30
Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis Deepak Dange, a Andrew R. Gair, a,b Dafydd D. L. Jones, a Martin Juckel, a Simon Aldridge b and Cameron Jones* ,a a School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia. b Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK. Supplementary Information (30 pages) Contents 1. Experimental S2 2. X-Ray Crystallography S25 3. References S29 S 1 Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Acyclic 12-Dimagnesioethanes-ethene Derived from Magnesium(I)

Compounds Multipurpose Reagents for Organometallic Synthesis

Deepak Dangea Andrew R Gairab Dafydd D L Jonesa Martin Juckela Simon Aldridgeb and

Cameron Jonesa

a School of Chemistry PO Box 23 Monash University VIC 3800 Australia

b Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks

Road Oxford OX1 3QR UK

Supplementary Information (30 pages)

Contents 1 Experimental S2

2 X-Ray Crystallography S25

3 References S29

S 1

Electronic Supplementary Material (ESI) for Chemical ScienceThis journal is copy The Royal Society of Chemistry 2019

1 Experimental

General considerations

All manipulations were carried out using standard Schlenk and glove box techniques under an

atmosphere of high purity dinitrogen Pentane was distilled over NaK alloy (2575) while THF

hexane and toluene were distilled over molten potassium 1H 13C1H 29Si1H and 11B1H NMR

spectra were recorded on either Bruker DPX300 or Bruker AvanceIII 400 spectrometers and were

referenced to the resonances of the solvent used external SiMe4 or external BF3OEt2 Mass spectra

were recorded on an Agilent Technologies 5975D inert MSD with a solid state probe IR spectra

were recorded as Nujol mulls using a Agilent Cary 630 spectrometer operating in attenuated total

reflectance (ATR) or transmission modes Melting points were determined in sealed glass

capillaries under dinitrogen and are uncorrected Microanalyses were carried out at the Science

Centre London Metropolitan University The compounds [(ArNacnac)Mg2] (Ar = Xyl1 Mes2 or

Dep3) [(MesNacnac)Mg2(-DPE)]4 [LZnBr]5 [TBoLZnBr]6 K[PhBoL]7 [(LdaggerMgI)2]8 and

[LGeCl]9 were prepared by literature procedures All other reagents were used as received

Synthesis of [(XylNacnac)Mg2(-DPE)] (5) To a stirred solution of [(XylNacnac)Mg2] (040 g

0605 mmol) in toluene (60 mL) at -40 degC was added neat 11-diphenylethylene (022 mL 121

mmol) via a microsyringe The yellow solution became deep red upon addition and was then

warmed to room temperature Volatiles were removed in vacuo and the residue taken up in hexane

(ca 20 mL) and stored at -30 degC overnight yielding deep red blocks of 5 Isolation of the crystals

and further evaporation of the filtrate gave a second crop of crystals (040 g 78) NB 5 may be

cleanly prepared in situ for further reactions by the addition of one equivalent of 11-

diphenylethylene to a stirred solution of [(XylNacnac)Mg2] in toluene at room temperature Mp

97-101 degC 1H NMR (400 MHz 298 K C6D6) δ = 037 (s 2H MgCH2CPh2) 142 (s 12H

NCCH3) 186 (s 24H ArCH3) 470 (s 2H NCCH) 623-635 (m 4H ArH) 646-649 (m 2H

ArH) 674-678 (m 4H ArH) 688 (br s 12H ArH) 13C1H NMR (100 MHz 298 K C6D6) δ =

119 (CH2CPh2) 188 (NCCH3) 228 (ArCH3) 518 (CH2CPh2) 948 (NCCH) 1162 1177

1245 1285 1304 1318 1470 1474 (ArC) 1685 (NCCH3) IR νcm-1 (ATR) = 1522(s)

1474(s) 1448(s) 1145(m) 1182(s) 847(m) 761(m) 738(s) 696(s) EIMS (70eV) mz () 3291

(XylNacnacMg+ 68) anal calc for C56H62Mg2N4 C 8010 H 744 N 667 found C

8003 H752 N 670

S 2

Figure S1 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 5

[(XylNacnac)Mg2] and DPE at 298 K

S 3

Figure S2 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 5

[(XylNacnac)Mg2] and DPE at 298 K

Synthesis of [(DepNacnac)Mg2(-MS)] (6) To a stirred solution of [(DepNacnac)Mg2] (050 g

0624 mmol) in toluene (40 mL) at -40 degC was added neat -methyl styrene (016 mL 124 mmol)

via a microsyringe The yellow solution became deep red upon addition and was then warmed to

room temperature Volatiles were removed in vacuo and the residue taken up in hexane (ca 20 mL)

and stored at -30 ordmC overnight yielding deep red blocks of 6 Isolation and further evaporation of

the filtrate gave a second crop of crystals (035 g 64 ) NB 6 may be cleanly prepared in situ for

further reactions by the addition of one equivalent of -methyl styrene to a stirred solution of

[(DepNacnac)Mg2] in toluene at room temperature Mp 139-143 degC 1H NMR (400 MHz 298 K

C6D6) δ = 016 (s 2H MgCH2CPhCH3) 109-114 (m 27H CH2CH3 and CH2CPhCH3 ) 150 (s

12H NCCH3) 213 (m 8H CH2CH3) 240 (m 8H CH2CH3) 478 (s 2H NCCH) 641-646 (m

1H ArH) 677-683 (m 2H ArH) 704-707 (m 14H ArH) 13C1H NMR (100 MHz C6D6) δ =

138 (CH2CPhCH3) 144 (CH2CH3) 218 (CPhCH3) 232 (NCCH3) 252 (CH2CH3) 948

(NCCH) 1124 (CH2CPhCH3) 1249 1258 1276 1285 1370 1416 1436 1462 (ArC) 1687

(NCCH3) IR νcm-1 (ATR) = 1516(s) 1439(s) 1264(s) 1178(s) 1028(s) 978(m) 801(m) 748(s)

695(s) EIMS (70eV) mz () 1741 (MeCNDep+ 100) 3853 (DepNacnacMg+ 35) anal calc for

C59H76Mg2N4 C 7963 H 861 N 630 found C 7866 H796 N 639

S 4

Figure S3 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

S 5

Figure S4 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

Synthesis of [(MesNacnac)Mg2(-TS)] (7) [(MesNacnac)Mg2] (300 mg 0419 mmol) and trans-

stilbene (84 mg 0466 mmol) were dissolved in toluene (15mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred overnight after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of 7 (216 mg 57 ) NMR spectra of analytically

pure crystalline samples showed one other significant product in addition to 7 This is thought to be

a diastereomer which co-crystallises with 7 and cannot be separated The NMR assignments below

are only tentative Mp 130-133degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 148 (s 12H

NCCH3) 164 (broad 12H ArCH3) 208-216 (2 broad overlapping signals 24H ArCH3) 250 (s

2H MgC(Ph)H) 472 (s 2H NCCH) 649-734 (m 18H ArH) 13C1H NMR (75 MHz 298 K

C6D6) δ = 189 (ArCH3) 210 (ArCH3) 230 (NCCH3) 460 (MgCH(Ph) 950 (NCCH) 1163

1270 1289 1291 1293 1315 1331 1570 (ArC) 1682 (NCCH3) IR νcm-1 (ATR) 1654 (w)

1597 (m) 1541 (m) 1508(m) 1474 (m) 1446 (m) 1366 (s) 1313 (w) 1256 (m) 1197 (m) 1161

(m) 1106 (w) 1052 (m) 848 (w) 793 (m) 763 (m) 741 (m) 697 (s) EIMS (70eV) mz () 3573

(MesNacnacMg+ 100) anal calc for C60H70Mg2N4 C 8044 Η 788 Ν 625 found C

8032 Η 806 Ν 639

S 6

Figure S5 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 7

Figure S6 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 7

S 7

Mg

N

N

Mes

Mes

Mg N

N

Mes

Mes

PhH

PhH

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 2: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

1 Experimental

General considerations

All manipulations were carried out using standard Schlenk and glove box techniques under an

atmosphere of high purity dinitrogen Pentane was distilled over NaK alloy (2575) while THF

hexane and toluene were distilled over molten potassium 1H 13C1H 29Si1H and 11B1H NMR

spectra were recorded on either Bruker DPX300 or Bruker AvanceIII 400 spectrometers and were

referenced to the resonances of the solvent used external SiMe4 or external BF3OEt2 Mass spectra

were recorded on an Agilent Technologies 5975D inert MSD with a solid state probe IR spectra

were recorded as Nujol mulls using a Agilent Cary 630 spectrometer operating in attenuated total

reflectance (ATR) or transmission modes Melting points were determined in sealed glass

capillaries under dinitrogen and are uncorrected Microanalyses were carried out at the Science

Centre London Metropolitan University The compounds [(ArNacnac)Mg2] (Ar = Xyl1 Mes2 or

Dep3) [(MesNacnac)Mg2(-DPE)]4 [LZnBr]5 [TBoLZnBr]6 K[PhBoL]7 [(LdaggerMgI)2]8 and

[LGeCl]9 were prepared by literature procedures All other reagents were used as received

Synthesis of [(XylNacnac)Mg2(-DPE)] (5) To a stirred solution of [(XylNacnac)Mg2] (040 g

0605 mmol) in toluene (60 mL) at -40 degC was added neat 11-diphenylethylene (022 mL 121

mmol) via a microsyringe The yellow solution became deep red upon addition and was then

warmed to room temperature Volatiles were removed in vacuo and the residue taken up in hexane

(ca 20 mL) and stored at -30 degC overnight yielding deep red blocks of 5 Isolation of the crystals

and further evaporation of the filtrate gave a second crop of crystals (040 g 78) NB 5 may be

cleanly prepared in situ for further reactions by the addition of one equivalent of 11-

diphenylethylene to a stirred solution of [(XylNacnac)Mg2] in toluene at room temperature Mp

97-101 degC 1H NMR (400 MHz 298 K C6D6) δ = 037 (s 2H MgCH2CPh2) 142 (s 12H

NCCH3) 186 (s 24H ArCH3) 470 (s 2H NCCH) 623-635 (m 4H ArH) 646-649 (m 2H

ArH) 674-678 (m 4H ArH) 688 (br s 12H ArH) 13C1H NMR (100 MHz 298 K C6D6) δ =

119 (CH2CPh2) 188 (NCCH3) 228 (ArCH3) 518 (CH2CPh2) 948 (NCCH) 1162 1177

1245 1285 1304 1318 1470 1474 (ArC) 1685 (NCCH3) IR νcm-1 (ATR) = 1522(s)

1474(s) 1448(s) 1145(m) 1182(s) 847(m) 761(m) 738(s) 696(s) EIMS (70eV) mz () 3291

(XylNacnacMg+ 68) anal calc for C56H62Mg2N4 C 8010 H 744 N 667 found C

8003 H752 N 670

S 2

Figure S1 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 5

[(XylNacnac)Mg2] and DPE at 298 K

S 3

Figure S2 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 5

[(XylNacnac)Mg2] and DPE at 298 K

Synthesis of [(DepNacnac)Mg2(-MS)] (6) To a stirred solution of [(DepNacnac)Mg2] (050 g

0624 mmol) in toluene (40 mL) at -40 degC was added neat -methyl styrene (016 mL 124 mmol)

via a microsyringe The yellow solution became deep red upon addition and was then warmed to

room temperature Volatiles were removed in vacuo and the residue taken up in hexane (ca 20 mL)

and stored at -30 ordmC overnight yielding deep red blocks of 6 Isolation and further evaporation of

the filtrate gave a second crop of crystals (035 g 64 ) NB 6 may be cleanly prepared in situ for

further reactions by the addition of one equivalent of -methyl styrene to a stirred solution of

[(DepNacnac)Mg2] in toluene at room temperature Mp 139-143 degC 1H NMR (400 MHz 298 K

C6D6) δ = 016 (s 2H MgCH2CPhCH3) 109-114 (m 27H CH2CH3 and CH2CPhCH3 ) 150 (s

12H NCCH3) 213 (m 8H CH2CH3) 240 (m 8H CH2CH3) 478 (s 2H NCCH) 641-646 (m

1H ArH) 677-683 (m 2H ArH) 704-707 (m 14H ArH) 13C1H NMR (100 MHz C6D6) δ =

138 (CH2CPhCH3) 144 (CH2CH3) 218 (CPhCH3) 232 (NCCH3) 252 (CH2CH3) 948

(NCCH) 1124 (CH2CPhCH3) 1249 1258 1276 1285 1370 1416 1436 1462 (ArC) 1687

(NCCH3) IR νcm-1 (ATR) = 1516(s) 1439(s) 1264(s) 1178(s) 1028(s) 978(m) 801(m) 748(s)

695(s) EIMS (70eV) mz () 1741 (MeCNDep+ 100) 3853 (DepNacnacMg+ 35) anal calc for

C59H76Mg2N4 C 7963 H 861 N 630 found C 7866 H796 N 639

S 4

Figure S3 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

S 5

Figure S4 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

Synthesis of [(MesNacnac)Mg2(-TS)] (7) [(MesNacnac)Mg2] (300 mg 0419 mmol) and trans-

stilbene (84 mg 0466 mmol) were dissolved in toluene (15mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred overnight after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of 7 (216 mg 57 ) NMR spectra of analytically

pure crystalline samples showed one other significant product in addition to 7 This is thought to be

a diastereomer which co-crystallises with 7 and cannot be separated The NMR assignments below

are only tentative Mp 130-133degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 148 (s 12H

NCCH3) 164 (broad 12H ArCH3) 208-216 (2 broad overlapping signals 24H ArCH3) 250 (s

2H MgC(Ph)H) 472 (s 2H NCCH) 649-734 (m 18H ArH) 13C1H NMR (75 MHz 298 K

C6D6) δ = 189 (ArCH3) 210 (ArCH3) 230 (NCCH3) 460 (MgCH(Ph) 950 (NCCH) 1163

1270 1289 1291 1293 1315 1331 1570 (ArC) 1682 (NCCH3) IR νcm-1 (ATR) 1654 (w)

1597 (m) 1541 (m) 1508(m) 1474 (m) 1446 (m) 1366 (s) 1313 (w) 1256 (m) 1197 (m) 1161

(m) 1106 (w) 1052 (m) 848 (w) 793 (m) 763 (m) 741 (m) 697 (s) EIMS (70eV) mz () 3573

(MesNacnacMg+ 100) anal calc for C60H70Mg2N4 C 8044 Η 788 Ν 625 found C

8032 Η 806 Ν 639

S 6

Figure S5 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 7

Figure S6 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 7

S 7

Mg

N

N

Mes

Mes

Mg N

N

Mes

Mes

PhH

PhH

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 3: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S1 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 5

[(XylNacnac)Mg2] and DPE at 298 K

S 3

Figure S2 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 5

[(XylNacnac)Mg2] and DPE at 298 K

Synthesis of [(DepNacnac)Mg2(-MS)] (6) To a stirred solution of [(DepNacnac)Mg2] (050 g

0624 mmol) in toluene (40 mL) at -40 degC was added neat -methyl styrene (016 mL 124 mmol)

via a microsyringe The yellow solution became deep red upon addition and was then warmed to

room temperature Volatiles were removed in vacuo and the residue taken up in hexane (ca 20 mL)

and stored at -30 ordmC overnight yielding deep red blocks of 6 Isolation and further evaporation of

the filtrate gave a second crop of crystals (035 g 64 ) NB 6 may be cleanly prepared in situ for

further reactions by the addition of one equivalent of -methyl styrene to a stirred solution of

[(DepNacnac)Mg2] in toluene at room temperature Mp 139-143 degC 1H NMR (400 MHz 298 K

C6D6) δ = 016 (s 2H MgCH2CPhCH3) 109-114 (m 27H CH2CH3 and CH2CPhCH3 ) 150 (s

12H NCCH3) 213 (m 8H CH2CH3) 240 (m 8H CH2CH3) 478 (s 2H NCCH) 641-646 (m

1H ArH) 677-683 (m 2H ArH) 704-707 (m 14H ArH) 13C1H NMR (100 MHz C6D6) δ =

138 (CH2CPhCH3) 144 (CH2CH3) 218 (CPhCH3) 232 (NCCH3) 252 (CH2CH3) 948

(NCCH) 1124 (CH2CPhCH3) 1249 1258 1276 1285 1370 1416 1436 1462 (ArC) 1687

(NCCH3) IR νcm-1 (ATR) = 1516(s) 1439(s) 1264(s) 1178(s) 1028(s) 978(m) 801(m) 748(s)

695(s) EIMS (70eV) mz () 1741 (MeCNDep+ 100) 3853 (DepNacnacMg+ 35) anal calc for

C59H76Mg2N4 C 7963 H 861 N 630 found C 7866 H796 N 639

S 4

Figure S3 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

S 5

Figure S4 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

Synthesis of [(MesNacnac)Mg2(-TS)] (7) [(MesNacnac)Mg2] (300 mg 0419 mmol) and trans-

stilbene (84 mg 0466 mmol) were dissolved in toluene (15mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred overnight after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of 7 (216 mg 57 ) NMR spectra of analytically

pure crystalline samples showed one other significant product in addition to 7 This is thought to be

a diastereomer which co-crystallises with 7 and cannot be separated The NMR assignments below

are only tentative Mp 130-133degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 148 (s 12H

NCCH3) 164 (broad 12H ArCH3) 208-216 (2 broad overlapping signals 24H ArCH3) 250 (s

2H MgC(Ph)H) 472 (s 2H NCCH) 649-734 (m 18H ArH) 13C1H NMR (75 MHz 298 K

C6D6) δ = 189 (ArCH3) 210 (ArCH3) 230 (NCCH3) 460 (MgCH(Ph) 950 (NCCH) 1163

1270 1289 1291 1293 1315 1331 1570 (ArC) 1682 (NCCH3) IR νcm-1 (ATR) 1654 (w)

1597 (m) 1541 (m) 1508(m) 1474 (m) 1446 (m) 1366 (s) 1313 (w) 1256 (m) 1197 (m) 1161

(m) 1106 (w) 1052 (m) 848 (w) 793 (m) 763 (m) 741 (m) 697 (s) EIMS (70eV) mz () 3573

(MesNacnacMg+ 100) anal calc for C60H70Mg2N4 C 8044 Η 788 Ν 625 found C

8032 Η 806 Ν 639

S 6

Figure S5 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 7

Figure S6 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 7

S 7

Mg

N

N

Mes

Mes

Mg N

N

Mes

Mes

PhH

PhH

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 4: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S2 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 5

[(XylNacnac)Mg2] and DPE at 298 K

Synthesis of [(DepNacnac)Mg2(-MS)] (6) To a stirred solution of [(DepNacnac)Mg2] (050 g

0624 mmol) in toluene (40 mL) at -40 degC was added neat -methyl styrene (016 mL 124 mmol)

via a microsyringe The yellow solution became deep red upon addition and was then warmed to

room temperature Volatiles were removed in vacuo and the residue taken up in hexane (ca 20 mL)

and stored at -30 ordmC overnight yielding deep red blocks of 6 Isolation and further evaporation of

the filtrate gave a second crop of crystals (035 g 64 ) NB 6 may be cleanly prepared in situ for

further reactions by the addition of one equivalent of -methyl styrene to a stirred solution of

[(DepNacnac)Mg2] in toluene at room temperature Mp 139-143 degC 1H NMR (400 MHz 298 K

C6D6) δ = 016 (s 2H MgCH2CPhCH3) 109-114 (m 27H CH2CH3 and CH2CPhCH3 ) 150 (s

12H NCCH3) 213 (m 8H CH2CH3) 240 (m 8H CH2CH3) 478 (s 2H NCCH) 641-646 (m

1H ArH) 677-683 (m 2H ArH) 704-707 (m 14H ArH) 13C1H NMR (100 MHz C6D6) δ =

138 (CH2CPhCH3) 144 (CH2CH3) 218 (CPhCH3) 232 (NCCH3) 252 (CH2CH3) 948

(NCCH) 1124 (CH2CPhCH3) 1249 1258 1276 1285 1370 1416 1436 1462 (ArC) 1687

(NCCH3) IR νcm-1 (ATR) = 1516(s) 1439(s) 1264(s) 1178(s) 1028(s) 978(m) 801(m) 748(s)

695(s) EIMS (70eV) mz () 1741 (MeCNDep+ 100) 3853 (DepNacnacMg+ 35) anal calc for

C59H76Mg2N4 C 7963 H 861 N 630 found C 7866 H796 N 639

S 4

Figure S3 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

S 5

Figure S4 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

Synthesis of [(MesNacnac)Mg2(-TS)] (7) [(MesNacnac)Mg2] (300 mg 0419 mmol) and trans-

stilbene (84 mg 0466 mmol) were dissolved in toluene (15mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred overnight after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of 7 (216 mg 57 ) NMR spectra of analytically

pure crystalline samples showed one other significant product in addition to 7 This is thought to be

a diastereomer which co-crystallises with 7 and cannot be separated The NMR assignments below

are only tentative Mp 130-133degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 148 (s 12H

NCCH3) 164 (broad 12H ArCH3) 208-216 (2 broad overlapping signals 24H ArCH3) 250 (s

2H MgC(Ph)H) 472 (s 2H NCCH) 649-734 (m 18H ArH) 13C1H NMR (75 MHz 298 K

C6D6) δ = 189 (ArCH3) 210 (ArCH3) 230 (NCCH3) 460 (MgCH(Ph) 950 (NCCH) 1163

1270 1289 1291 1293 1315 1331 1570 (ArC) 1682 (NCCH3) IR νcm-1 (ATR) 1654 (w)

1597 (m) 1541 (m) 1508(m) 1474 (m) 1446 (m) 1366 (s) 1313 (w) 1256 (m) 1197 (m) 1161

(m) 1106 (w) 1052 (m) 848 (w) 793 (m) 763 (m) 741 (m) 697 (s) EIMS (70eV) mz () 3573

(MesNacnacMg+ 100) anal calc for C60H70Mg2N4 C 8044 Η 788 Ν 625 found C

8032 Η 806 Ν 639

S 6

Figure S5 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 7

Figure S6 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 7

S 7

Mg

N

N

Mes

Mes

Mg N

N

Mes

Mes

PhH

PhH

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 5: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S3 1H NMR spectrum (400 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

S 5

Figure S4 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

Synthesis of [(MesNacnac)Mg2(-TS)] (7) [(MesNacnac)Mg2] (300 mg 0419 mmol) and trans-

stilbene (84 mg 0466 mmol) were dissolved in toluene (15mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred overnight after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of 7 (216 mg 57 ) NMR spectra of analytically

pure crystalline samples showed one other significant product in addition to 7 This is thought to be

a diastereomer which co-crystallises with 7 and cannot be separated The NMR assignments below

are only tentative Mp 130-133degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 148 (s 12H

NCCH3) 164 (broad 12H ArCH3) 208-216 (2 broad overlapping signals 24H ArCH3) 250 (s

2H MgC(Ph)H) 472 (s 2H NCCH) 649-734 (m 18H ArH) 13C1H NMR (75 MHz 298 K

C6D6) δ = 189 (ArCH3) 210 (ArCH3) 230 (NCCH3) 460 (MgCH(Ph) 950 (NCCH) 1163

1270 1289 1291 1293 1315 1331 1570 (ArC) 1682 (NCCH3) IR νcm-1 (ATR) 1654 (w)

1597 (m) 1541 (m) 1508(m) 1474 (m) 1446 (m) 1366 (s) 1313 (w) 1256 (m) 1197 (m) 1161

(m) 1106 (w) 1052 (m) 848 (w) 793 (m) 763 (m) 741 (m) 697 (s) EIMS (70eV) mz () 3573

(MesNacnacMg+ 100) anal calc for C60H70Mg2N4 C 8044 Η 788 Ν 625 found C

8032 Η 806 Ν 639

S 6

Figure S5 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 7

Figure S6 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 7

S 7

Mg

N

N

Mes

Mes

Mg N

N

Mes

Mes

PhH

PhH

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 6: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S4 13C1H NMR spectrum (100 MHz C6D6) of an equilibrium mixture of 6

[(DepNacnac)Mg2] and -methyl styrene at 298 K

Synthesis of [(MesNacnac)Mg2(-TS)] (7) [(MesNacnac)Mg2] (300 mg 0419 mmol) and trans-

stilbene (84 mg 0466 mmol) were dissolved in toluene (15mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred overnight after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of 7 (216 mg 57 ) NMR spectra of analytically

pure crystalline samples showed one other significant product in addition to 7 This is thought to be

a diastereomer which co-crystallises with 7 and cannot be separated The NMR assignments below

are only tentative Mp 130-133degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 148 (s 12H

NCCH3) 164 (broad 12H ArCH3) 208-216 (2 broad overlapping signals 24H ArCH3) 250 (s

2H MgC(Ph)H) 472 (s 2H NCCH) 649-734 (m 18H ArH) 13C1H NMR (75 MHz 298 K

C6D6) δ = 189 (ArCH3) 210 (ArCH3) 230 (NCCH3) 460 (MgCH(Ph) 950 (NCCH) 1163

1270 1289 1291 1293 1315 1331 1570 (ArC) 1682 (NCCH3) IR νcm-1 (ATR) 1654 (w)

1597 (m) 1541 (m) 1508(m) 1474 (m) 1446 (m) 1366 (s) 1313 (w) 1256 (m) 1197 (m) 1161

(m) 1106 (w) 1052 (m) 848 (w) 793 (m) 763 (m) 741 (m) 697 (s) EIMS (70eV) mz () 3573

(MesNacnacMg+ 100) anal calc for C60H70Mg2N4 C 8044 Η 788 Ν 625 found C

8032 Η 806 Ν 639

S 6

Figure S5 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 7

Figure S6 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 7

S 7

Mg

N

N

Mes

Mes

Mg N

N

Mes

Mes

PhH

PhH

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 7: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S5 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 7

Figure S6 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 7

S 7

Mg

N

N

Mes

Mes

Mg N

N

Mes

Mes

PhH

PhH

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 8: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Synthesis of [(DepNacnac)Mg2(-TS)] (8) [(DepNacnac)Mg2] (100 mg 0130 mmol) and trans-

stilbene (25 mg 0139 mmol) were dissolved in toluene (10mL) and stirred at room temperature

affording an orange solution after 1h The mixture was then stirred for 72h after which time

volatiles were removed in vacuo and the residue extracted with pentane (ca 5mL) The extract was

stored at -30 degC overnight yielding red crystals of red crystals of 8 (60 mg 49 ) NMR spectra of

analytically pure crystalline samples showed one other significant product in addition to 8 This is

thought to be a diastereomer which co-crystallises with 8 and cannot be separated The NMR

assignments below are only tentative Mp 186-189 degC 1H NMR (400 MHz 298K C6D6) δ =

100-123 (m of overlapping signals ArCH2CH3) 148 (s 12H NCCH3) 204-266 (m of

overlapping signals ArCH2CH3) 239 (s 2H MgC(Ph)H) 471 (s 2H NCCH) 638-727 (m 22H

ArH) 13C1H NMR spectra could not be assigned confidently due to two sets of signals observed

IR νcm-1 (ATR) 1619 (w) 1544 (s) 1516 (m) 1443 (m) 1395 (m) 1329 (m) 1263 (m) 1176 (m)

1104 (m) 1063 (w) 1020 (m) 929 (w) 861 (w) 795 (m) 760 (s) 697 (s) EIMS (70eV) mz ()

1741 (MeCNDep+ 100) 3332 (DepNacnacH-CH2CH3+ 18) 3473 (DepNacnacH-CH3

+ 26) 3853

(DepNacnacMg+ 17) anal calc for C64H78Mg2N4 C 8075 Η 826 Ν 589 found C

8057 Η 840 Ν 604

Figure S7 1H NMR spectrum (400 MHz 298 K C6D6) of a compound mixture containing 8

S 8

Mg

N

N

Dep

Dep

Mg N

N

Dep

Dep

PhH

PhH

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 9: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S8 13C1H NMR spectrum (75 MHz 298 K C6D6) of a compound mixture containing 8

Synthesis of [(MesNacnac)Mg2(-DPA)] (9) [(MesNacnac)Mg2] (500 mg 0698 mmol) and

diphenylacetylene (131 mg 0735 mmol) were dissolved in toluene (15mL) and stirred at room

temperature for 6 hours during which time the reaction mixture became an orange solution This

was concentrated in vacuo (to ca 5mL) and stored at -30 degC to give orange block like crystals of 9

overnight (429 mg 69 yield) Crystals suitable for x-ray diffraction were grown from a saturated

hexane solution stored at -30degC overnight Mp 203-206 degC 1H NMR (400 MHz 298 K C6D6) δ =

149 (s 12H ArCH3) 189 (s 24H ArCH3) 229 (s 12H NCCH3) 472 (s 2H NCCH) 641-643

(m 4H ArH) 678 (s 8H Mes ArH) 691-694 (m 4H ArH) 702-705 (m 2H ArH) 13C1H

NMR (75 MHz 298 K C6D6) δ = 190 (ArCH3) 211 (ArCH3) 229 (NCCH3) 949 (NCCH)

1229 1236 1292 1304 1316 1328 1448 (ArC) 1602 (MgC(Ph)) 1681 (NCCH3) IR νcm-1

(ATR) 1584 (w) 1542 (m) 1521 (m) 1449 (m) 1389 (s) 1365 (s) 1260 (m) 1196 (m) 1196 (m)

1016 (w) 854 (w) 767 (m) 756 (m) 742 (m) 705 (s) EIMS (70eV) mz () 1191 (Mes+ 40)

1601 (MeCNMes+ 82) 3573 (MesNacnacMg+ 100) anal calc for C60H68Mg2N4 C 8062 Η

767 Ν 627 found C 8047 Η 778 Ν 617

S 9

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 10: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S9 1H NMR spectrum (400 MHz 298 K C6D6) of 9

Figure S10 13C1H NMR spectrum (75 MHz 298 K C6D6) of 9

S 10

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 11: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Synthesis of [(LZn)2(-DPE)] (10) To a stirred solution of [(MesNacnac)Mg2] (020 g 0278

mmol) in toluene (30 mL) was added neat 11-diphenylethylene (0054 mL 0306 mmol) via a

microsyringe and the reaction mixture was then cooled to -80 degC To this was added a solution of

[LZnBr] (0410 g 0556 mmol) in toluene (20 mL) whereupon the reaction mixture darkened

slightly After warming to room temperature the orange-red colour of the solution faded to pale

orange After stirring for a further 1 h volatiles were removed in vacuo The residue was extracted

into pentane (15 mL) and stored at -30 degC overnight yielding colourless crystals of 10 (021 g 51

) Mp= 202-206 degC 1H NMR (400 MHz 298 K C6D6) δ = 065 (s 2H CH2CPh2) 086-106

(m 42H CH(CH3)2) and CH(CH3)2) 181 (s 3H ArCH3) 185 (s 3H ArCH3) 620 (s 2H

CHPh2) 622 (s 2H CHPh2) 650-743 (m 54H ArH) 13C1H NMR (400 MHz 298 K C6D6) δ

= 143 (CH(CH3)2) 149 (CH(CH3)2) 156 (CH2CPh2) 193 (CH(CH3)2) 195 (CH(CH3)2) 210

(ArCH3) 211 (ArCH3) 513 (CHPh2) 526 (CHPh2) 555 (CH2CPh2) 1245 1265 1266 1266

1269 1272 1276 1285 1286 1288 1289 1292 1294 1295 1299 1301 1303 1305

1306 1314 1410 1449 1455 1460 1461 1465 1467 1469 (Ar-C) 29Si1H NMR (400

MHz 298 K C6D6) δ = -219 28 IR υcm-1 (Nujol) 1597 (m) 1491 (s) 1458 (s) 1377 (s) 1228

(m) 1210 (m) 1127 (m) 1075 (m) 1030 (m) 879 (s) 858 (m) 820 (m) 744 (s) 661 (s) MSEI

mz () 1574 (SiPri3+ 65) 1671 (Ph2CH+ 100) 5954 (L+ 15) anal calc for C98H108N2Si2Zn2

C 7843 H 725 N 187 found C 7822 H 731 N 194

Figure S11 1H NMR spectrum (400 MHz 298 K C6D6) of 10

S 11

Zn

Zn

PhPh

HH L

L

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 12: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S12 13C1H NMR spectrum (75 MHz 298 K C6D6) of 10

Synthesis of [(TBoLZn)2(-DPA)] (11) To a stirred solution of [TBoLZnBr(THF)] (150mg 0217

mmol) in toluene (20mL) at -78 degC was added [(MesNacnac)Mg2(-DPA)] (97 mg 0108 mmol)

dissolved in toluene (10mL) The reaction mixture was warmed to room temperature over the

course of an hour and stirred overnight during which time a colourless precipitate formed The

reaction solution was filtered and volatiles removed in vacuo The residue was taken up in hexane

(ca 20mL) and stored at -30degC overnight yielding colourless crystals of 11 (85mg 62 ) Mp

120-123 degC (decomp) 1H NMR (400 MHz 298 K C6D6) δ = 003 (s 18H Si(CH3)3) 112-114 (d 3JHH = 69 Hz 24H CH(CH3)2) 122-123 (d 3JHH = 69 Hz 24H CH(CH3)2) 333 (sept 3JHH =

69Hz 8H CH(CH3)2) 596 (s 4H NCH) 689-720 (m 22H ArH) 13C1H NMR (75 MHz 298

K C6D6) δ = 49 (Si(CH3)3) 237 (CH(CH3)2) 258 (CH(CH3)2) 287 (CH(CH3)2) 1180 (NCH)

1245 1271 1293 1397 1471 1518 (ArC) 1688 (ZnC(Ph)) 11B1H NMR (128 MHz 298 K

C6D6) δ = 234 29Si1H NMR (80 MHz 298 K C6D6) δ = -11 IR νcm-1 (ATR) 1599 (w) 1466

(m) 1388 (m) 1365 (s) 1228 (m) 1111 (w) 1074 (w) 880 (w) 830 (w) 799 (w) 756 (m) 698 (s)

EIMS (70eV) mz () 4754 (TBoLH+ 100) a reproducible microanalysis could not be obtained as

the compound presistently co-crystallised with a small amount (ca 3) of the pro-ligand TBoLH

S 12

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 13: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S13 1H NMR spectrum (400 MHz 298 K C6D6) of 11

Figure S14 13C1H NMR spectrum (75 MHz 298 K C6D6) of 11

S 13

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 14: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S15 11B1H NMR spectrum (128 MHz 298 K C6D6) of 11

Figure S16 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 11

S 14

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 15: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Synthesis of [(PhBoLCdI)2] K[PhBoL] (070 g 100 mmol) was dissolved in THF (30 mL) and the

solution was added to a suspension of CdI2 (403 mg 110 mmol) in THF (20 mL) at -80 degC The

reaction mixture was warmed to room temperature and stirred for 12 hrs affording a bright yellow

solution Volatiles were removed in vacuo and the residue was extracted with hexane (30 mL) The

bright yellow extract was filtered and the filtrate concentrated to ca 10 mL affording bright yellow

crystals of the title compound overnight (076 g 85 ) Mp 221-224 degC 1Η ΝΜR (400 ΜΗz 298

Κ C6D6) δ = 111 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 115 (d J = 68 Ηz 24Η CΗ(CΗ3)2) 349

(sept J = 68 Ηz 8Η CΗ(CΗ3)2) 596 (s 4Η NCH) 698-756 (m 42Η ΑrΗ) 13C1H NMR (75

MHz 298 K C6D6) δ = 236 (CH(CH3)2) 256 (CH(CH3)2) 287 (CH(CH3)2) 1181 (NCH) 1257

1287 1297 1300 1355 1358 1388 1394 1476 (ArC) 29Si1H NMR (80 MHz 298 K

C6D6) δ = -195 11B1H NMR (128 MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR νcm-1 (Nujol) 2921 (s) 2853 (s) 1738 (m) 1574 (w) 1456 (s)

1401 (m) 1375 (s) 1353 (s) 1227 (m) 1146 (w) 1103 (m) 1070 (m) 984 (m) 932 (w) 894 (m)

800 (m) 758 (m) 725 (m) 697 (s) MSEI mz () 9015 (PhBoLCdI+ 203) 6615 (PhBoLH+ 782)

5834 (PhBoLH+-Ph 100) 2591 (Ph3Si+ 935) anal calc for C88H102B2I2N6Si2Cd2 C 5871 Η

571 Ν 467 found C 5860 Η 573 Ν 452

Figure S17 1H NMR spectrum (400 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 15

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 16: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S18 13C1H NMR spectrum (75 MHz 298 K C6D6) of [(PhBoLCdI)2]

Figure S19 29Si1H NMR spectrum (80 MHz 298 K C6D6) of [(PhBoLCdI)2]

S 16

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 17: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S20 11B1H NMR spectrum (128 MHz 298 K C6D6) of [(PhBoLCdI)2]

Synthesis of [PhBoLCdCdPhBoL] (12) To a stirred solution of [(MesNacnac)Mg2] (0082 g 0114

mmol) in hexane (30 mL) was added neat 11-diphenylethylene (0022 mL 0125 mmol) via a

microsyringe and the reaction mixture cooled to -80 degC A solution of [(PhBoLCdI)2] (0206 g 0114

mmol) in hexane (20 mL) was then added whereupon the reaction mixture darkened slightly After

warming to room temperature the orange-red colour of the solution faded to pale yellow After

stirring for a further 1 h volatiles were removed in vacuo The residue was extracted into hexane

(15 mL) and stored at -30 degC overnight yielding yellow crystals of 12 (0081 g 46 ) Mp = 124-

128 degC (decomposition) 1H NMR (400 MHz 298 K C6D6) δ = 108 (d 3JHH = 68 Hz 24H

CH(CH3)2) 123 (d 3JHH = 68 Hz 24H CH(CH3)2) 354 (sept 3JHH = 68 Hz 8H CH(CH3)2)

612 (s 4H NCH) 687-748 (m 42H ArH) 13C1H NMR (75 MHz 298 K C6D6) δ = 230

(CH(CH3)2) 256 (CH(CH3)2) 286 (CH(CH3)2) 1184 (NCH) 1286 1299 1354 1358 1360

1394 1401 1475 (ArC) 29Si1H NMR (80 MHz 298 K C6D6) δ = -207 11B1H NMR (128

MHz 298 K C6D6) δ = 242 no signal was observed in the 113Cd1H NMR spectrum IR υcm-1

(Nujol) 1623 (m) 1551 (m) 1457 (m) 1440 (m) 1401 (s) 1354 (s) 1259 (s) 1188 (m) 1148 (m)

1101 (s) 1071 (m) 1019 (m) 984 (m) 801 (s) 759 (m) 737 (m) MSEI mz () 2591 (SiPh3+

72) 3862 (BN(Dip)CH2+ 11) 6615 (PhBoLH+ 100) 7745 ((HC(Dip)N)2B(Ph2Si)NCd+ 2) a

reproducible microanalysis could not be obtained as the compound presistently co-crystallised with

a small amount (ca 3) of the pro-ligand PhBoLH

S 17

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 18: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S21 1H NMR spectrum (400 MHz 298 K C6D6) of 12

Figure S22 13C1H NMR spectrum (75 MHz 298 K C6D6) of 12

S 18

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 19: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S23 11B1H NMR spectrum (128 MHz 298 K C6D6) of 12

Synthesis of [LdaggerMgMg Ldagger] To a stirred solution of [(MesNacnac)Mg2] (052g 072 mmol) in

toluene (40 mL) at room temperature was added neat 11-diphenylethylene (014 mL 079 mmol)

via a microsyringe The yellow solution became red-orange and then red upon addition The

solution was then cooled to -78degC and to it was added dropwise solution of [(LdaggerMgI)2] (050g 036

mmol) in toluene (40 mL) The reaction mixture was then slowly warmed to room temperature over

12 h whereupon volatiles were removed in vacuo The residue was extracted into hexane (ca 20

mL) filtered and the filtrate concentrated to ca 5 mL This was stored at -30 degC overnight to give

colorless crystals of the title compound (032 g 80) Spectroscopic data were identical to those

previously reported8

Synthesis of [GeH(-NC-L-H)Mg(MesNacnac)] (13) To a stirred solution of

[(MesNacnac)Mg2] (020g 028 mmol) in toluene (40 mL) at room temperature was added neat

11-diphenylethylene (006 mL 033 mmol) via a microsyringe The yellow solution became red-

orange and then red upon addition The solution was then cooled to -78 degC and to it was added a

solution of [LGeCl] (020g 028 mmol) in toluene (40 mL) The reaction mixture was warmed to

room temperature over 12 h whereupon volatiles were removed in vacuo The residue was

extracted into hexane (ca 20 mL) filtered and the filtrate concentrated to ca 5 mL This was

stored at -30 ordmC overnight to give colorless crystals of 13 (018 g 56 ) Mp 158-163 degC 1H NMR

S 19

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 20: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

(400 MHz 298 K C6D6) δ = 123 (br s 6H ArCH3) 130-134 (m 18H CH(CH3)2) 151 (s 6H

ArCH3) 162 (sept 3JHH= 75 Hz 3H CH(CH3)2) 215 (s 3H ArCH3) 219 (s 6H ArCH3) 229

(s 6H NCCH3) 495 (s 1H NCCH) 640 cent (m 2H ArH) 656 (s 2H CHPh2) 672-790 (m

23H ArH) GeH resonance obscured 13C1H NMR (100 MHz 298 K C6D6) δ = 142

(CH(CH3)2) 203 (ArCH3) 205 (ArCH3) 229 (ArCH3) 240 (NCCH3) 480 (CHPh2) 510

(CHPh2) 953 (NCCH) 1250 1258 1286 1293 1302 1314 1335 1338 1407 1420 1430

1454 14901492 1496 1514 (ArC) 1685 (NCCH) 29Si1HNMR (C6D6 296 K 80 MHz) δ =

105 IR υcm-1 (Nujol) 1942 (s Ge-H) 1509 (m) 1447 (s) 1255 (s) 1146 (s) 907 (s) 885 (s) 769

(m) 697 (s) EIMS (70eV) mz () 1671 (CHPh2+ 100) 3573 (MesNacnacMg+ 50) 6674 (L-

HGe+ 10) anal calc for C65H77GeMgN3Si C 7614 H 757 N 410 found C7594

H 753 N405

Figure S24 1H NMR spectrum (400 MHz 298 K C6D6) of 13

S 20

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 21: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S25 13C1H NMR spectrum (75 MHz 298 K C6D6) of 13

Figure S26 29Si1H NMR spectrum (80 MHz 298 K C6D6) of 13

S 21

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 22: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Vant Hoff analysis of variable temperature 1H NMR spectra of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)]

In an NMR tube equipped with a JYoung stopper a solution of [(XylNacnac)Mg(μ-

CH2CPh2)Mg(XylNacnac)] C (4000 mg 00606 mmol) in toluene-d8 (600 uL 01010M) was

subject to a variable temperature 1H NMR spectroscopic analysis The integrals for the signals of

free diphenylethylene CPh2CH2 A protons and NCCH protons of the ligands of both C and

[(XylNacnac)Mg2] B were used for the determination of the equilibrium constant of the reaction

between B and A to give C Temperatures between 20 ordmC (293 K) to 60 ordmC (343 K) at 10 K

increments were used for the vant Hoff analysis

N

N

Xyl

Xyl

MgN

N

Xyl

Xyl

Mg N

N

Xyl

Xyl

MgN

NXyl

Xyl

MgPhPh

PhPh

HH

C7D8

A B C

The equilibrium constant (Keq) was calculated according to Equation 1

Keq =[A][B][C]

A vant Hoff plot of ln(Keq) against 1T was constructed for the above reaction ΔS and ΔH were

calculated using the slope and intercept of the plot (Figure S27) according to Equation 2

119897119899(119870119890119902) =‒‒ Δ119867119877119879

+ Δ119878119877

The free energy ΔG of the reaction was calculated according to Equation 3

Δ119866 = Δ119867 ‒ 119879Δ119878

S 22

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 23: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Tables of integrals and concentrations used to produce the vant Hoff plot are shown below

Table S1 Integrations from VT-NMR studies

T (K) A (DPE) B (Mg Dimer) C (Product 5)293 1088 1077 7805303 1509 1560 693313 1949 2021 6028323 2407 2409 5183333 2841 2951 4206343 3553 3575 2871353 Decomposition seen in the 1H NMR spectrum

above this temperature

Table S2 Table of calculated concentrations (molar)

T (K) [A] [B] [C]

293 123E-02 122E-02 887E-02

303 180E-02 186E-02 830E-02

313 246E-02 256E-02 763E-02

323 320E-02 320E-02 690E-02

333 407E-02 423E-02 603E-02

343 559E-02 562E-02 451E-02

Table S3 Keq and 1T values used for vant Hoff plot

T (K) Keq ln Keq 1T

293 587E+02 637E+00 341E-03

303 145E+02 550E+00 329E-03

313 120E+01 479E+00 319E-03

323 671E+01 420E+00 309E-03

333 349E+01 355E+00 300E-03

343 143E+01 266E+00 291E-03

S 23

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 24: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S27 Vant Hoff plot of lnK against 1T

Table S4 Calculated ΔS and ΔH values

Slope

6651

ΔS (Jmol-1K-1) ΔS (kcalmol-1K-1) ΔH (Jmol-1) ΔH (kcalmol-1)

Intercept

-16405 -136349 -003258 -552964 -132162

Table S5 Calculation of free enthalpy ΔG for varying temperatures

T (K) ΔG (kcalmol-1)

293 -3670

303 -3344

313 -3018

323 -2693

333 -2367

343 -2041

Estimate of error The uncertainty in integration was estimated to be 5 The variable temperature

NMR apparatus has an uncertainty of 1ordm The uncertainty of the concentration of C in C7D8 is 3

The overall uncertainty of the data is 10

S 24

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 25: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

2 X-Ray Crystallography

Crystals of 5-13 [LdaggerMgMgLdagger] and [(PhBoLCdI)2] suitable for X-ray structural determination were

mounted in silicone oil Crystallographic measurements were made using either an Oxford Gemini

Ultra or a Bruker X8 diffractometer using a graphite monochromator with Mo K radiation ( =

071073 Aring) or Cu K radiation (154180 Aring) or the MX1 beamline of the Australian Synchrotron (

= 071090 Aring) The software package Blu-Ice10 was used for synchrotron data acquisition while the

program XDS11 was employed for synchrotron data reduction All structures were solved by direct

methods and refined on F2 by full matrix least squares (SHELX-1612) using all unique data

Hydrogen atoms are typically included in calculated positions (riding model) Crystal data details

of data collections and refinements for all structures can be found in their CIF files and are

summarized in Table S6

S 25

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 26: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Table S6 Crystal data for 5-13 [LdaggerMgMg Ldagger] and [(PhBoLCdI)2]5 6 7 8 9 10(pentane)

empirical formula C56H62Mg2N4 C59H76Mg2N4 C60H70Mg2N4 C64H78Mg2N4 C60H68Mg2N4 C103H120N2Si2Zn2

formula weight 83971 88985 89582 95192 89380 157292crystal system monoclinic monoclinic orthorhombic triclinic triclinic monoclinicspace group P21c Cc Pbca P-1 P-1 Cca (Aring) 187478(10) 199645(7) 153389(6) 86500(3) 13659(4) 148102(4)b (Aring) 127752(9) 112773(4) 140741(5) 122882(5) 14429(4) 188756(4)c (Aring) 204162(10) 229784(8) 237894(10) 135191(5) 15718(5) 315018(9)α (ordm) 90 90 90 108311(4) 67851(10) 90β (ordm) 100287(5) 93089(3) 90 90582(3) 79390(10) 98531(2)γ (ordm) 90 90 90 100254(3) 66344(10) 90V (Aring3) 48112(5) 51660(3) 51357(3) 133907 26261(13) 87551(4)Z 4 4 4 1 2 4T (K) 123(2) 123(2) 123(2) 123(2) 123(2) 123(2)ρcalcd (gcm3) 1159 1144 1159 1180 1130 1193μ (mmndash1) 0091 0088 0089 0089 0087 0623

F(000) 1800 1928 1928 514 960 3360reflns collected 28117 22426 75822 22800 16900 33281unique reflns 8948 8241 5097 5809 16900 13774Rint 00336 00989 01204 00777 00000 00481R1 [I gt 2σ(I)] 00399 00921 00712 00533 00916 00460wR2 (all data) 01018 02705 02100 01501 02650 00917largest peak and hole (eAringndash3)

0265 -0235 1171 -0601 1125 -0446 0424 -0418 0481 -0511 0633 -0370

CCDC no 1890177 1890171 1890170 1890169 1890173 1890179

S 26

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 27: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

11 12(hexane) 13(hexane)15 (LdaggerMg)2 (PhBoLCdI)2(hexane)empirical formula C72H100B2N6Si2Zn2 C93H114B2Cd2N6Si2 C74H98GeMgN3Si C76H80Mg2N2Si2 C94H116B2Cd2I2N6Si2

formula weight 125811 161850 115454 112622 188632crystal system triclinic orthorhombic triclinic monoclinic monoclinicspace group P-1 P21212 P-1 P21c C2ca (Aring) 109999(4) 14733(3) 110530(7) 1110040(10) 234536(17)b (Aring) 124537(5) 27815(6) 129063(9) 162687(3) 110309(7)c (Aring) 132073(5) 11021(2) 234106(16) 183324(2) 33833(2)α (ordm) 92950(2) 90 99680(6) 90 90β (ordm) 90257(2) 90 97495(6) 1031710(10) 92003(3)γ (ordm) 1080410(10) 90 95233(5) 90 90V (Aring3) 171763(11) 45164(16) 32420(4) 322354(8) 87477(10)Z 1 2 2 2 4T (K) 123(2) 100(2) 123(2) 123(2) 150(2)ρcalcd (gcm3) 1216 1190 1183 1160 1432μ (mmndash1) 0778 0543 0544 1017 1268

F(000) 672 1696 1242 1204 3848reflns collected 22529 29143 37790 33951 64001unique reflns 6842 7903 12072 6726 6098Rint 00396 00337 00827 00593 001006R1 [I gt 2σ(I)] 00365 00424 00748 00451 00676wR2 (all data) 00825 01119 01982 01199 01299largest peak and hole (eAringndash3)

0417 -0403 0969 -1271 1631 -0883 0278 -0357 0693 -0953

CCDC no 1890174 1890172 1890176 1890178 1890175

S 27

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 28: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S28 ORTEP diagram of compound 7 (25 thermal ellipsoids hydrogen atoms except

alkenenic protons omitted) See Table 1 in main text for metrical parameters

Figure S29 ORTEP diagram of compound [LdaggerMgMgLdagger] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) Mg(1)-N(1) 19876(15) Mg(1)-Mg(1)

28085(11) N(1)-Mg(1)-Mg(1) 14948(5)

S 28

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 29: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

Figure S30 ORTEP diagram of compound [(PhBoLCdI)2] (25 thermal ellipsoids hydrogen atoms

omitted) Selected bond lengths (Aring) and angles (ordm) I(1)-Cd(1) 27077(8) I(1)-Cd(1) 29451(9)

Cd(1)-N(3) 2104(6) N(3)-Cd(1)-I(1) 15548(19) N(3)-Cd(1)-I(1) 11103(17) I(1)-Cd(1)-I(1)

9252(2)

3 References

1 S J Bonyhady D Collis N Holzmann A J Edwards R O Piltz G Frenking A Stasch

C Jones Nat Commun 2018 9 3079

2 S J Bonyhady C Jones S Nembenna A Stasch A J Edwards G J McIntyre Chem

Eur J 2010 16 938

3 R Lalrempuia C E Kefalidis S J Bonhady B Schwarze L Maron A Stasch C Jones

J Am Chem Soc 2015 137 8944

4 A J Boutland A Carroll C A Lamsfus A Stasch L Maron C Jones J Am Chem

Soc 2017 139 18190

5 J Hicks E J Underhill C E Kefalidis L Maron C Jones Angew Chem Int Ed 2015

54 10000

6 M J C Dawkins E Middleton C E Kefalidis D Dange M M Juckel L Maron C

Jones Chem Commun 2016 52 10490

7 J A Kelly M Juckel T J Hadlington I Fernandez G Frenking C Jones Chem Eur J

in press online article DOI 101002chem201804770

8 A J Boutland D Dange A Stasch L Maron C Jones Angew Chem Int Ed 2016 55

9239

9 T J Hadlington M Hermann J Li G Frenking C Jones Angew Chem Int Ed 2013

52 10389

10 TM McPhillips S McPhillips HJ Chiu AE Cohen AM Deacon PJ Ellis E Garman

A Gonzalez NK Sauter RP Phizackerley SM Soltis P Kuhn J Synchrotron Rad

2002 9 401

S 29

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30

Page 30: Compounds: Multipurpose Reagents for Organometallic ... · Acyclic 1,2-Dimagnesioethanes/-ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis

11 WJ Kabsch Appl Cryst 1993 26 795

12 GM Sheldrick SHELX-16 University of Goumlttingen 2016

S 30