30
Contin uous-time , m ultibit, comple x ∆Σ ADC 320 Ms/s , 16x o v ersampling, 3-bit quantiz er , 10-bit ENOB . J . Ar ias , P . Kiss , V . Prodano v -100 -80 -60 -40 -20 0 -60 -40 -20 0 20 40 60 Ampl. (dB) Freq. (MHz)

Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Continuous-time, multibit, complex ∆Σ ADC

320 Ms/s, 16x oversampling, 3-bit quantizer, 10-bit ENOB.

J. Arias, P. Kiss, V. Prodanov

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

Page 2: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Motivation

Why complex ∆Σ:

Channel selection and image rejection are done in the digital domain by the decimation filter.

Easy analog filtering. (good IQ imbalance, low power)

Why continuous-time (CT):

Capable of operation at high sampling frequencies.

Low power consumption.

Implicit anti-aliasing property.

Why multibit:

Good SNR for low oversampling ratios. (16)

Good stability.

Page 3: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Drawbacks

∆Σ ADCs:

∆Σ ADCs requires high sampling rates ( oversampling 16, typical)

A digital filter/decimator is needed (several Kgates).

∆Σ ADCs consume more power than Nyquist-rate ADCs. (But the total power bill can be lower)

CT ∆Σ modulators:

Involves DT to CT transformations (NTF) Tedious mathematics & controllability issues.

CT modulators are more sensitive to clock jitter.

Multibit ∆Σ modulators:

Sensitive to DAC nonlinearity. Dynamic element matching (scrambler) needed.

Page 4: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

IEEE 802.11a/g, low-IF, receiver with Nyquist-rate ADC

lo1 I

lo2

25

2

26

112

26

Q

fS 1 0 1 0

0 1 0 1 Q

I

CBPF

10-20 -10 20 [MHz] -40 -20 0 20 40

fS

0

BW 20 MHz, SNDR 55 dB

Nyquist ADC (1 ):

7-pole Chebyshe v filter 10-bit pipelined ADC

BW 20 MHz, fIF 10 MHz

AAF

fS

Complex BPF (1 ):

(Vladimir) (Jesús)

ADC FFTLNA

Page 5: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

IEEE 802.11a/g, low-IF, receiver with ∆Σ ADC

lo1 I

lo2

25

2

26

112

26

Q

CBPF

[MHz] 00 20-20-20 20 -320 320

fS

QI

Complex BPF:

BW 20 MHz, SNDR 55 dB

fS fS

1 0 1 0

0 1 0 1Q

IfSOSR

2nd-or der 3-bit 16 oversampled

Complex CT ∆Σ ADC:

BW 20 MHz, fIF 10 MHz

AAF

3-pole Butterw or th filter

(Vladimir) (Peter/Vladimir/Jesús)Proposed architecture

FFTLNADECADC

∆Σ

Page 6: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Modulator architecture (Real DSM)

-80

-60

-40

-20

0

20

1 10 100G

ain

(d

B)

Freq. (MHz)

NTF

u(t) v[n]

v[n]u(t)

After amplitude equalization

Starting modulator

1

DACRZ

−3.5

11

Ts

1

Ts

DACRZ

−3.5

1

Ts

1

Ts

1.660.6

−1.2

− Second−order NTF

− 3−bit ADC and DAC

− RZ DAC: less sensitive to:

ADC metastability

Clock jitter

− Optimized zero: +3dB SNR

−0.015

−0.009

ADC

−2

fs

ADC

fs

Page 7: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Digital Domain

clk

GM2GM1C1

u(t) v[n]

IDAC2IDAC1

Gm−C Implementation (Real DSM, Single−ended)

C2

−GM3

SCR

RZ

ADC

fs

Page 8: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Multibit DACs: Overcoming nonlinearity using dynamic element matching

-120

-100

-80

-60

-40

-20

0

1 10 100

Am

pl. (

dB)

Freq. (MHz)

ideal DACs2% mismatch

2% mismatch & DWA

Page 9: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

DWA logic (scrambler)

Rotator

Thermometerto binary

RZ

Reg. Reg.clkclk

clk

esp

esn

es

8−bit

from

AD

C

to D

AC

s

DSM output

Σ

Page 10: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Thermal noise

A/Vµ

µ A

µ A µ A

µ A

A/VµA/Vµ

-120

-100

-80

-60

-40

-20

0

1 10 100

Am

pl. (

dB)

Freq. (MHz)

NoiselessThermal noise

GM2: 200

GM3: 15

C1: 5.165 pF

C2: 0.376 pF

Ib2: 147

Ib1: 714 Idac1: 95.4

Idac2: 20.1

GM1: 1000

Noise simulation parameters:

Performance loss: 2 dB SNR

Page 11: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Real DSM. Detailed schematic

Scrambler

µ S

µ S µ S

µ A µ A

µ A

µ A

+

+

+

++

+

+

+

GM1

GM3levelshifter

DAC1 DAC2

DSM outputanalog

input

Vdd Vdd

Ibias1

CMFB

− −

17

C1 C2

1000 200

15

8 x 95.4 8 x 20.1

5.16 pF 0.37 pF

logic

7−level

ADC

147Ibias2

714

GM2

Page 12: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: Transconductors

− Large dynamic range

− Unipolar output

− External tuning

− Vladimir’s patent (2001)

Page 13: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: Transconductor’s nonlinear Gm

−1 −0.5 0 0.5 10

1

2

3

4

5

x 10−5

Vin(diff) [V]

Gm

[A

/V]

−0.5 0 0.54.81

4.85

4.89

x 10−5 25 × "amplified"

S: 85C, 74uA N: 25C, 66uA F: 0C, 59uA S: tanh approxN: tanh approxF: tanh approx

Gm x Gm 0 ∂∂x tanh x 0 82

3 x3 2 145 x5 0 60

7 x7

Page 14: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: Small Transconductors (GM3)

− Pseudodifferential: poor common mode rejection

− Good linearity

− Low power efficiency

− Low accuracy: Gm depends on Vcas and Cm(Vin)

TriodeTriode

Page 15: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

S D

G

resistancechannel

Cgs

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

Nor

m. C

apac

itanc

e

Gate Voltage (V)

Channel resistance is not simulated unless

"nqsmod=1"

Big capacitors must be split into parallel,

is specified on every capacitor

gnd

small, capacitors to improve their Q

P

NP+ + P+N+

Circuit Elements: Capacitors: Inversion MOSFETs

C2

C1

Page 16: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: ADC

latc

hla

tch

latc

hla

tch

latc

hla

tch

latc

h

Vi−

p5

p1

n4

p7 n7

p6 n6

n5

p4

p3

p2

n1

n2

n3

p1

n7

p2

n6

p3

n5

p4

n4

p5

n3

p6

n2

p7

n1

t7

t6

t5

t4

t3

t2

t1

70mV

Vdd

90 ΩRnplus

0.5V

Input Range

2.5V

1.8V

0V

Vi+

Vbias

Page 17: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: ADC biasing

Page 18: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: ADC’s comparators

ck

Vi+

Vi−

Vdd

/dck

/ck

ck

out

NC

samplingwindow

latched

regen.track.

transp.

outN−1

internalnodes

dck

ck

sampleN

sample

track.

Comparator & Latch

Signal Timming

Page 19: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: Current-mode DACs

Current cell Signal timming

Current−mode DACs

Io+

Io−

esp0esn0 esn1 esp1 esn7 esp7

Vcas

Vbias

Vref espesn

esp

esn

ck

Page 20: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Elements: CMFB

Page 21: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Real DSM results (spectre simulation with extracted blocks)

-100

-80

-60

-40

-20

0

1 10 100

Am

pl. (

dB)

Freq. (MHz)

(2048 samples)

SNR = 61 dBSNDR = 57 dB

Page 22: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Complex DSM schematic

clk

clk

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

Two real modulators

GM1

IDAC1 IDAC2RZ

ADCGM2

C1 C2

Qv[n]

Iv[n]

Qu(t)

Iu(t)

SCR

GM2 ADCGM1C1

SCR

IDAC2

C2

RZ

−GM3

−GM3

IDAC1

fs

fs

Page 23: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Complex DSM schematic

clk

clk

−GM4 GM4 −GM5 GM5

GM1

IDAC1 IDAC2RZ

ADCGM2

C1 C2

Qv[n]

Iv[n]

Qu(t)

Iu(t)

10 MHz

Freq. shift

SCR

GM2 ADCGM1C1

SCR

IDAC2

C2

RZ

−GM3

−GM3

IDAC1

fs

fs

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

-100

-80

-60

-40

-20

0

-60 -40 -20 0 20 40 60

Am

pl. (

dB)

Freq. (MHz)

Two real modulators

Complex modulator

Page 24: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Cross-coupled transconductor switching

Page 25: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Clock distribution

ADC

SCR

SCR

CK/CK

source

~10pFcapacitorexternal

pin

10 fF

clock

clock 15 kΩ

Page 26: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Pin drivers

Page 27: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Circuit Layout (2.5-V, 0.25-µm CMOS, 1480 880 µm2)

Page 28: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Simulated results (extracted circuit)

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

-80 -60 -40 -20 0 20 40 60 80

Am

pl. (

dB)

Freq. (MHz)

(2048 samples)

− SNR: 55 dB (+3dB dual tone)

intermodulation products

− Two−tone test show no

with parasitic capacitances

− Full extracted circuit

− Total power ~25 mW

Page 29: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Before chip submission

Chip completion.

Antenna check

Is it removed from Cadence?

Fill patterns

What are they for?

Are they really needed?

Other issues....

Page 30: Continuous-time, multibit, complex ∆ΣADCjesus/analog/ctds/slides_des.pdf320 Ms/s, 16x oversampling, 3-bitquantizer, 10-bitENOB. J. Arias, P. Kiss, V. Prodanov-100-80-60-40-20 0-60

Setup for measurement

eval. board

AD8132

AD8132

eval. board

cos

sin

DDS

AD9854

eval. board

+2.5V

+2.5V

+2.5V

Q

Inputs

I

Inputs

clk input

clk out

oq2

oq1

oq0

oi1

oi2

oi0

Logi

c A

naly

zer

330K

330K

10K

x3

10Kx3

J2

J1

TP1 TP2 TP3

TP4

50

10pF

analog

digital

digital, pin drivers

oi1

oi0

oq0

oq1

Ibia

sGM

1

Ibia

sGM

2

Iref

10u

pinv

dd

res

vdd

oi2

viip

viin

vqin

vqip

gnda

vdda

cpx

Vr2

5

Ibia

scpx

gnd

ckin

oq2

ping

nd