2
Catalysis Today 228 (2014) v–vi Natural gas conversion: Current status and the potentials in the light of the NGCS-10 N.O. Elbashir, C. Mirodatos, A. Holmen and D.B. Bukur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Support material variation for the Mn x O y -Na 2 WO 4 /SiO 2 catalyst M. Yildiz, U. Simon, T. Otremba, Y. Aksu, K. Kailasam, A. Thomas, R. Schomäcker and S. Arndt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Fischer–Tropsch synthesis: TPR and XANES analysis of the impact of simulated regeneration cycles on the reducibility of Co/alumina catalysts with different promoters (Pt, Ru, Re, Ag, Au, Rh, Ir) T. Jermwongratanachai, G. Jacobs, W.D. Shafer, V.R.R. Pendyala, W. Ma, M.K. Gnanamani, S. Hopps, G.A. Thomas, B. Kitiyanan, S. Khalid and B.H. Davis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Sintering of nickel steam reforming catalysts: Effective mass diffusion constant for Ni-OH at nickel surfaces J. Sehested, N.W. Larsen, H. Falsig and B. Hinnemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 CO-insertion mechanism based kinetic model of the Fischer–Tropsch synthesis reaction over Re-promoted Co catalyst B. Todic, W. Ma, G. Jacobs, B.H. Davis and D.B. Bukur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Effect of lanthanum on the properties of copper, cerium and zirconium catalysts for preferential oxidation of carbon monoxide J.S. Moura, J. da Silva Lima Fonseca, N. Bion, F. Epron, T. de Freitas Silva, C.G. Maciel, J.M. Assaf and M. do Carmo Rangel . . . . . . 40 Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO 2 hydrogenation G. Bonura, M. Cordaro, C. Cannilla, A. Mezzapica, L. Spadaro, F. Arena and F. Frusteri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene H. Zhu, H. Dong, P. Laveille, Y. Saih, V. Caps and J.-M. Basset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Molecular structure and localization of carbon species in alumina supported cobalt Fischer–Tropsch catalysts in a slurry reactor D. Peña, A. Griboval-Constant, C. Lancelot, M. Quijada, N. Visez, O. Stéphan, V. Lecocq, F. Diehl and A.Y. Khodakov . . . . . . . . . . . . . 65 CO 2 reactivity on Fe–Zn–Cu–K Fischer–Tropsch synthesis catalysts with different K-loadings M. Martinelli, C.G. Visconti, L. Lietti, P. Forzatti, C. Bassano and P. Deiana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer–Tropsch synthesis T.O. Eschemann, J.H. Bitter and K.P. de Jong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Chemical looping: To combustion and beyond S. Bhavsar, M. Najera, R. Solunke and G. Veser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Fundamental issues on practical Fischer–Tropsch catalysts: How surface science can help C.J. Weststrate, I.M. Ciobîc ˘ a, A.M. Saib, D.J. Moodley and J.W. Niemantsverdriet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Selforganization in Fischer–Tropsch synthesis with iron- and cobalt catalysts H. Schulz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Dry reforming of CH 4 on Rh doped Co/Al 2 O 3 catalysts Zs. Ferencz, K. Baán, A. Oszkó, Z. Kónya, T. Kecskés and A. Erd ˝ ohelyi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Ethane catalytic partial oxidation to ethylene with sulphur and hydrogen addition over Rh and Pt honeycombs S. Cimino, G. Mancino and L. Lisi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Hydrogen production through CO 2 reforming of methane over Ni/CeZrO 2 /Al 2 O 3 catalysts E.C. Faria, R.C.R. Neto, R.C. Colman and F.B. Noronha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Hydrogen production by steam reforming of biomass-derived glycerol over Ni-based catalysts K. Seung-hoon, J. Jae-sun, Y. Eun-hyeok, L. Kwan-Young and M. Dong Ju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Advances in ion transport membrane technology for Syngas production C.F. Miller, J. Chen, M.F. Carolan and E.P. Foster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Fischer–Tropsch synthesis: Kinetics and water effect study over 25%Co/Al 2 O 3 catalysts W. Ma, G. Jacobs, D.E. Sparks, R.L. Spicer, B.H. Davis, J.L.S. Klettlinger and C.H. Yen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Selective synthesis of gasoline from syngas in near-critical phase T. Ma, H. Imai, Y. Suehiro, C. Chen, T. Kimura, S. Asaoka and X. Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Single-step synthesis of dimethyl ether from syngas on Al 2 O 3 -modified CuO–ZnO–Al 2 O 3 /ferrierite catalysts: Effects of Al 2 O 3 content Y.J. Lee, M.H. Jung, J.-B. Lee, K.-E. Jeong, H.-S. Roh, Y.-W. Suh and J.W. Bae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 The effect of La 3+ , Ti 4+ and Zr 4+ dopants on the mechanism of WGS on ceria-doped supported Pt catalysts K.C. Petallidou, C.M. Kalamaras and A.M. Efstathiou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Contents Contents lists available at ScienceDirect Catalysis Today journal homepage: www.elsevier.com/locate/cattod

Contents list

Embed Size (px)

Citation preview

Page 1: Contents list

Catalysis Today 228 ( 2014 ) v–vi

Natural gas conversion: Current status and the potentials in the light of the NGCS-10N.O. Elbashir, C. Mirodatos, A. Holmen and D.B. Bukur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Support material variation for the MnxOy-Na2WO4/SiO2 catalystM. Yildiz, U. Simon, T. Otremba, Y. Aksu, K. Kailasam, A. Thomas, R. Schomäcker and S. Arndt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Fischer–Tropsch synthesis: TPR and XANES analysis of the impact of simulated regeneration cycles on the reducibility of Co/alumina catalysts with different promoters (Pt, Ru, Re, Ag, Au, Rh, Ir)T. Jermwongratanachai, G. Jacobs, W.D. Shafer, V.R.R. Pendyala, W. Ma, M.K. Gnanamani, S. Hopps, G.A. Thomas, B. Kitiyanan, S. Khalid and B.H. Davis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Sintering of nickel steam reforming catalysts: Effective mass diffusion constant for Ni-OH at nickel surfacesJ. Sehested, N.W. Larsen, H. Falsig and B. Hinnemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CO-insertion mechanism based kinetic model of the Fischer–Tropsch synthesis reaction over Re-promoted Co catalystB. Todic, W. Ma, G. Jacobs, B.H. Davis and D.B. Bukur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Effect of lanthanum on the properties of copper, cerium and zirconium catalysts for preferential oxidation of carbon monoxideJ.S. Moura, J. da Silva Lima Fonseca, N. Bion, F. Epron, T. de Freitas Silva, C.G. Maciel, J.M. Assaf and M. do Carmo Rangel . . . . . . 40

Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenationG. Bonura, M. Cordaro, C. Cannilla, A. Mezzapica, L. Spadaro, F. Arena and F. Frusteri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Metal oxides modifi ed NiO catalysts for oxidative dehydrogenation of ethane to ethyleneH. Zhu, H. Dong, P. Laveille, Y. Saih, V. Caps and J.-M. Basset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Molecular structure and localization of carbon species in alumina supported cobalt Fischer–Tropsch catalysts in a slurry reactorD. Peña, A. Griboval-Constant, C. Lancelot, M. Quijada, N. Visez, O. Stéphan, V. Lecocq, F. Diehl and A.Y. Khodakov . . . . . . . . . . . . . 65

CO2 reactivity on Fe–Zn–Cu–K Fischer–Tropsch synthesis catalysts with different K-loadingsM. Martinelli, C.G. Visconti, L. Lietti, P. Forzatti, C. Bassano and P. Deiana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer–Tropsch synthesisT.O. Eschemann, J.H. Bitter and K.P. de Jong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chemical looping: To combustion and beyondS. Bhavsar, M. Najera, R. Solunke and G. Veser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Fundamental issues on practical Fischer–Tropsch catalysts: How surface science can helpC.J. Weststrate, I.M. Ciobîca, A.M. Saib, D.J. Moodley and J.W. Niemantsverdriet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Selforganization in Fischer–Tropsch synthesis with iron- and cobalt catalystsH. Schulz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Dry reforming of CH4 on Rh doped Co/Al2O3 catalystsZs. Ferencz, K. Baán, A. Oszkó, Z. Kónya, T. Kecskés and A. Erdohelyi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Ethane catalytic partial oxidation to ethylene with sulphur and hydrogen addition over Rh and Pt honeycombsS. Cimino, G. Mancino and L. Lisi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Hydrogen production through CO2 reforming of methane over Ni/CeZrO2/Al2O3 catalystsE.C. Faria, R.C.R. Neto, R.C. Colman and F.B. Noronha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Hydrogen production by steam reforming of biomass-derived glycerol over Ni-based catalystsK. Seung-hoon, J. Jae-sun, Y. Eun-hyeok, L. Kwan-Young and M. Dong Ju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Advances in ion transport membrane technology for Syngas productionC.F. Miller, J. Chen, M.F. Carolan and E.P. Foster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Fischer–Tropsch synthesis: Kinetics and water effect study over 25%Co/Al2O3 catalystsW. Ma, G. Jacobs, D.E. Sparks, R.L. Spicer, B.H. Davis, J.L.S. Klettlinger and C.H. Yen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Selective synthesis of gasoline from syngas in near-critical phaseT. Ma, H. Imai, Y. Suehiro, C. Chen, T. Kimura, S. Asaoka and X. Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Single-step synthesis of dimethyl ether from syngas on Al2O3-modifi ed CuO–ZnO–Al2O3/ferrierite catalysts: Effects of Al2O3 contentY.J. Lee, M.H. Jung, J.-B. Lee, K.-E. Jeong, H.-S. Roh, Y.-W. Suh and J.W. Bae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

The effect of La3+, Ti4+ and Zr4+ dopants on the mechanism of WGS on ceria-doped supported Pt catalystsK.C. Petallidou, C.M. Kalamaras and A.M. Efstathiou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Contents

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier .com/locate/cattod

Page 2: Contents list

vi Contents

Syngas production by bireforming of methane over Co-based alumina-supported catalystsS.S. Itkulova, G.D. Zakumbaeva, Y.Y. Nurmakanov, A.A. Mukazhanova and A.K. Yermaganbetova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Hierarchically structured NiO/CeO2 nanocatalysts templated by eggshell membranes for methane steam reformingZ. Wang, X. Shao, X. Hu, G. Parkinson, K. Xie, D. Dong and C.-Z. Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction: As-prepared Co/SiO2 catalysts for Fischer–Tropsch synthesisL. Shi, C. Zeng, Q. Lin, P. Lu, W. Niu and N. Tsubaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Oxidative coupling of methane—A complex surface/gas phase mechanism with strong impact on the reaction engineeringB. Beck, V. Fleischer, S. Arndt, M.G. Hevia, A. Urakawa, P. Hugo and R. Schomäcker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212