186
Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles Budapest University of Technology and Economics Department of Aeronautics, Naval Architecture and Railway Vehicles Budapest, H-1111, Sztoczek street 6. building J. 4th floor, Hungary Tel.: +36-1-463-1922, Fax: +36-1-463-30-80 Computational Heat Transfer and Fluid Dynamics BMEKOVRM606 Dr. Árpád Veress associate professor Budapest, 07-09-2020 1

Computational Heat Transfer and Fluid Dynamics

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Budapest University of Technology and Economics

Department of Aeronautics, Naval Architecture and Railway Vehicles

Budapest, H-1111, Sztoczek street 6. building J. 4th floor, Hungary

Tel.: +36-1-463-1922, Fax: +36-1-463-30-80

Computational Heat Transfer and Fluid

Dynamics

BMEKOVRM606

Dr. Árpád Veress

associate professor

Budapest, 07-09-2020

1

Page 2: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Introduction

2

Page 3: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Actuality

3

The world fastest supercomputersSupercomputersMicroprocessors (parallel)Intel x86Alpha

Year of introduction

Page 4: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles4

Description of physical processes - basic approaches of mathematical models in space

1. Concentrated parameter type 2. Distributed parameter type

Thermodynamics, Heat Transfer and Fluid Dynamics → Possibilities of the application

of the governing equations

Approaches for Modelling and Conditions for Applications

Page 5: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Description of physical processes - basic approaches for mathematical modelling:

1. Statistical Physics (based on statistical mechanics, kinetic theory of gases)

2. Continuum Mechanics

Definition of Length scale

5

Approaches for Modelling and Conditions for Applications

Page 6: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Robert Brown – 1827

Brownian motion

Swept volume of a molecule by unit time:

A c

AcV = ]/[ 3 sm

Then, the number of collisions with other molecule by unit time:

Vnn = ]/[]][/[ 33 sdbsmmdb =

The average time between two collisions: ( ) ( )AcnVnnt 111' === ][s

The average path length between two collisions (mean free path of the molecule):

( )nA'tc 1== ][m For air in case of standard conditions:

=

3197,2

cm

dben

2151 cmeA −=

cme, 573 −=

In 160 Km far from the ground: m80=

In shock waves: cmem 411 −==

6

Approaches for Modelling and Conditions for Applications

Length scale - mean free path of

the molecule

Page 7: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

1. Statistical Physics (based on statistical mechanics, kinetic theory of gases)

2. Continuum Mechanics

Categorization of the Flow by Local Knudsen Number

Kn=0.0001 0.001 0.01 0.1 1. 10. 100.

Continuum Slip Transition Free

MolecularNavier-Stokes

Kn=0: EulerBurnett

Boltzmann Collosionless

Boltzmann

01,0]m[03,0

]m[7e7,3

LKn

−==

The importance of the local Knudsen number in case of decision about using

continuum mechanics based approaches.

7

Approaches for Modelling and Conditions for Applications

Page 8: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles8

Source: Xiao-Jun Gu and

David R. Emerson:

Application of the Moment

Method in the Slip

and Transition Regime for

Microfluidic Flows, RTO-

EN-AVT-194,

http://ftp.rta.nato.int/public//P

ubFullText/RTO/EN/RTO-

EN-AVT-194///EN-AVT-194-

11.pdf (2013.09.01.)

Approaches for Modelling and Conditions for Applications

Categorization of the Flow by Local Knudsen Number

Page 9: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Mathematical Models of

Flow – Governing

Equations

9

Page 10: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

http://aero-comlab.stanford.edu/Papers/SEVILLE.pdf (2013.09.01.)

Source: Antony Jameson: A perspective on computational algorithms for aerodynamic analysis and design, Progress in Aerospace

Sciences, Volume 37, Issue 2, February 2001, Pages 197–243

10

Approaches for Modelling and Conditions for Applications

Page 11: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles11

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations

Lagrangian and Eulerian specifications

=

==8

1

,

i

ixx Fdt

dumma

dxdydzm =

uVt

u

dt

du+

=

( ) ( ) ( ) ( )dzdydx

zyxx

p

z

uw

y

uv

x

u

t

udzdydx zxyxxx

+

+

+

−=

+

+

+

2

in x direction:

=

==8

1

,

i

ixFdt

dudzdydx

dt

dum

Newton II. law in x direction:

i,xF

dt

du

=

8

1i

i,xF

Source: VKI-LS, Introduction to CFD

Page 12: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles12

uVt

u

dt

du+

=

( ) ( ) ( ) ( )dzdydx

zyxx

p

z

uw

y

uv

x

u

t

udzdydx zxyxxx

+

+

+

−=

+

+

+

2

i,xF

dt

du

=

8

1i

i,xF=

==8

1

,

i

ixx Fdt

dumma

( )t

ut

u

t

u

=

As:

( ) ( )VuVuuV −=and:

( ) ( ) ( )VuVt

ut

u

dt

du

+

+

=

Hence: 0 (from mass cons.

law)

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations Source: VKI-LS, Introduction to CFD

in x direction:

Page 13: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

( ) ( ) ( ) ( ) ( )

( ) ( )z

zTkwvu

y

yTkwvu

x

xTkwvu

z

wH

y

vH

x

uH

t

E

zzzyzxyzyyyx

xzxyxx

++++

++++

+

+++=

+

+

+

2

2

VTcE v

+=

2

2

VTcH p

+=

RTp =

FvP =( )T

( ) ( ) ( )0=

+

+

+

z

w

y

v

x

u

t

( ) ( ) ( ) ( )zyxz

uw

y

uv

x

pu

t

u zxyxxx

+

+

=

+

+

++

2

( ) ( ) ( ) ( )zyxz

vw

y

pv

x

vu

t

v zyyyxy

+

+

=

+

++

+

2

( ) ( ) ( ) ( )zyxz

pw

y

wv

x

wu

t

w zzyzxz

+

+

=

++

+

+

2

( )ttanConsuAudA

x

u

A

V ==⎯⎯→⎯

=

0

maF =

13

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations

Page 14: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles14

• Compressible, ideal gas in a relative stationary system,

• Newtonian continuum fluid, which can be either laminar or turbulent,

• Homogeneous (one material), isotropic material,

• Taking account of transient processes,

• Flow, in which the friction is included between fluid layers sliding on each other,

• Free from any force field (e.g.: gravity and electromagnetic field),

• Free from any sources and sink,

• Conservation form → discontinuities (contact discontinuities, slip lines and shock

waves) are handled.

The conditions in physical point of view for the application of the nonlinear partial

differential system of equations introduced in the previous slide:

;v;

;p;vvv

t

n,n,n

00

0021

=

===−

;v;

;p;v

t

n

00

00

==

;v;

;p;v

t

n

00

00

=

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations

Page 15: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

CFD

Computational Fluid

Dynamics

15

Page 16: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

▪The CFD stands for Computational Fluid Dynamics, which is a way

of modelling flows with the help of a computer using principles

found in math and physics.

▪ It is one of the most important key elements of modern development

processes today.

▪With the help of CFD one can develop more cost effective, more

environmental friendly and safer vehicles, products and processes

with higher performances and higher efficiencies.

▪ It can be effective tool for simulating processes, which are expensive

or cannot be implemented.

▪Beside verification and plausibility check, the validity of simulations

can be checked by experiments or others (e.g.: benchmarks).

What is the CFD (Computational Fluid Dynamics)?

16

Page 17: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

▪ The results of the simulations give back the results of the

measurements within less than 5-10 % in the 80 % of the

industrial applications.

▪ It can be used in the full life-time cycle of the products.

▪ Significant amount of cost, time and capacity can be saved by using

CFD.

▪The physical processes and so the root cause of the problems can be

recognized more easily and faster due to the possibilities of wide

visualization techniques (e.g.: parameter distributions, streamlines,

velocity vectors in any arbitrary cross sections).

▪More physics (e.g.: fluid dynamics, heat transfer, structural

mechanics, electromagnetics) can be coupled together at reasonable

computational costs.

The Advantages of CFD

17

Page 18: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles18

The Advantages of CFD

▪ It can be used where the measurement is difficult, would influence

the investigated process or it is impossible (e.g.: Mars Mission).

▪ The numerical simulation can be parameterized, easily reproduced

and automated.

▪ The simulations can be combined with optimization algorithms.

▪The whole development process cannot be based only on

calculations, validation is required.

Page 19: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Main Application Area

• Vehicle industry (aerodynamics (internal, external), engine

operation, air conditioning),

• Aerospace engineering,

• Safety (prediction of fire- and smoke-spreading, modelling of

detonation and other hazard phenomena),

• Turbomachinery,

• Environmental protection,

• Production and operational process in heavy, light, chemistry and

food industry

• Building industry (heating, cooling, air conditioning, drain and piped

water)

• Weather forecast, climate models

• Astronomy

19

Page 20: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles20

Forrás: Introduction to ANSYS CFX, Lecture 02 – Introduction to CFD, CFX-Intro_14.0_L02_IntroCFD_CFX.pdf (2013.09.01.)

Summary of Basic Operation of CFD

Page 21: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Mathematical Models of

Flow - Turbulence

21

Page 22: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles22

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations; Turbulent Flows

Page 23: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles23

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations; Turbulent Flows

Page 24: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles24

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations; Turbulent Flows -Theory

Page 25: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles25

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations; Turbulent Flows -Theory

Page 26: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles26

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

Navier-Stokes Equations; Turbulent Flows -Theory

Page 27: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles27

Forrás:

Jurij SODJA : Turbulence models in CFD

http://www-f1.ijs.si/~rudi/sola/Turbulence-models-in-CFD.pdf (2013.09.01)

Flow Modelling by Means of Continuum Mechanics;

NS Equations; Simulation Techniques for Handling Turbulence

Page 28: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles28

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

NS Equations; Simulation Techniques for Handling Turbulence

Page 29: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles29

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

NS Equations; Simulation Techniques for Handling Turbulence

Page 30: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles30

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence -Theory

Page 31: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles31

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence -Theory

Page 32: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles32

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence -Theory

Page 33: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles33

t

u’

u

uuuu += vvv +=

www += ppp +=

dtut

utt

t+

=

0

0

1

+=

( )dtut

utt

t+

=

0

0

11~

Reynolds Átlagolás Favre ÁtlagolásNagy sebességű,

összenyomható áramlás esetén.

uuu += ~vvv += ~ www += ~ ppp += +=

hhh +=~

eee += ~TTT +=

~jjj qqq += jLj qq =

L: laminar transport of the heat

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 34: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles34

0~~~=

+

+

+

z

w

y

v

x

u

t

+

+

+

−=

+

+

+

zyxx

p

z

uw

y

uv

x

uu

t

uF

xz

F

xyF

xx ~~~~~~~

+

+

+

−=

+

+

+

zyxy

p

z

vw

y

vv

x

vu

t

vF

yz

F

yy

F

yx ~~~~~~~

+

+

+

−=

+

+

+

zyxz

p

z

ww

y

wv

x

wu

t

wF

zz

F

zyF

zx ~~~~~~~

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 35: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles35

uuVx

u TF

xx−−

=

~

3

2~2

vvV

y

v TF

yy−−

=

~

3

2~2

wwVz

w TF

zz−−

=

~

3

2~2

vux

v

y

uF

yx

F

xy−

+

==

~~

wux

w

z

uF

zx

F

xz−

+

==

~~wv

y

w

z

vF

zy

F

yz−

+

==

~~

( )

+

−+−−

=

=

+

+

+

+

+

=====

=====

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

~

2

1

2

1~~~

2

1~~

2

1~~

2

1~

i

jijii

j ji

iij

i

ijijj

j j

i

iij

i

iij

j ji

ii

i

ii

uuux

uuuuhuqx

uuuuuhux

uuuuet

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 36: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles36

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 37: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles37

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 38: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles38

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 39: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles39

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 40: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles40

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 41: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles41

Flow Modelling by Means of Continuum Mechanics;

RANS; Reynolds and Favre Averaging -Theory - DASFLOW

Page 42: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles42

Forrás: www.tech.plym.ac.uk/sme/dsgn313/CFDNotes06.ppt (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Turbulence Modelling -Theory

Page 43: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles43

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Turbulence Modelling -Theory

Page 44: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles44

( )

+

+−

−=

+

j

t

jj

iji

j

jx

k

xk

x

uuu

x

ku

t

k **

~~

( )

+

+−

−=

+

j

t

jj

iji

j

jxxx

u

kuu

xu

t

2

~~

kt =

25

13=

2

1* =2

1= ( ) tMFf **

0

* 1*

+=

( )tMFff **

00 * −=

100

9*

0 =125

90 =

+

+

=0

4001

6801

01

2

2*

k

k

k

k

if

if

f

jj

kxx

k

=

3

1

801

701

+

+=f

( )3*

0

kijkij S= 0=

2

3* =4

10 =tM

( ) ( )0

2

0

2

ttttt MMMMMF −−=

( )

=

01

00

xif

xifx

2

2 2

a

kM t =

k *=

2/1kl =

+

=

i

j

j

iij

x

u

x

uS

~~

2

1

=

i

j

j

iij

x

u

x

u~~

2

1

kS

S

Flow Modelling by Means of Continuum Mechanics;

RANS; Turbulence Modelling -Theory

Page 45: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles45

( ) ( ) ( ) +=+

A

vnn

A

dAUSdUHdUHUdAt

=

k

E

v

u

U ~

~

~

( ) ( )

+

+

+

=

n

n

n

yn

xn

n

n

V

kV

VpE

npVv

npVu

V

UH*

*

*

~

~

~

( )

=

S

S

US

k

0

0

0

0

Flow Modelling by Means of Continuum Mechanics;

RANS; Turbulence Modelling - DASFLOW - Equations in

Conservative Form

Page 46: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles46

( ) ( ) ( ) +=+

A

vnn

A

dAUSdUHdUHUdAt

Flow Modelling by Means of Continuum Mechanics;

RANS; Turbulence Modelling - DASFLOW - Equations in

Conservative Form

Page 47: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles47

( ) m,1k

UU

UtUU

UU

m1n

1k

k

0k

n0

=

=

+=

=

+

−• Runge-Kutta módszer

m=4

( ) ( ) ( ) =+

−−=

==

ij

k

kijkijvn

k

kijkijn

ij

ij USHHA

Ut

4

1

,,

4

1

,,

1

( ) ( )=

=4

1

,,k

kijkijvnvn HdUH

ij

( ) ( ) R

vn

L

vnvn UHUHH +=2

1

( ) ( ) ijij

A

AUSdAUS

ij

=

i,j

i,j+1

i+1,j

i,j-1

i-1,ji+1/2,ji-1/2,j

LR L

RL

R

L

Ri,j+1/2

i,j-1/2n

ij,2

ij

ij,1

ij,2

ij,3

ij,4

nij,1

nij,3

nij,4

x

y

ey

ex

Flow Modelling by Means of Continuum Mechanics;

RANS; Turbulence Modelling - DASFLOW - Discretization

Page 48: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles48

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence -Theory

Page 49: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles49

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence -Theory

Page 50: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles50

Forrás: www.tech.plym.ac.uk/sme/dsgn313/CFDNotes06.ppt (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence -Theory

Page 51: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles51

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Models

Page 52: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles52

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Models

Page 53: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles53

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Models

Page 54: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles54

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Models

Page 55: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles55

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 56: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles56

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 57: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles57

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 58: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles5858

yUy =+

wU =

+= uU

U

Cyu += ++ ln1

( ) 5.5ln1 += yUUU

++ = yu

yU

y lnln =+

Law of the wall by Prandtl

y+ < 0.1δ

dy

dUw =

?

30=+y

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 59: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles59

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 60: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles60

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 61: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles61

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 62: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles62

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 63: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles63

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 64: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles64

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 65: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles65

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 66: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles66

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 67: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles67

Forrás: Introduction to ANSYS CFX

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 68: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles68

Forrás: Introduction to ANSYS CFX

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 69: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles69

ANSYS CFX

Forrás: Introduction to ANSYS CFX

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 70: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles70

Forrás: Introduction to ANSYS CFX

ANSYS CFX

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 71: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles71

Forrás: Introduction to ANSYS CFX

ANSYS CFX

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 72: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles72

Forrás: ANSYS, Inc., ANSYS CFX-Solver Theory Guide, Release 14.5, ANSYS, Inc. Southpointe, 275 Technology Derive

Canonsburg, PA 15317, [email protected], http://www.ansys.com, USA, 2012

ANSYS CFX

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Handling Flow at Solid Walls

Page 73: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles73

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Inlet Boundary Condition

Page 74: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles74

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Inlet Boundary Condition

Page 75: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles75

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Inlet Boundary Condition

Page 76: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles76

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Inlet Boundary Condition

Page 77: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles77

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Re-Normalisation Group

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Summary

Page 78: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles78

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Summary

Page 79: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles79

Forrás: Introduction to ANSYS CFX, Lecture 07 - Turbulence, CFX-Intro_14.0_L07_Turbulence .pdf (2013.09.01.)

Flow Modelling by Means of Continuum Mechanics;

RANS; Modelling of Turbulence - Summary

Page 80: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Numerical Modelling of

Flow

Discretization of the

Governing Equations

80

Page 81: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles81

FINITE DIFFERENCE, 1. Introduced by Euler in the 18th century.

2. Governing equations in differential form→ domain with grid→ replacing the

partial derivatives by approximations in terms of node values of the functions→

one algebraic equation per grid node→ linear algebraic equation system. 3. Applied

to structured grids.

FINITE VOLUME, 1. Governing equations in integral form→ solution domain is subdivided into a finite number of contiguous control volumes→ conservation equation applied to each CV.

2. Computational node locates at the centroid of each CV.

3. Applied to any type of grids, especially complex geometries

4. Compared to FD, FV with methods higher than 2nd order will be difficult, especially for 3D.

FINITE ELEMENT,

1. Similar to FV

2. Equations are multiplied by a weight function before integrated over the entire domain.

Flow Modelling by Means of Continuum Mechanics;

RANS; Discretization - CFX

Page 82: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles82

Forrás: ANSYS CFX-Solver Theory Guide, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, October

2012

Flow Modelling by Means of Continuum Mechanics;

RANS; Discretization - CFX

Page 83: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles83

Forrás: ANSYS CFX-Solver Theory Guide, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, October

2012

Flow Modelling by Means of Continuum Mechanics;

RANS; Discretization - CFX

Page 84: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles84

Forrás: ANSYS CFX-Solver Theory Guide, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, October

2012

Flow Modelling by Means of Continuum Mechanics;

RANS; Discretization - CFX

Page 85: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles85

Forrás: ANSYS CFX-Solver Theory Guide, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, October

2012

° : parameters of the next iteration step, : parameters of the actual iteration step,

First or Second order Implicit Backward Euler method has been used for solving the

system of algebraic equations.

Flow Modelling by Means of Continuum Mechanics;

RANS; Discretization - CFX

Page 86: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles86

Forrás: ANSYS CFX-Solver Theory Guide, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, October

2012

Flow Modelling by Means of Continuum Mechanics;

RANS; Solution of System of Algebraic Equations - CFX

Page 87: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles87

Forrás: ANSYS CFX-Solver Theory Guide, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, October

2012

Pressure-Velocity Coupling: ANSYS CFX uses a co-located (non-staggered) grid

layout such that the control volumes are identical for all transport equations. As

discussed by Patankar, however, naïve co-located methods lead to a decoupled

(checkerboard) pressure field. Rhie and Chow [2] proposed an alternative discretization

for the mass flows to avoid the decoupling, and this discretization was modified by

Majumdar to remove the dependence of the steady-state solution on the time step.

Similar strategy is adopted in ANSYS CFX.

Solver: ANSYS CFX uses a coupled solver, which solves the hydrodynamic equations

(for u, v, w, p) as a single system by means of a fully implicit discretization of the

equations at any given time step. For steady state problems, the time-step behaves like an

‘acceleration parameter’, to guide the approximate solutions in a physically based

manner to a steady-state solution. This reduces the number of iterations required for

convergence to a steady state, or to calculate the solution for each time step in a time-

dependent analysis. ANSYS CFX uses first or second order (better for transient due to

the higher accuracy) Backward Euler scheme for time discretization (see slide 85).

Flow Modelling by Means of Continuum Mechanics;

RANS; Solution of System of Algebraic Equations - CFX

Page 88: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles88

System of partial

differential equations,

L(Ť)

Exact solution, Ť

Discretization

Consistency

System of

algebraic

equations

Stability

Approximate

solution, T

• Initial and boundary conditions

Convergence

if Δx, Δt 0

Mathematical properties of the numerical discretization

Flow Modelling by Means of Continuum Mechanics;

RANS; Numerical Methods and Their Characteristics

Page 89: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

The Main Steps and

Rules of Completing a

CFD Task

89

Page 90: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

The Main Steps of a CFD TaskP

re-p

roce

ssin

g

• Goal, definition and review of the task which has to be solved and

mapped that into the modelling space, making time and cost plan,

• Creating geometrical (flow) model,

• Making of the numerical mesh in the flow domain,

• Definition of the material properties,

• Setting up related physical models and their parameters,

• Imposing boundary conditions and assigning them to the geometry,

• Specify initial conditions,

• Setting solver parameters,

• Start calculation and evaluate convergences,

• View, analyze, and evaluate the results,

• Verification, plausibility check and validation,

• Mesh and parameter sensitivity analyses,

• Documentation preparation with especial care for the suggestions

for improvements in case of relevancies. Post

-

pro

cess

ing

90

Page 91: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Geometry – Flow field

91

The Main Steps of a CFD Task

Page 92: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles92

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 93: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles93

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 94: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles94

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 95: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles95

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 96: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles96

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

Részletesen lásd: Mesh Metrix, Mesh_metrix_in_ANSYS_WB_13_v11.ppt

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 97: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles97

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 98: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles98

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 99: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles99

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 100: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles100

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 101: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles101

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 102: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles102

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 103: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles103

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 104: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles104

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 105: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles105

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 106: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles106

Forrás: Introduction to ANSYS CFX, Lecture 10 - Best Practice Guidelines - CFX-Intro_14.0_L10_BestPractices (2013.09.01.)

The Main Steps of a CFD Task – Discretization of the Flow

Field

Page 107: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles107

The Main Steps of a CFD Task – Discretization of the Flow

Field

Rotational flow domain of a

centrifugal compressor. The

quality and the resolution of the

mesh at the high gradient

regions should be improved

until it has influence for the

results. Minimum 20 cells are

necessary in case of the smallest

gap at compressible flow.

Page 108: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Typical boundary conditions in case of CFD simulations: inlet, outlet,

solid wall, symmetry, opening (far field) and periodic. The boundaries

should be placed on such a far distance from the object under

investigation that the disturbances should not be propagated till the

boundaries (e.g.: the streamlines should not cross the opening

boundaries, the flow should not enter at the outlet section) together with

the minimal number of cells with the mesh independent results.

108

The Main Steps of a CFD Task – Material Properties and

Boundary Conditions

periodic

boundary B

outlet

frictionless

wall

opening

boundary or

symmetric

periodic

boundary B

inlet

inlet

outletperiodic

boundary A

periodic

boundary A

solid

wall

solid

wall

Page 109: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Convergence

=

=

pN

1i

2

i

i

p

10N

1log

109

The Main Steps of a CFD

Task – Solution and

Convergence

Page 110: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles110

Forrás: Introduction to ANSYS CFX, Lecture 05 - Solver Settings and Output File - CFX-Intro_14.0_L05_SolverSettings_OutFile

(2013.09.01.)

The Main Steps of a CFD Task – Solution and Convergence

Page 111: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles111

Forrás: Introduction to ANSYS CFX, Lecture 05 - Solver Settings and Output File - CFX-Intro_14.0_L05_SolverSettings_OutFile

(2013.09.01.)

The Main Steps of a CFD Task – Solution and Convergence

Page 112: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles112

Forrás: Introduction to ANSYS CFX, Lecture 05 - Solver Settings and Output File - CFX-Intro_14.0_L05_SolverSettings_OutFile

(2013.09.01.)

The Main Steps of a CFD Task – Solution and Convergence

Page 113: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles113

The Main Steps of a CFD Task – Visualization of the Results

Page 114: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles114

The Main Steps of a CFD Task – Visualization of the Results

Page 115: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles115

The Main Steps of a CFD Task – Visualization of the Results

Page 116: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles116

The Main Steps of a CFD Task – Visualization of the Results

Page 117: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles117

The Main Steps of a CFD Task – Visualization of the Results

Page 118: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles118

The Main Steps of a CFD Task – Visualization of the Results

Page 119: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Mach Number Distribution

0

0,3

0,6

0,9

1,2

1,5

1,8

0 2 4 6 8 10

lenght [m]

Mach

nu

mb

er

Exact

Numerical

M1=1.1

Source: Starken, H., 1971, “Untersuchung der Strömung in ebenen Überschallverzöger-ungsgittern,” DLR-Forschungsbericht 71-99.

119

Visualization - Validation – Numerical Solutions of the Euler Equations

Page 120: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

s = 0 m

0

0,01

0,02

0,03

-10

0

0 100 200 300 400 500 600

Velocity [m/s]

y_E

XP

[m

]

experiment

k-ω model

A mérés forrásanyaga: Gerolymos, G. A.; Sauret, E. & Vallet, I. (2003). Oblique-Shock-Wave/Boundary-Layer Interaction using Near-Wall Reynolds-Stress Models, Université Pierre-et-Marie-Curie, AIAA 2003-3466, 33rd Fluid Dynamics Conference, 23-26 June 2003 Orlando, Florida, USA

120

Visualization - Validation – Numerical Solution of the Navier-Stokes Equations

Page 121: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Mach szám eloszlás

121

Visualization - DASFLOW Program – Numerical Solutions of the Navier-Stokes Equations in Cascade

Page 122: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Appendices I.

The Effect of Concave

and Convex Curvature

122

Page 123: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

The Effect of Concave and Convex Curvature

Fp

Fc

RFp

Fc

Convex Concave R

pc FFmRa ,RH 2 pc FFmRa ,RH 2

vpFa pH

állandóvp

+ 2

2

1

vpFa pH

állandóvp

+ 2

2

1

Real flow (with friction):n v

123

Page 124: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Convex

n v

124

Real flow (with

friction):

The Effect of Concave and Convex Curvature

Page 125: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles125

The Effect of Concave and Convex Curvature

Page 126: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles126

The Effect of Concave and Convex Curvature

Page 127: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

cR

v

n

p 2

=

ps

shroud

hub

ss

shroud

hub

ps ss

n

Rc

ss

ps

shroud

hub

Rc

n

Passage Vortex

Blade Vortex

ssps

shroud

hub

127

Secondary Flow in Cascades

Page 128: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles128

Secondary Flow in Cascades

(Passage Vortex)

Page 129: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles129

Secondary Flow Patterns in Rod Bundles in nuclear reactor

Page 130: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles130

Secondary Flow Pattern in a Rectangle Cross Flow Channel

Page 131: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles131

Secondary Flow Pattern in a Knee Pipe

Page 132: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Appendices II.

DASFLOW Software and

Its Industrial

Applications

132

Page 133: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

DASFLOW – Tanszéki fejlesztésű CFD és inverz

tervezésre alkalmas program

Page 134: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles134

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Reynolds és Favre átlagolás - DASFLOW

t

u’

u

uuuu += vvv +=

www += ppp +=

dtut

utt

t+

=

0

0

1

+=

( )dtut

utt

t+

=

0

0

11~

Reynolds Átlagolás Favre ÁtlagolásNagy sebességű,

összenyomható áramlás esetén.

uuu += ~vvv += ~ www += ~ ppp += +=

hhh +=~

eee += ~TTT +=

~jjj qqq += jLj qq =

Page 135: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles135

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Reynolds és Favre átlagolás - DASFLOW

0~~~=

+

+

+

z

w

y

v

x

u

t

+

+

+

−=

+

+

+

zyxx

p

z

uw

y

uv

x

uu

t

uF

xz

F

xyF

xx ~~~~~~~

+

+

+

−=

+

+

+

zyxy

p

z

vw

y

vv

x

vu

t

vF

yz

F

yy

F

yx ~~~~~~~

+

+

+

−=

+

+

+

zyxz

p

z

ww

y

wv

x

wu

t

wF

zz

F

zyF

zx ~~~~~~~

Page 136: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles136

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Reynolds és Favre átlagolás - DASFLOW

uuVx

u TF

xx−−

=

~

3

2~2

vvV

y

v TF

yy−−

=

~

3

2~2

wwVz

w TF

zz−−

=

~

3

2~2

vux

v

y

uF

yx

F

xy−

+

==

~~

wux

w

z

uF

zx

F

xz−

+

==

~~wv

y

w

z

vF

zy

F

yz−

+

==

~~

( )

+

−+−−

=

=

+

+

+

+

+

=====

=====

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

~

2

1

2

1~~~

2

1~~

2

1~~

2

1~

i

jijii

j ji

iij

i

ijijj

j j

i

iij

i

iij

j ji

ii

i

ii

uuux

uuuuhuqx

uuuuuhux

uuuuet

Page 137: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles137

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Reynolds és Favre átlagolás - DASFLOW

( )

+

+−

−=

+

j

t

jj

iji

j

jx

k

xk

x

uuu

x

ku

t

k **

~~

( )

+

+−

−=

+

j

t

jj

iji

j

jxxx

u

kuu

xu

t

2

~~

kt =

25

13=

2

1* =2

1= ( ) tMFf **

0

* 1*

+=

( )tMFff **

00 * −=

100

9*

0 =125

90 =

+

+

=0

4001

6801

01

2

2*

k

k

k

k

if

if

f

jj

kxx

k

=

3

1

801

701

+

+=f

( )3*

0

kijkij S= 0=

2

3* =4

10 =tM

( ) ( )0

2

0

2

ttttt MMMMMF −−=

( )

=

01

00

xif

xifx

2

2 2

a

kM t =

k *=

2/1kl =

+

=

i

j

j

iij

x

u

x

uS

~~

2

1

=

i

j

j

iij

x

u

x

u~~

2

1

Page 138: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles138

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Reynolds és Favre átlagolás – Konzervatív

összevont forma - DASFLOW

( ) ( ) ( ) +=+

A

vnn

A

dAUSdUHdUHUdAt

=

k

E

v

u

U ~

~

~

( ) ( )

+

+

+

=

n

n

n

yn

xn

n

n

V

kV

VpE

npVv

npVu

V

UH*

*

*

~

~

~

( )

=

S

S

US

k

0

0

0

0

Page 139: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles139

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Konzervatív forma – RARS - DASFLOW

( ) ( ) ( ) ( ) −+== Rn

Ln

RLnn UHUHU,UH

~UH

2

1 ( )( )LRRL

n UUU,UD −−

i

n

i

n

i

i

nn WrˆUD =

=4

1

+−

+

=

pVn

pVn

Vsc

p

Wn

2

+=

cnV

cnV

nV

nV

ˆ

( ) Tn vu.,v,u,r 221 501 +=

Txyxyn )nvnu(,nˆ,nˆ,r −−= 02

( ) ( )T

nyxn Vcc

cncv

cncu

ccr

++++= ˆˆ

ˆ

ˆ2

ˆ,ˆˆ

ˆ2

ˆ,ˆˆ

ˆ2

ˆ,

ˆ2

ˆˆ

23

( ) ( )T

nyxn Vcc

cncv

cncu

ccr

−+−−= ˆˆ

ˆ

ˆ2

ˆ,ˆˆ

ˆ2

ˆ,ˆˆ

ˆ2

ˆ,

ˆ2

ˆˆ

24

Page 140: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles140

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Konzervatív forma – MUSCL -

DASFLOW

( ) ( ) ( ) ( )32

2

2

2

1xxx

x

Uxx

x

UUxU ixixi ii

+−

+−

+=

( ) ( ) 2/1i2/1ii

L

2/1i 114

1UU −++ −+++=

( ) ( ) 2/1i2/1ii

R

2/1i 114

1UU −+− ++−−=

U(x)

x

U(x)

x

iii UU −= ++ 12/1

3/1=

1,1−=

Page 141: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles141

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Konzervatív forma – MUSCL (limiterek) -

DASFLOW

U(x)

x

U(x)

x

( ) ( ) 2/12/12/1 114

−++ −+++= i

i

i

ii

i

L

i rrr

UU

( ) ( ) 2/12/12/1 114

−+− ++−−= i

i

i

ii

i

R

i rrr

UU

22

2/1

2

2/1

2

2/12/1

2

22

++

+=

−+

−+

ii

iiir

710 −

3/1=

Page 142: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles142

Áramlásmodellezés – Kontinuum-mechanika alapján

RANS egyenletek – Diszkretizáció - DASFLOW

( ) m,1k

UU

UtUU

UU

m1n

1k

k

0k

n0

=

=

+=

=

+

−• Runge-Kutta módszer

m=4

( ) ( ) ( ) =+

−−=

==

ij

k

kijkijvn

k

kijkijn

ij

ij USHHA

Ut

4

1

,,

4

1

,,

1

( ) ( )=

=4

1

,,k

kijkijvnvn HdUH

ij

( ) ( ) R

vn

L

vnvn UHUHH +=2

1

( ) ( ) ijij

A

AUSdAUS

ij

=

i,j

i,j+1

i+1,j

i,j-1

i-1,ji+1/2,ji-1/2,j

LR L

RL

R

L

Ri,j+1/2

i,j-1/2n

ij,2

ij

ij,1

ij,2

ij,3

ij,4

nij,1

nij,3

nij,4

x

y

ey

ex

Page 143: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Mach Number Distribution

0

0,3

0,6

0,9

1,2

1,5

1,8

0 2 4 6 8 10

lenght [m]

Mach

nu

mb

er

Exact

Numerical

M1=1.1

DASFLOW Program – Egyenletek – Validáció

(súrlódásmentes)

Page 144: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

s = 0 m

0

0,01

0,02

0,03

-10

0

0 100 200 300 400 500 600

Velocity [m/s]

y_E

XP

[m

]

experiment

k-ω model

DASFLOW Program – Egyenletek – Validáció

(súrlódásos)

Page 145: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

DASFLOW Program - Lapátrács numerikus áramlástani vizsgálata

Probléma leírása

Page 146: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Korrekt Inkorrekt_1

Inkorrekt_2 Inkorrekt_3

Probléma leírása

DASFLOW Program - Lapátrács numerikus áramlástani vizsgálata

Page 147: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

DASFLOW Program - Lapátrács numerikus áramlástani vizsgálata

ptoin= 796127 Pa, Tto

in= 530.7 K

alfain=43o

pout= 654600. Pa, ptoout_ave=780525. Pa,

Ttoout_ave=530.5 K, alfa_rout_ave= -43.7o

Korrekt

Page 148: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

ptoin= 796127 Pa, Tto

in= 530.7 K

alfain=43o

pout= 654600. Pa, ptoout_ave=780525. Pa,

Ttoout_ave=530.5 K, alfa_rout_ave= -43.7o

DASFLOW Program - Lapátrács numerikus áramlástani vizsgálata

Inkorrekt_1

Page 149: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

DASFLOW Program - Lapátrács numerikus áramlástani vizsgálata

Page 150: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

DASFLOW Program - Lapátrács numerikus áramlástani vizsgálata

Page 151: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

0=

+

+

y

G

x

F

t

U iii ( )Ti vuU ,,0= Ti vup

uuF ),,( 2

+=

Ti pvuvvG ),,( 2

+=

2D-s összenyomhatatlan áramlás Euler

egyenletei konzervatív és dimenziós alakban:

0=

+

+

y

G

x

F

t

U iii ( )Ti vuPU ,,=Ti vuPuuF ),,( 22 +=

Ti PvuvvG ),,( 22 +=

Chorin módszere szerint:

pP =

Tüzelőanyag sugárszivattyú direkt numerikus

optimalizálása - Ipari alkalmazás

Page 152: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

0dHUdt

n =+

+

+==

yn

xn

n

n

PnvV

PnuV

V

nHH

2

• Integrál egyenletek

( ) m,1k

UU

UtUU

UU

m1n

1k

k

0k

n0

=

=

+=

=

+

DHUt j

k,j

N

kk,jn

j

j

f

11

1

+−=

=

• Runge-Kutta módszer

Tüzelőanyag sugárszivattyú direkt numerikus

optimalizálása - Ipari alkalmazás

Page 153: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Tüzelőanyag sugárszivattyú direkt numerikus

optimalizálása - Ipari alkalmazás - Validáció

Page 154: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

g

Tüzelőanyag sugárszivattyú direkt numerikus

optimalizálása - Ipari alkalmazás

Page 155: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

e

Tüzelőanyag sugárszivattyú direkt numerikus

optimalizálása - Ipari alkalmazás

Page 156: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Modell Alap Letörés Optimalizált 1 Optimalizált 2

mbe [l/h] 129,8 128,9 126 115,9

mki [l/h] 307 326,5 350,33 369,1

Sz.k. 2,36 2,53 2,78 3,18

Tüzelőanyag sugárszivattyú direkt numerikus

optimalizálása - Ipari alkalmazás

Page 157: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Szárnyprofilra, NACA 65-4101

GUI view of the DASFLOW in-house 2D CFD analysis and design software

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

Page 158: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

Szárnyprofilra, NACA 65-4101

Page 159: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

A számítás folyamata:

1. Kezdeti

geometria

2. Adott áramláshoz tartozó

nyomás eloszlás (preq)

előállítása és CFD

beállítások

3. Hálógenerálás

4. CFD számítás

(analízis)

5. Optimalizálási

kritériumnak

megfelel?

Optimális

Nyomáseloszlás

(preq) alkalmazása

7. Falmódosító eljárás

IGEN

STOP

NEM

6. Inverz analízis,

áteresztő fal

1. Kezdeti geometria (NACA 65 410)

2. Adott áramláshoz tartozó nyomás eloszlás (preq)

előállítása és CFD beállítások

Szárnyprofilra, NACA 65-4101

Page 160: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

Stratford limiting flow at given Reynolds

number

2

00

0p

V21

ppC

−= : Location of the start of the

positive pressure gradient

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1

x/c

Cp

Cp_min=-1.7

Cp_min=-3.5

Cp_min=-2.5

Cp_min=-1

Canonical pressure distribution:

Pressure coefficient:

Max. area with

Stratford limiting

pressure

increment (near

to the separation

limit)

reqp

p req is the output of the optimization

(n=6)

160

0

Szárnyprofilra, NACA 65-4101

Page 161: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

A számítás folyamata:

1. Kezdeti

geometria

2. Adott áramláshoz tartozó

nyomás eloszlás (preq)

előállítása és CFD

beállítások

3. Hálógenerálás

4. CFD számítás

(analízis)

5. Optimalizálási

kritériumnak

megfelel?

Optimális

Nyomáseloszlás

(preq) alkalmazása

7. Falmódosító eljárás

IGEN

STOP

NEM

6. Inverz analízis,

áteresztő fal

3. Hálógenerálás

4. CFD számítás (analízis)

Szárnyprofilra, NACA 65-4101

Page 162: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

A számítás folyamata:

1. Kezdeti

geometria

2. Adott áramláshoz tartozó

nyomás eloszlás (preq)

előállítása és CFD

beállítások

3. Hálógenerálás

4. CFD számítás

(analízis)

5. Optimalizálási

kritériumnak

megfelel?

Optimális

Nyomáseloszlás

(preq) alkalmazása

7. Falmódosító eljárás

IGEN

STOP

NEM

6. Inverz analízis,

áteresztő fal

5. Optimalizálási kritériumnak megfelel?

6. Inverz analízis, áteresztő fal

Szárnyprofilra, NACA 65-4101

Page 163: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

A számítás folyamata:

1. Kezdeti

geometria

2. Adott áramláshoz tartozó

nyomás eloszlás (preq)

előállítása és CFD

beállítások

3. Hálógenerálás

4. CFD számítás

(analízis)

5. Optimalizálási

kritériumnak

megfelel?

Optimális

Nyomáseloszlás

(preq) alkalmazása

7. Falmódosító eljárás

IGEN

STOP

NEM

6. Inverz analízis,

áteresztő fal

3. Hálógenerálás

Szárnyprofilra, NACA 65-4101

Page 164: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

Eredmények 10 inverz iterációt

követően:

Eredeti profil

Optimalizált profil

Belépő torlóponti nyomás:

ptot,in=112799 [Pa];

Belépő torlóponti hőm.:

Ttot,in=293.15 [K];

Kilépő statikus nyomás:

pstatot,out=101325 [Pa].

Hálóméret: 87×30

Iteráció szám: 5000

Konvergencia kritérium

sűrűség NKÉ: 1e-5.6

Peremfeltételek:

Szárnyprofilra, NACA 65-4101

Page 165: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

Eredmények 10 inverz iterációt

követően:

Szárnyprofilra, NACA 65-4101

Page 166: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

Eredmények a kezdeti profil esetén és 10 inverz iterációt követően:

Cl-alpha Plot of NACA 65-410 Profile

-0.5

0.0

0.5

1.0

1.5

2.0

-6 -4 -2 0 2 4 6 8 10

angle of attack [deg]

lift

co

eff

icie

nt

[-]

Measurement

Analysis init.

Analysis opt.

Szárnyprofilra, NACA 65-4101

Page 167: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Fokozati kompresszió viszony nagyságát befolyásoló tényezők:

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

),),(( 21 −= aks CnUf

Eredmények lapátrácsra 10 inverz iterációt követően:

A 0,62 Mach-szám (pstat,out=83325 [Pa]) és Cp

= -1,4-hez tartozó nyomáseloszlás

A lapátrácsban kialakuló nyomáseloszlás

0,62 Mach-szám (pstat,out=83325 [Pa]) és Cp

= -1,4 esetén

181,static,ks =

Page 168: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Fokozati kompresszió viszony nagyságát befolyásoló tényezők:

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

),),(( 21 −= aks CnUf

Eredmények lapátrácsra 10 inverz iterációt követően: 181,static,ks =

0,62

0,3

0,5

Mach-szám:

( )Cp,pf

p

p

out,stat

in,stat

out,stat

=

==

Page 169: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Fokozati kompresszió viszony nagyságát befolyásoló tényezők:

Optimalizáció; inverz tervezőeszköz kidolgozása és alkalmazása

),),(( 21 −= aks CnUf

Eredmények lapátrácsra 10 inverz iterációt követően: 181,static,ks =

( )Cp,pf

p

p

out,stat

in,stat

out,stat

=

==

Page 170: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Appendices III.

Industrial Applications of

a CFD and Inverse

Design Tool Developed at

VKI

170

Page 171: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Ipari alkalmazás

tömegáram: 340 m3/h –ig,

nyomás: 345 bar-ig

A-C többfokozatú kompresszor

lapát belépő él

lapátnélküli diffúzor

fordító könyök

visszatérő csatorna

forgórész bemenet

lapát kilépő él

Page 172: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Ipari alkalmazás

Page 173: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú

centrifugál kompresszor

összekötő-csatorna

lapátozásának tervezése

– lapátkiterjesztés –

Ipari alkalmazás

st

in

to

in

st

in

st

outp

pp

ppC

−=

st

in

to

in

to

out

to

in

pp

pp

−=

Page 174: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – ÁLT – Ipari

alkalmazás

( )flm

bl

th

blssps tg.R.Wdm

d

cosRzcosWW

−=−

2

1. t

m CWR =

dm

dC

zWW

t

ssps

cos

2 1

=−

=

TE

LE

t

t

bl dmcosC

C

2

1

fl

U

dm

WV fl

Wps

th

R

R+R

Wssds

z

R2

m

s

0V =

Page 175: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

RQ

bbl

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – ÁLT – Ipari

alkalmazás

=

TE

LE

t

t

bl dmcosC

C

2

1

=

TE

LE

blbl dm

R

)tan(),m(

Page 176: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál

kompresszor összekötő-

csatorna lapátozásának

tervezése – ÁLT – Ipari

alkalmazás

st

in

to

in

st

in

st

outp

pp

ppC

−=

st

in

to

in

to

out

to

in

pp

pp

−=

Page 177: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Inverz Módszer –

Ipari alkalmazás

A C

Page 178: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

B D

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Inverz Módszer –

Ipari alkalmazás

Page 179: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

R

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Inverz Módszer –

Ipari alkalmazás

Page 180: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú

centrifugál kompresszor

összekötő-csatorna

lapátozásának tervezése

– Inverz Módszer –

Ipari alkalmazás

st

in

to

in

st

in

st

outp

pp

ppC

−=

st

in

to

in

to

out

to

in

pp

pp

−=

Page 181: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Page 182: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Lapátelhajlítás – Ipari

alkalmazás

cR

v

n

p 2

=

ps

shroud

hub

ss

shroud

hub

ps ss

n

Rc

ss

ps

shroud

hub

Rc

n

Csatorna örvény

Lapát örvény

ssps

shroud

hub

Page 183: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Lapátelhajlítás – Ipari

alkalmazás

Page 184: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Többfokozatú centrifugál kompresszor összekötő-

csatorna lapátozásának tervezése – Eredmények - Ipari

alkalmazás

Tervezés

Nem

kiterjeszt

ett

ÁLTÁLT + Inverz

Tervezés

+ negatív

lapátelh.

P2o [Pa] 299699.1 299526.6 299696.6 299698.5

P2s [Pa] 159038.5 182298.2 174936.4 169050.8

P3o [Pa] 236665.3 261108.8 264954.2 265275.3

P3s [Pa] 225215.1 258238. 258414.2 258119.0

0.44813 0.3277 0.27847 0.263

Cp 0.4705 0.6478 0.669106 0.681

[kg/s] 4.68 4.5 4.64 4.5

Page 185: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Összefoglalás

• A numerikus áramlástani módszerek segítségével jobban megérthetők a fizikai

folyamatok többek között a vizualizációs eszközöknek köszönhetően.

• Kapcsolt fizikai folyamatok modellezése is lehetséges elfogadható számítógépi

kapacitással.

• A numerikus módszereket optimalizációs algoritmusokkal is lehet csatolni.

• Alkalmazásukkal jelentős költség- és kapacitás-csökkenés érhető el.

• Kivitelezhetetlen, extrém körülmények közötti, illetve nagy költségű mérések

kiváltására is alkalmas.

• Az analízisek paraméterezhetőek, könnyen megismételhetőek minimális

ráfordítással az előírt geometriai változtatásokat követően.

• A számítási eredmények validációjára és paraméter-érzékenységi vizsgálatok

elvégzésére minden esetben szükség van.

185

Page 186: Computational Heat Transfer and Fluid Dynamics

Bud. Univ. of Techn. and Economics Dep. of Aeronautics, Naval Architecture and Railway Vehicles

Thank you for your kind attentions.

BME, Vasúti Járművek, Repülőgépek és Hajók Tanszék

Stoczek u. 6. J. ép. 4. em. 426

H-1111, Budapest

Telefon: +36 1 463-1922

Fax: +36 1 463-3080

e-mail: [email protected]

186

Forrás: ANSYS, Inc., ANSYS CFX-Solver Theory Guide, Release 13, ANSYS, Inc. Southpointe, 275 Technology Derive

Canonsburg, PA 15317, [email protected], http://www.ansys.com, USA, 2010

Forrás: ANSYS, Inc., ANSYS CFX-Solver Theory Guide, Release 14.5, ANSYS, Inc. Southpointe, 275 Technology Derive

Canonsburg, PA 15317, [email protected], http://www.ansys.com, USA, 2012