn2+ + 2e-

Reduction:

(Cathodic RXN) 2H+ + 2e- H2

Key Principle - Rate of Reduction = Rate of Oxidation

Page 7: Corrosion Ppt 2
Page 8: Corrosion Ppt 2

All corrosion falls into Ox-Red pair groups

Oxidation RXN (Free Electron):

M M+n +ne-

(From metal to its ion)

Page 9: Corrosion Ppt 2

All corrosion falls into Ox-Red pair groups

Oxidation RXN (Free electrons):

M M+n +ne-

(From metal to its ion)

ie: Ag Ag+ + e-

Al Al3+ + 3e-

>>>Produces Electrons

Page 10: Corrosion Ppt 2

Reduction Reactions (Consume electrons)

Hydrogen Evolution: 2H+ + 2e- H2

Page 11: Corrosion Ppt 2

Reduction Reactions (Consume electrons)

Hydrogen Evolution: 2H+ + 2e- H2

Oxygen Reduction (acid):

O2 +4H+ +4e- 2H20

Page 12: Corrosion Ppt 2

Reduction Reactions (Consume electrons)

Hydrogen Evolution: 2H+ + 2e- H2

Oxygen Reduction (acid):

O2 +4H+ +4e- 2H20

Oxygen Reduction (neutral or basic):

O2 + 2H2O + 4e- 4OH-

Page 13: Corrosion Ppt 2

Reduction Reactions (Consume electrons)

Hydrogen Evolution: 2H+ + 2e- H2

Oxygen Reduction (acid):

O2 +4H+ +4e- 2H20

Oxygen Reduction (neutral or basic):

O2 + 2H2O + 4e- 4OH -

Metal Ion Reduction: M3+ + e- M2+

Page 14: Corrosion Ppt 2

5 Reduction Reactions (Consume electrons)

Hydrogen Evolution: 2H+ + 2e- H2

Oxygen Reduction (acid):

O2 +4H+ +4e- 2H20

Oxygen Reduction (neutral or basic):

O2 + 2H2O + 4e- 4OH -

Metal Ion Reduction: M3+ + e- M2+

Metal Deposition: M+ + e- M

Page 15: Corrosion Ppt 2

Note:

Reactions can be controlled from either side (OX/ RED).

Example: Add oxygen gas to an acid

Oxygen reduction is available to consume electrons.

Page 16: Corrosion Ppt 2

Note:

Reactions can be controlled from either side (OX/ RED).

Example: Add oxygen gas to an acid

Oxygen reduction is available to consume electrons.

Higher Rate of Oxidation

Page 17: Corrosion Ppt 2

Note:

Reactions can be controlled from either side (OX/ RED).

Example: Add oxygen gas to an acid

Oxygen reduction is available to consume electrons.

Higher Rate of Oxidation

Acids with oxygen are worse than acids without.

Page 18: Corrosion Ppt 2

Polarization: What controls rate of RXN

Two Types

1. Activation Polarization

2. Concentration Polarization

Page 19: Corrosion Ppt 2

Activation

Four steps in reduction process:

1. Adsorption

2. Conduction of e-

3. Diffusion

4. H2 Evolution

Page 20: Corrosion Ppt 2

Concentration

Diffusion of reducing species controls rate

Page 21: Corrosion Ppt 2

Passive Behavior

Some metals cease to be reactive under the right conditions

1. Active Behavior

2. Passive Behavior

3. Transpassive

Page 22: Corrosion Ppt 2

Types

1. Uniform Attack

-Measured in mpy (mils per year)

-Easy to manage

Page 23: Corrosion Ppt 2

Types

2. Galvanic Coupling

-Dissimilar metals or environments create electrical potential

-Will have anode and cathode

Page 24: Corrosion Ppt 2
Page 25: Corrosion Ppt 2

Terminology

Anode Cathode

Oxidized Reduced

Active Passive

Page 26: Corrosion Ppt 2

Types

3. Localized Corrosion

a. SCC (Stress Corrosion Cracking)

Page 27: Corrosion Ppt 2

Types

3. Localized Corrosion

a. SCC (Stress Corrosion Cracking)

b. ESC (Environmental Stress Cracking)

Page 28: Corrosion Ppt 2

Types

3. Localized Corrosion

a. SCC (Stress Corrosion Cracking)

b. ESC (Environmental Stress Cracking)

c. Inter-granular Attack

- Fe at grain boundaries in Al

-Cr23C6 in Stainless

-Hydrogen Embrittlement

Page 29: Corrosion Ppt 2

Types

3. Localized Corrosion

a. SCC (Stress Corrosion Cracking)

b. ESC (Environmental Stress Cracking)

c. Inter-granular Attack

- Fe at grain boundaries in Al

-Cr23C6 in Stainless

-Hydrogen Embrittlement

d. Pitting

Page 30: Corrosion Ppt 2

Types

3. Localized Corrosion

e. Crevice Corrosion

- Filiform if under coatings

Page 31: Corrosion Ppt 2

Types

3. Localized Corrosion

e. Crevice Corrosion

- Filiform if under coatings

f. Corrosion Fatigue

Page 32: Corrosion Ppt 2

Galvanic Example

Zn Anode

Oxidized

Active

Pt Cathode

Reduced

Passive

Page 33: Corrosion Ppt 2

Galvanic Potential Example

Dry Cell Battery

Vcell = 1.5 Volts

Page 34: Corrosion Ppt 2

Calculation of Cell Potential

p.568:

Table Table

Pt 2+ + 2e- Pt +1.2V

Mg 2+ + 2e - Mg -2.363V

Page 35: Corrosion Ppt 2

Calculation of Cell Potential

p.568:

Table Table

Pt 2+ + 2e- Pt +1.2V

Mg 2+ + 2e - Mg -2.363V

Actual Actual

Mg Mg 2+ + 2e - (oxidation) +2.363V

Pt 2+ + 2e - Pt +1.2V

Page 36: Corrosion Ppt 2

Calculation of Cell Potential

p.568:

Table

Pt 2+ + 2e- Pt +1.2V

Mg 2+ + 2e - Mg -2.363V

Actual Actual

Mg Mg 2+ + 2e - (oxidation) +2.363V

Pt 2+ + 2e - Pt +1.2V

Total Total

Mg + Pt 2+ + 2e - Mg 2+ + 2e - + Pt +3.563V

Page 37: Corrosion Ppt 2

EMF Values

1. (+) Potential means rxn will proceed as written. (-) Potential means opposite rxn occurs.

2. The more positive rxn will proceed as written

Page 38: Corrosion Ppt 2