3
L]~TT]~R]~ AL NUOVO CIMENTO VOL. 17, N. 5 2 0ttobre 1976 Comments on the Nambu Mechanics. G. J. RUGGERr Department de l~isica, JFacultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (*) (ricevuto il 2 Luglio 1976) NAMBU (~) proposed some alternative forms of classical dynamics in which the Liouville theorem is taken as the fundamental guiding principle and, consequently, the possibility of constructing a corresponding statistical mechanics along the usual lines is in principle ensured. The purpose of this note is to make some comments related to the structure of one of the possible resulting formalisms and to its relation to mor6 standard classical dynamical theories (~). We begin by assuming a set of evolution equations of the form ~ ~ X~(x), /~-~ 1 .... , n. For simplicity we restrict ourselves here, and in what follows, to cases in which there is no explicit time dependence. It is an elementary result of the theory of first-order partial differential equations (a) that the Liouville condition (**) O~X~(x)~ 0 is su]]icient as well as necessary for the existence of a set of independent constants of motion H1, H~, ..., H~_ 1 such that A : X~zA can be put in the form (1) A = ~(A, H1 ..... H~_I) a(x ~, x ~..... x~) for any well-behaved dynamical variable A. Here the H's play the role of Hamiltonians. Equation (1) is one of the possibilities suggested by NA~IBU who realized that the Liouville theorem necessarily follows from it. The fact that the converse is also true has several implications: 1) It should be possible to reduce some of the other alterna- tives proposed by NAMBU to the form of eq. (1) (***); 2) It should always be possible to cast the ordinary Hamiltonian mechanics in the Nambu form although, as will be clear below, the formalisms have associated algebraic structures which are different. As shown (*) Present address: Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT, England. (1) Y. N~..~rBu: Phys. Rev. D, 7, 2405 (1973). (~) See also h. J. K~I,.'~AYin Colloque Interrbationale de Geometric Syrnplectique et Physique Mathema- tique (Colloques Interaationaux C.N.R.S., Aix-en-Provence, France, 1974), and references cited therein. (3) See, for instance, Ch.-J. DE LA VALI~E POUSSIN: Cours d'Analyse In/initesimale (Paris, 1949). (**) The sum convention is everywhere used. (***) We arc referring to eq. (6) of ref. (1). 169

Comments on the Nambu mechanics

Embed Size (px)

Citation preview

L]~TT]~R]~ AL NUOVO CIMENTO VOL. 17, N. 5 2 0 t t o b r e 1976

Comments on the Nambu Mechanics.

G. J . RUGGERr

Department de l~isica, JFacultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (*)

( r icevuto il 2 Lugl io 1976)

NAMBU (~) p roposed some a l t e r n a t i v e fo rms of classical d y n a m i c s in wh ich t h e Liouvi l le t h e o r e m is t a k e n as t h e f u n d a m e n t a l gu id ing p r inc ip le and , consequen t ly , t h e poss ib i l i ty of c o n s t r u c t i n g a co r r e spond ing s t a t i s t i ca l m e c h a n i c s a long t h e usua l l ines is in p r inc ip le ensured . T he pu r pos e of t h i s n o t e is to m a k e some c o m m e n t s r e l a t ed to t h e s t r u c t u r e of one of t he poss ible r e su l t i ng fo rma l i sms a n d to i t s r e l a t i on to mor6 s t a n d a r d classical d y n a m i c a l theor i e s (~).

W e beg in b y a s s u m i n g a se t of evo lu t ion e q u a t i o n s of t h e fo rm ~ ~ X~(x), /~-~ 1 . . . . , n. F o r s impl ic i ty we r e s t r i c t ourse lves here , a n d in w h a t follows, to cases in

w h i c h t h e r e is no expl ic i t t i m e dependence . I t is a n e l e m e n t a r y r e su l t of t h e t h e o r y of f i r s t -order pa r t i a l d i f ferent ia l e q u a t i o n s (a) t h a t t h e Liouvi l le cond i t ion (**) O~X~(x)~ 0 is su]]icient as wel l as necessa ry for t he ex i s tence of a se t of i n d e p e n d e n t c o n s t a n t s of m o t i o n H1, H~, ..., H~_ 1 such t h a t A : X ~ z A can be p u t in t h e fo rm

(1) A = ~(A, H1 .. . . . H~_I) a ( x ~, x ~ . . . . . x~)

for a n y we l l - behaved d y n a m i c a l v a r i a b l e A. Here t h e H ' s p l a y t h e role of H a m i l t o n i a n s . E q u a t i o n (1) is one of t h e poss ib i l i t ies sugges ted b y NA~IBU who rea l ized t h a t t he Liouvi l le t h e o r e m necessar i ly follows f rom it . The fac t t h a t t h e converse is also t r ue ha s severa l i m p l i c a t i o n s : 1) I t shou ld be poss ib le to r educe some of t he o t h e r a l t e rna - t ives p roposed b y NAMBU to t h e fo rm of eq. (1) (***); 2) I t shou ld a lways b e possible to cas t t h e o r d i n a r y H a m i l t o n i a n mechan i c s in t h e N a m b u fo rm a l t h o u g h , as wil l b e c lear below, t h e fo rma l i sms h a v e assoc ia ted a lgebra ic s t r u c t u r e s wh ich are dif ferent . As shown

(*) Present address: Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT, England. (1) Y. N~..~rBu: Phys. Rev. D, 7, 2405 (1973). (~) See also h . J. K~I,.'~AY in Colloque Interrbationale de Geometric Syrnplectique et Physique Mathema- tique (Colloques Interaationaux C.N.R.S., Aix-en-Provence, France, 1974), and references cited therein. (3) See, for instance, Ch.-J. DE LA VALI~E POUSSIN: Cours d'Analyse In/initesimale (Paris, 1949). (**) The sum convention is everywhere used. (***) We arc referring to eq. (6) of ref. (1).

169

170 G . J . RUGGERI

b y ~NAMBU the re is a t leas t one case, n a m e l y t he r ig id ro t a to r , in wh ich t he new scheme is a n a t u r a l one. T he r e d u c t i o n to t h e N a m b u form is also poss ible for all classical d y n a m i c s based on a Poisson- l ike b r a c k e t , r egu la r or not , because in those cases a se t of co-ord ina tes can be found in wh ich t he Liouvi l le t heo rem holds 0)- This set inc ludes D i rac ' s t h e o r y of c o n s t r a i n e d H a m i l t o n i a n sys tems.

W e now show t h a t t he b r a c k e t

~(A1, A2, ..., A , ) (2) {A1, A 2 . . . . . . .t~}_ -

~ ( x ' , x ~ . . . . . x ~)

has all t h e p roper t i e s needed for a cons i s t en t a lgebra ic i n t e r p r e t a t i o n of t h e fo rmal i sm. Consequen t ly , as a d v o c a t e d b y ~NAMBU, i t can be r i gh t l y cons idered as t h e r e l e v a n t a lgebra ic en t i t y . To th i s a im, we s t u d y t he fo rm of t he t r a n s f o r m a t i o n s x - + x ' w h i c h p rese rve t h e Liouvi l le condi t ion . E q u a t i o n (1) is t h e n va l id in t h e t w o - c o - o r d i n a t e s y s t e m w i t h two, no t necessar i ly equal , sets of H a m i l t o n i a n s . W e h a v e t h e n

~(.~'~, x '~ . . . . . x ' , , ) ~(H;, H~ . . . . . H~') (3)

~ ( x ~, x" . . . . . x '~) ~ (H~ , H2 . . . . . H~)

Clearly th i s set of t r a n s f o r m a t i o n s cons t i t u t e s a group�9 Sonic of t h e m , cal led gauge t r a n s f o r m a t i o n s b y NAMBI=, leave t he co-ord ina tes u n c h a n g e d and t r a n s f o r m the Hami l - t o n i a n s w i t h i n t he c o n s t r a i n t t ~ . H i / c H j ] ~ 1. O the r t r a n s f o r m a t i o n s can be classified accord ing to t h e b e h a v i o u r of t he H a m i l t o n i a n s . A m o n g s t t he s imples t are those for wh ich t h e y t r a n s f o r m as scalars�9 F r o m eq. (3) t h e y are t he (volume preserv ing) t r a n s - f o r m a t i o n s of j a cob i an u n i t y 0)

( 4 ) {x% x '~ . . . . . x ' " } = = 1 .

W e not ice t h a t , even if we r e s t r i c t ourse lves to those t r a u s f o r m a t i o n s w h i c h are con- t i n u o u s l y connec t ed w i t h the iden t i ty , th i s set is b igger t h a n t he co r r e spond ing subg roup in t he s t a n d a r d H a m i l t o n i a n mechan ics . Thus , as we m e n t i o n e d before, a l t h o u g h t h e H a m i l t o n i a n mechan ics can be p u t in t he form (1), t he r e su l t i ng scheme has a r i che r s t r u c t u r e (5).

The in f in i t es imal N a m b u t r a n s f o r m a t i o n s x ' s = x~ + 8x~ sa t i s fy ~g(Sxs) = 0. B y t he same a r g u m e n t used in con juc t ion w i t h eq. (1), t h e r e exis t gene ra to r s G 1, G 2 . . . . . G,_~, def ined up to a gauge t r a n s f o r m a t i o n , wh ich are such t h a t

(5) ~xt' = {xl,, G1, G2 . . . . . G,~-I) �9

E q u a t i o n (1) shows t he evo lu t ion e q u a t i o n s as t he unfo ld ing of a canon ica l t r a n s f o r m a - t ion g e n e r a t e d b y t h e H a m i l t o n i a n s . L e t us c o m m e n t now on t he a lgebra ic a spec t s of t he fo rmal i sm. To beg in w i t h we not ice t h a t t h e N a m b u b r a c k e t (2) is a l t e r n a n t , n m l t i l i n e a r and m u l t i d e r i v a t i v e {~). Then , any l inear and /o r (pointwise) mu l t i p l i c a t i ve r e l a t i on be tween d y n a m i c a l va r i ab le s will be p r e se rved d u r i n g t he evo lu t ion and , more genera l ly , u n d e r t r a n s f o r m a t i o n s (5). More i n t e r e s t i ng is t he fac t t h a t N a m b u b r a c k e t r e la t ions are also canon ica l ly s table . T h a t occurs genera l ly if and on ly if

(6) 3{A~, A 2 . . . . . A,~)__ - - { ~ A , , A 2 . . . . . An}_ + ... / {A~, A 2 . . . . . ~A,}_

(4) See for i n s t a n c e , E�9 C. G. SUDARSItAN al2d N. ~[L'KUND.4.: Classical Dynamics : A 3lode~'~ Perspective (New Y o r k , N. Y . , 1974). (~) I . COEE.~" a n d A. ft. I~ALNAY: Intern. J . Theor. P h y s . , 12, 61 (1975).

COMMENTS ON THE NAMBU MECHANICS 171

which for the canonical t ransformations is equivalent to the (~ Jacobi ident i ty

(7) {(A1 . . . . . A . } _ , B~ . . . . , B . _ ~ } _ =

= { ( A . B1 . . . . . , B._I~_, ~ . . . . . A.}_ + ... + {A1, ~ . . . . . (A . , B1 . . . . . B._~}_}_.

Due to eqs. (4) and (5) and to the derivation proper ty this ident i ty is satisfied by the Nambu bracket . The si tuation is then exact ly analogous to tha t of the s tandard Hamil tonian mechanics where the usual Jacobi ident i ty guarantees the dynamical s tabi l i ty of the Poisson bracket relations thus opening the way to define through them a consistent algebraic structure between the dynamical variables. This is crucial when a t tempt ing to quantizc the theory.

I t could happen in some cases tha t a certain set, say n - - k , of constants of motion should also be t rea ted as canonical invariants (*). The number of independent genera- tors in eq. (5) would then be reduced to k - - 1 and the bracket is effectively k-linear. The simplest possibil i ty is tha t for which this role is played by a subset of the Hamil- tonians, say H~, ..., H~_~. The k-linear bracket is then defined by

(8) {A , G1 . . . . . G,~_I} *_ =~ {A , H , . . . . . ~ . _ ~ , G~ . . . . . G~_I}_ .

Notice t h a t : 1) the null elements contr ibute to the de]inition of the bracket , and 2) cq. (7) reduces r the proper ident i ty for {, }*. If k = 2 the s tandard Jaeobi iden- t i t y is obtained so tha t {, )*_ is a Lie bracket (%

To conclude, we remark tha t the quantizat ion program for the Nambu mechanics should explicit ly incorporate ident i ty (7) within the relevant algebra(e). I t is easy to see, for example, tha t the tri l inear commuta tor proposed by NAMBV (1) as a counter- pa r t of (2) within an associative algebra does not satisfy (7). In this sense i t is not useful for defining, simultaneously, dynamical equations and algebraic relations. How- ever, this problem is avoided if the dynamics is constructed in the s tandard way, i.e. through a commutator .

The author wishes to thank Prof. A. J. K.&LNAY, in Caracas, for many st imulat ing discussions.

(*) T h a t would be t he ease, for example , i f t h e y express some cons t r a in t s be tween t he e l e m e n t a r y va r i ab l e s . (~) G. J . RUO(~Em: Intern. Journ. Theor. Phys. , I2, 287 (1975).