42
2007 1 TTM4100: Communication – Services and Networks Kommunikasjon – Tjenester og Nett (KTN) Overview: Evolution of Communication Networks Yuming Jiang 2 Communication Network: Definition A communication network is a set of devices (often referred to as nodes) connected by communication links. It provides a service: the transfer of information between users located at various geographical points.

Communication Network: Definition

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Communication Network: Definition

20071

TTM4100:Communication – Services and NetworksKommunikasjon – Tjenester og Nett (KTN)

Overview: Evolution of Communication Networks

Yuming Jiang

2

Communication Network: Definition

• A communication network is a set of devices (often referred to as nodes) connected by communication links.

• It provides a service: the transfer of information between users located at various geographical points.

Page 2: Communication Network: Definition

3

Evolution of Communication Networks

• Telegraph Networks and Message Switching

• Telephone Networks and Circuit Switching

• Computer Networks, the Internet and Packet Switching

4

Driving Forces

• Services (or user expectations / demands)• Technological innovations

Page 3: Communication Network: Definition

5

Switching

6

Model

• We focus on how the information to be sent between the Hosts or users is handled by the network of Nodes.

Page 4: Communication Network: Definition

7

Switching is the way the link transmission capacity and Node resources (e.g. CPU, buffers, internal

switching resources*) are allocated for the transfer of information.

(* A Node can internally have a complicated switching network structure.)

8

Telegraph Networks

• Starting time: 1850s• Driving service: Telegram service

– The transmission of text messages over long distances.

• Techniques– Digital transmission, in which system transmission takes

place in binary signals:• Morse code; short and long pulses of electrical current over a copper

wire, e.g. “A”: “ · — ”.

– Message switching

Page 5: Communication Network: Definition

9

Message Switching

• When a message or telegram arrives at a telegraph station, the operator makes a routing decision based on the destination address of the message.

• The operator stores the message until the desired communication line becomes available.

• Then, the operator will forward the message to the next appropriate station through the available communication link.

10

Message Switching (cont’)

• Timing of events• Store-and-forward• Each message has its

destination address information.

A B C D

Tim

e

Tanenbaum Fig. 2-39(b)

Page 6: Communication Network: Definition

11

Telephone Networks

• Starting time: 1870s• Driving service: Telephone service

– The transmission of voice signals over long distances.

• Techniques– Analog transmission (originally): The transmitted electrical

signal is analogous to the original voice signal.

– Circuit switching

12

Structure of the Telephone System

• A typical circuit route for a medium-distance call.• Major components

• Local loops: Analog twisted pairs going to houses and businesses• Trunks: Digital fiber optics connecting the switching offices• Switching offices: Where calls are moved from one trunk to another

Tanenbaum Fig. 2-21

Page 7: Communication Network: Definition

13

Circuit Switching

Tanenbaum Fig. 2-38(a)

14

Circuit Switching (cont’)

• Timing of events• Circuit switching: when a

phone call is made, the telephone system seeks out a physical path between the caller’s phone and receiver’s phone.

• Exclusively reserved transmission link/channel capacity.

A B C D

Tanenbaum Fig. 2-39(a)

Page 8: Communication Network: Definition

15

Computer Networks

• Starting time: 1950s• Driving service: Datagram service

– The transmission of data information between computers, across possibly multiple dissimilar networks.

• Techniques– Digital transmission– Packet switching (store-and-forward)

16

Packet Switching based on Datagram

Tanenbaum Fig. 1-10

Page 9: Communication Network: Definition

17

Packet Switching (cont’)

Tanenbaum Fig. 2-38(b)

18

Packet Switching (cont’)

• Timing of events• Store-and-forward• Each packet has a header

providing an address to identify the destination.

• Packets are of different sizes.

• Similar to Message Switching if each packet were treated as a message.

A B C D

Tanenbaum Fig. 2-39(c)

Page 10: Communication Network: Definition

19

Packet Switching v.s. Circuit Switching

A comparison of circuit-switched and (datagram-based) packet-switched networks.

Tanenbaum Fig. 2-40

20

ATM Networks and Cell Switching

• Starting time: 1990s• Driving service: Virtual circuit service

– The transmission of data information between network hosts/notesthrough “virtual” circuits.

• Techniques– Digital transmission– Cell switching (store-and-forward)– Virtual circuit

Page 11: Communication Network: Definition

21

ATM Virtual Circuits

• ATM = Asynchronous Transmission Mode• Asynchronous here means that there is no other periodic time

structure for the use of the transmission channels except for the repetition of the time slots for the individual cells.

• A virtual circuit is established btw the sender & receiver.

Tanenbaum Fig. 1-30

22

Cell Switching

• Timing of events• Store-and-forward• Each cell has a header

providing information to identify the Virtual Circuit.

• Similar to Message and Packet Switching.

• Cells have fixed size.

A B C D

Cell 1

Cell 1

Cell 1

Cell 2

Cell 3

Cell 3

Cell 2

Cell 2

Cell 3

Page 12: Communication Network: Definition

23

Comparison of Switching TechniquesTanenbaum Fig. 2-40 ++

24

The Internet

• An internetwork of computer networks• Starting time: 1950s• Popular: 1990s• Driving service: WWW (World Wide Web)• Techniques: same as computer networks

Page 13: Communication Network: Definition

25

Future (Multimedia) Networks

• Time: research already started (1990s)• Driving service: Multimedia service

– Real-time transfer of multimedia information between users with high quality of service.

• Techniques:– Integrated Services [IETF RFC1633]– Differentiated Services [IETF RFC2475]

26

Evolution of Networks and Services

1850 1900 1950 2000

telegramtelephone

time

Networks / services

datagram

WWW

E-mail

multimedia

1830

Telegraph Net

virtual circuitComputer Net

InternetATM

Telecom Net

Multimedia Internet

Page 14: Communication Network: Definition

27

Information Transfer Time

• Transfer Time = Flying (or Propagation) Time + Transmission Time• T = L/C + D/V

– T (sec): Total transfer time that is the tme the first bit leaves A to the last bit arrives at B. – L (bits): Length of information; C (bits/sec): Transmission capacity btw A and B– D (m): Distance btw A and B; V (m/sec): Wave velocity in the transmission medium

28

Evolution of Transmission Rates

1850 1900 1950 2000

telegraphtelephone

time

Transmission rate (bps)

T1: 1.544 Mbps

T4: 274.176 Mbps

DWDM

18301.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

1.0E+14

SONET OC-48

Page 15: Communication Network: Definition

29

Reading

• Andrew S. Tanenbaum, Computer Networks (4th ed.), Pearson Education, 2003. Ch.1.1, Ch.1.5, Ch. 2.5.

• Alberto Leon-Garcia and Indra Widjaja, Communication Networks – Fundamental Concepts and Key Architectures (2nd ed.),McGraw-Hill, 2004. Ch.1.1-1.2.

Page 16: Communication Network: Definition

20071

TTM4100:Communication – Services and NetworksKommunikasjon – Tjenester og Nett (KTN)

Overview: Network Use, Hardware & Software

Yuming Jiang & Finn Arve Aagesen

2

Uses of Communication Networks

• Communication networks have a lot of applications and uses.

• In general, communication networks are used for information sharing and retrieval.

Page 17: Communication Network: Definition

3

Retrieval and Sharing: Client-Server• Server is the information provider who shares the information.• Client is the information user who retrieves the information.• In this figure, Client and Server is related to the physical hardware

arrangement. • Any kind of service can be used between the users.

Tanenbaum Fig 1-1

4Tanenbaum Fig 1-2

Client-Server (cont’)

• In this figure Client and Server is related to both the physical hardware arrangement and the software structure and operation. Retrieval involves requests and replies.

• Any kind of service can still be used. But the realization must be implemented within this client server architecture.

Page 18: Communication Network: Definition

5

Retrieval and Sharing: Peer-to-Peer• Retrieval is not necessarily associated with the client-server structure.• In a peer-to-peer system there are no fixed clients and servers. Each

peer shares information to and retrieves information from other peers. • Conceptually, peer-to-peer can be related to the software structure. In

this case, the peers may not be related to the hardware structure.

Tanenbaum Fig 1-3.

6

Direction of Information Flow

• Communication between two devices can be:– Simplex: The communication is unidirectional. – Half Duplex: Either device can both transmit and receive, but not the

same time. When one is sending, the other can only receive.– Full Duplex: Both devices can transmit and receive simultaneously.

Simplex Half Duplex Full Duplex

Page 19: Communication Network: Definition

7

Network Hardware

• Network classification • Physical network topologies• Internetworks and the Internet

8

Network Classification

• Networks can be classified along many dimensions based on different classification criteria:– Owners, e.g. Home Networks; Enterprise Networks– Switching techniques– Transmission media– Mobility support– Transmission technology types– Scales

Page 20: Communication Network: Definition

9

Network Classification (cont’)

• Based on switching techniques: – Circuit-Switched Networks– Packet-Switched Networks, etc.

• Based on transmission media– Wired Networks– Wireless Networks

• Based on mobility support– Fixed Networks– Mobile Networks

10

Example: Wireless Networks

• (a) Bluetooth configuration• (b) Wireless local area network (LAN)

Tanenbaum Fig. 1-11

Page 21: Communication Network: Definition

11

Note: Wireless and Mobile are Different Concepts!

Notice the difference between wireless access, terminal mobility and personal mobility. Personal mobility is person

mobility independent of terminal.

Wireless access

Mobileterminal

Tanenbaum Fig 1-5.

12

Network Classification (cont’)

• Based on transmission technology types• Link classification

– Point-to-point link: A dedicated link between two devices.

– Broadcast (also called multipoint) link: A link shared by more than two devices.

• Network classification– Broadcast network: one to all– Multicast network: one to many– Point-to-point (also called unicast) network: one to one

Link

Link

Page 22: Communication Network: Definition

13

Example

Tanenbaum Fig. 1-8

• Cable TV is a fixed broadcast network.

14

Network Classification (cont’)

• Based on scale– PAN: Personal Area Network– LAN: Local Area Network– MAN: Metropolitan Area Network– WAN: Wide Area Network– The Internet

Page 23: Communication Network: Definition

15

PAN, LAN, MAN,WAN and Internet

Tanenbaum Fig. 1-6

16

Example: A MAN based on Cable TV

Tanenbaum Fig. 1-8

Page 24: Communication Network: Definition

17

(Physical) Network Topologies

• Mesh Topologies– Full mesh topology: Every device has a dedicated point-to-point link to

every other device.– Partial mesh topology: Some devices are connected to all the others, while

some are connected to only part of the other devices.

• Star Topology– Each device has a dedicated point-to-point link only to a central device,

usually called hub.

• Bus Topology– Devices are connected through a broadcast link called bus.

• Ring Topology– Each device has a dedicated point-to-point connection only with the two

devices on either side of it.

• Hybrid

18

(Physical) Network Topologies: Illustration

Full Mesh Star

Ring

Bus

Page 25: Communication Network: Definition

19

Physical vs. Logical Topology

• Physical topology: The actual layout of a network and its transmission media.

• Logical topology: The way in which the data access the network medium and pass through the network from one device to the next.

• A network’s logical topology is not necessarily the same as its physical topology.

Twisted Pair Ethernet

Physical topology: Star (/Mesh?)Logical topology: Bus

20

Example: Cable TV Based MAN

Tanenbaum Fig. 1-8

• Physical: Hybrid (star + bus)• Logical: Bus (typically)

Page 26: Communication Network: Definition

21

Internetworks

• An internetwork or internet is a collection of interconnected networks.

• A gateway is a device to make the connection and provide the necessary translation, both in hardware and software, between different types of (and often incompatible) networks.

Gateway

22

Internetworks (cont’)

• A communication subnet is the part of network excluding hosts.

• The subnet consists of transmission links and switching elements (commonly called routers).

Tanenbaum Fig. 1-9

Page 27: Communication Network: Definition

23

Communication Subnet and Routing

• In a packet-switched subnet, each router uses a routing algorithm to decide to which link a packet should be forwarded.

Tanenbaum Fig. 1-10

24

The Internet

The Internet is an internetwork (internet). It is the worldwide internet.

Page 28: Communication Network: Definition

25

Network Software

Board

Operating-system-

Process 5Operating-

system-Process 4

Operating-system-

Process 3

Layer 2

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Operating-system-

Process 2

BoardDriver 1-Driver

Screen

Board Memory

Operating-system-

Process 1

CPU

Hardware Structure Model

Software Structure Model

OperatingSystem and Procedure

Library

Layered Functional Structure Model

Driver i

Applications

Communication Channels

ModemModem

Layer 1

26

Network Software

• Protocol Hierarchies• Design Issues for the Layers• The Relationship of Services to Protocols• Connection-Oriented and Connectionless Services• Service Primitives

Page 29: Communication Network: Definition

27

Protocol Hierarchies

• The philosopher-translator-secretary architecture.

I likerabbits

Location A

3

2

1

3

2

1

Location B

Message Philosopher

Translator

Secretary

Informationfor the remotetranslator

Informationfor the remotesecretary

L: DutchIk vindkonijnenleuk

Fax #---L: DutchIk vindkonijnenleuk

J'aimebien les

lapins

L: DutchIk vindkonijnenleuk

Fax #---L: DutchIk vindkonijnenleuk

L:Norsk

Jegliker

kaniner

L:Norsk

Jegliker

kaniner

Fax:#

L:Norsk

Jegliker

kaniner

Fax:#

L:Norsk

Jegliker

kaniner

28

Protocol Hierarchies

Tanenbaum Fig. 1-13: Layers, Protocols and Interfaces

Page 30: Communication Network: Definition

29

Important Concepts

• Protocol architecture: A set of layers and protocols.– Note: The Tanenbaum book uses the concept of network architecture instead

of protocol architecture.

• Layer: A subsystem of a certain rank offering certain services to the layer above it.

• Interface: It is between each pair of adjacent layers and defines services the lower layer provides to the upper layer.

• Protocol: Set of rules and formats (syntax and semantics) that determine the behavior between peer entities.– Entity: An active unit within a layer. It handles a protocol type within a

specific device (Host or Node).– Peer entities: Entities of same layer with a common protocol in different

devices.

30

Example: Entities in Various Layers

Page 31: Communication Network: Definition

31

Layer N offers Services to Layer N+1

(N+1)-layer:

(N)-layer: (N)-entity

(N)-SAPThe (N)-service transfers (N)-SDUs

(N+1)-entity

(N+1)-SAP

SAP=Service Access Point, PDU=Protocol Data Unit,

SDU=Service Data Unit, SDU’’ = The whole, split or concatenated SDU

The (N+1) Protocol transfers (N+1)-PDUs

The (N) Protocol transfers (N)-PDUs

(N)-SDU”(N)-header

The (N+1)-service transfers (N+1)-SDUs

32

Relationship between Protocol & Service• The protocol comprises both syntax and semantics for PDUs that are

exchanged between peer-entities.• The service defines what a layer offers externally to the layer above.• The entity behavior implements the service by using the protocol of this

layer and the service from the lower layer.

Tanenbaum Fig. 1-19

Page 32: Communication Network: Definition

33

Message, Headers and Trailers

• Example information flow supporting virtual communication in layer 5

Tanenbaum Fig. 1-15

34

Design Issues for the Layers

• Addressing• Error Control• Data Unit Length Control• Control of Data Exchanging

(simplex, half duplex, full duplex)

• Flow Control• Multiplexing• Routing

Page 33: Communication Network: Definition

35

Connection-Oriented (CO) Service & Protocol

• CO:. (N+1)-layer has a connection establishment sessionwith the (N)-layer before the data transfer.– Analogous to the classical telephone system

• Circuit switched networks, and virtual circuit based packet-switched and cell-switched networks are of COnature.

Tanenbaum Fig. 1-30

36

Connectionless (CL) Service & Protocol

• CL: (N+1)-layer delivers the data to be transferred as one unit with an address. – Analogous to the postal system

• Message-switched networks and datagram based packet-switched networks are of CL nature.

Tanenbaum Fig. 1-10

Page 34: Communication Network: Definition

37

Connection-Oriented and Connectionless Services and Protocols

Within an applied protocol architecture, some layers can be connection-oriented and some others can be connectionless.

38

Analogy between the connectionless Internet IP protocol and the postal system

• The Internet consists of different network types.• A common protocol is needed that makes it easy “to convert

between” the protocols of the various networks types. Internet Protocol (IP) is such a common protocol.

Network of

Type P

Network of

Type R

Network of

Type Q

Gateway

Gateway

Host

Host

Page 35: Communication Network: Definition

39

The information Message is sent in an IP envelope understood by Hosts as and Gateways. This envelope is put in an additional new envelope every time there is a new network to cross.

Network of

Type P

Network of

Type R

Network of

Type Q

Gateway

Gateway

Host

Host

Message

IP addr.

Q addr.

Message

IP addr.

Q addr.

Message

IP addr.

P addr.

Message

IP addr.

P addr.

Message

IP addr.

R addr.

Message

IP addr.

R addr.

40

The transport service is an end-to-end service and is found only in the Hosts.

The transport protocol is only end-to-end. TLE = Transport Protocol Entity

Page 36: Communication Network: Definition

41

Examples: Connection-Oriented and Connectionless End-to-End Services

Tanenbaum Fig. 1-16.

42

Service Primitives (/Operations)

• There is a need to define a service.• The service is described by the use of service

primitives (also called operations). • Both the (N+1)-service and the (N)-service are used

to describe the (N+1)-layer behavior.

Ch.1.3.4 presents a simplified version of the TCP service primitives to be more detaily handled in Ch.6.

A more general handling of ISO OSI/RM Service and Protocol Conventions will also be given later.

Page 37: Communication Network: Definition

43

The description of the (N+1)-layer behavior comprises the (N+1)-service, the (N)-service and the (N+1)-protocol.

(N+1)-Layer:

(N)-Layer: (N)-entity

(N)-SAP

(N+1)-entity

(N+1)-SAP

The (N+1) Protocol transfers (N+1)-PDUs

The (N) Protocol transfers (N)-PDUs

(N)-SDU”(N)-header

The (N+1)-service transfers (N+1)-SDUs

The (N)-service transfers (N)-SDUs

44

Example: Service Primitives for Implementing a CO Service

• Five service primitives for implementing a simple connection-oriented service.

• This is simplified version for TCP and will be introduced in more detail in Ch. 6.

Tanenbaum Fig. 1-17

Page 38: Communication Network: Definition

45

TCP Socket Service Based on Procedure Calls

Connection-number = LISTEN( ) Connection-number = CONNECT( ) status = SEND( ) status = RECEIVE( ) status = DISCONNECT( )

I will wait

I will wait

46

The TCP Protocol Operation Signals *)

The Transport Layer Service Primitives

The Transport Layer Service Primitives

Illustration of the the Transport Layer Protocol Behavior

*) A Signal (message) does not lock the sender as a Procedure Calldoes.

Tanenbaum Fig. 1-17 +

Page 39: Communication Network: Definition

47

Service Primitives in Client & Server

The TCP Client Service Primitives: Connect, Send, Receive, Disconnect

The TCP Server Service Primitives: Listen, Receive, Send

TCP PDUs

The TCP Service is based on a procedure call interface while the TCP Protocol is based on a message exchange interface.

48

Reading

• Andrew S. Tanenbaum, Computer Networks (4th ed.), Pearson Education, 2003. Ch.1.1 - Ch.1.3.

• Behrouz A. Forouzan, Data Communications and Networking (3rd ed.), McGraw-Hill, 2003. Ch.1.1, Ch.1.2.

Page 40: Communication Network: Definition

20071

TTM4100:Communication – Services and NetworksKommunikasjon – Tjenester og Nett (KTN)

Some Practical Information - Reminder

Yuming Jiang

2

Course Times

• Lectures– Tuesday 14:15 - 15:00 (R1) – Wednesday 10:15 - 12:00 (F1)

• Tuition– Tuesday 15:15 – 17:00 (R1)– Friday 14:15 - 16:00 (R1)

• Projects– Week 9 (Monday) – Week 10 (Friday)– Week 15 (Wednesday) – Week 18 (Wednesday)

• Exam: – Friday, 18 May 2006. Clock: 0900-1300– For the exam, both English and Norwegian (bokmål) versions will be provided. If one

prefers Ny Norsk for the exam, he or she must let me know BEFORE 1st April 2007.

• For detail, see Lecture Schedule at the course home page.

Page 41: Communication Network: Definition

3

Syllabus

• Mainly based on textbook: – Andrew S. Tanenbaum, “Computer Networks”, 4th edition, Pearson

Education, 2003.– Chapter 1 – Chapter 7

• Details are available from the course home page.

• Note: Some subsections included in the syllabus may not be introduced in the lectures. They are for self-reading and also are part of the syllabus.

4

Deadlines & Languages for Submitting Assignments Project Reports• Handing in assignments or project reports will be

through NTNU It’s Learning system. BothNorwegian and English are acceptable.

• Deadlines are HARD.

Page 42: Communication Network: Definition

5

Course Home Page

• http://www.item.ntnu.no/fag/ttm4100/

• Check the home page regularly

• Questions/feedbacks: send email to – [email protected]

6

Reference Group

• Need 2 students from each study fields (Data, IndØk, KomTek, Kyb, etc.).

• 2 to 3 meetings during the semester with course staff• A forum for providing feedbacks about the course• If you are interested, report to me or send email to:

[email protected]