58
BIOLOGY Chapter 7 CELLULAR RESPIRATION PowerPoint Image Slideshow

COLLEGE PHYSICS BIOLOGY - Saddleback College PHYSICS Chapter # Chapter Title ... Oxidative phosphorylation & chemiosmosis ... Figure 9.18 Glucose CYTOSOL Glycolysis

Embed Size (px)

Citation preview

COLLEGE PHYSICS

Chapter # Chapter TitlePowerPoint Image Slideshow

BIOLOGY

Chapter 7 CELLULAR RESPIRATIONPowerPoint Image Slideshow

What is respiration?

What is the main function of cellular

respiration?

Figure 9.1

Figure 41.6

Bulk Feeders

Suspension Feeders and Filter Feeders

Fluid Feeders

Baleen

FecesCaterpillar

SubstrateFeeders

Figure 9.2

Lightenergy

ECOSYSTEM

Photosynthesisin chloroplasts

Cellular respirationin mitochondria

CO2 H2O O2

Organicmolecules

ATP powersmost cellular work

ATP

Heatenergy

Energy Flow

Catabolic pathways

• Aerobic respiration

• Anaerobic respiration

• Fermentation

Cellular respiration

C6H12O6 + 6 O2 6 CO2 + 6 H2O

+ Energy (ATP + heat)

Figure 9.UN01

becomes oxidized

(loses electron)

becomes reduced

(gains electron)

Oxidation & Reduction

becomes oxidized

becomes reduced

Figure 9.UN03

becomes oxidized

becomes reduced

Oxidation & Reduction

Figure 7.2

Nicotinamide(oxidized form)

NAD

(from food)

Dehydrogenase

Reduction of NAD

Oxidation of NADH

Nicotinamide(reduced form)

NADH

Nicotinamide adenine dinucleotide (NAD+/NADH)

NADH NAD+ (in ETC)

Dehydrogenase

Figure 9.5

(a) Uncontrolled reaction (b) Cellular respiration

Explosiverelease of

heat and lightenergy

Controlledrelease ofenergy for

synthesis ofATP

Fre

e e

nerg

y, G

Fre

e e

nerg

y, G

H2 1/2 O2 2 H 1/2 O2

1/2 O2

H2O H2O

2 H+ 2 e

2 e

2 H+

ATP

ATP

ATP

(from food via NADH)

Electron Transport Chain

Glycolysis (color-coded teal throughout the chapter)1.

Pyruvate oxidation and the citric acid cycle

(color-coded salmon)

2.

Oxidative phosphorylation: electron transport and

chemiosmosis (color-coded violet)

3.

Overview of cellular respiration

Figure 9.6-1

Electrons

carried

via NADH

Glycolysis

Glucose Pyruvate

CYTOSOL MITOCHONDRION

ATP

Substrate-level

phosphorylation

Overview of cellular respiration

Glycolysis

Location: cytosol

Conditions: w/ or w/o O2

Figure 9.6-2

Electrons

carried

via NADH

Electrons carried

via NADH and

FADH2

Citric

acid

cycle

Pyruvate

oxidation

Acetyl CoA

Glycolysis

Glucose Pyruvate

CYTOSOL MITOCHONDRION

ATP ATP

Substrate-level

phosphorylationSubstrate-level

phosphorylation

Overview of cellular respiration

Pyruvate oxidation

• Mito matrix

Citric Acid Cycle

• Mito matrix

Figure 7.4

Substrate

Product

ADP

P

ATP

Enzyme Enzyme

Substrate-level phosphorylation

vs. ETC & Oxidative phosphorylation

Figure 9.6-3

Electrons

carried

via NADH

Electrons carried

via NADH and

FADH2

Citric

acid

cycle

Pyruvate

oxidation

Acetyl CoA

Glycolysis

Glucose Pyruvate

Oxidative

phosphorylation:

electron transport

and

chemiosmosis

CYTOSOL MITOCHONDRION

ATP ATP ATP

Substrate-level

phosphorylationSubstrate-level

phosphorylation

Oxidative

phosphorylation

Overview of cellular respiration

Oxidative phosphorylation & chemiosmosis

• Inner mito membrane

Figure 9.8

Energy Investment Phase

Glucose

Energy Payoff Phase

Net

2 ATP used 2 ADP + 2 P

4 ADP + 4 P 4 ATP formed

NAD+ 4 e−2 + + 4 H+2 H+2 NADH

Pyruvate2

2

2

2

2

2

2

2 H+H+

4

4

Glucose Pyruvate

ATPATP usedATP formed

H2O

NADH

2 NAD+

+

+

+

++ +

2 H2O

4e−

Glycolysis Overview

2- glyceraldehyde 3-phosphate

GLYCOLYSISPYRUVATE

OXIDATION

CITRIC

ACID

CYCLE

OXIDATIVE

PHOSPHORYL-

ATION

ATP

Figure 7.6

Glycolysis: Energy Investment Phase

ATPGlucose Glucose 6-phosphate

ADP

Hexokinase

1

Fructose 6-phosphate

Phosphogluco-

isomerase

2

Glycolysis: Energy Investment Phase

ATPFructose 6-phosphate

ADP

3

Fructose 1,6-bisphosphate

Phospho-

fructokinase

4

5

Aldolase

Dihydroxyacetonephosphate

Glyceraldehyde3-phosphate

Tostep 6

Isomerase

Figure 7.6

Glycolysis: Energy Payoff/YEILDING Phase

2 NADH2 ATP

2 ADP 2

2

2 NAD + 2 H

2 P i

3-Phospho-

glycerate1,3-Bisphospho-

glycerate

Triose

phosphate

dehydrogenase

Phospho-

glycerokinase

67

Notice the 2’s – Why?Figure 7.6

Glycolysis: Energy Payoff/YEILDING Phase

2 ATP

2 ADP2222

2 H2O

PyruvatePhosphoenol-

pyruvate (PEP)2-Phospho-

glycerate

3-Phospho-

glycerate8

910

Phospho-

glyceromutaseEnolase Pyruvate

kinase

Notice the 2’s – Why?

• Glucose 2 pyruvates

Figure 7.6

Figure 7.19 ERROR should be Regulatory Step 1, 3 & 7

• Glycolysis pathway regulation at the three key enzymatic steps (1, 3, and 7) as indicated. Note that the first two steps that are regulated occur early in the pathway and involve hydrolysis of ATP.

Glucose

CYTOSOLGlycolysis

Pyruvate

No O2 present:

Fermentation

O2 present:

Aerobic cellular

respiration

Ethanol,

lactate, or

other products

Acetyl CoA

MITOCHONDRION

Citric

acid

cycle

Fate of Pyruvate

GLYCOLYSISPYRUVATE

OXIDATION

CITRIC

ACID

CYCLE

OXIDATIVE

PHOSPHORYL-

ATION

Figure 7.8

Pyruvate

Transport protein

CYTOSOL

MITOCHONDRION

CO2 Coenzyme A

NAD + HNADH Acetyl CoA

1

2

3

Oxidation of Pyruvate to Acetyl CoA

GLYCOLYSISPYRUVATE

OXIDATION

CITRIC

ACID

CYCLE

OXIDATIVE

PHOSPHORYL-

ATION

ATP

PYRUVATE OXIDATION

Pyruvate (from glycolysis,

2 molecules per glucose)

NADH

NAD+

CO2

CoA

CoA

+ H+

CoA

CoA

CO2

CITRIC

ACID

CYCLE

FADH2

FAD

ATP

ADP + Pi

NAD+

+ 3 H+

NADH3

3

2

Acetyl CoA

Figure 7.9

Acetyl CoA

Oxaloacetate

CitrateIsocitrate

H2O

CoA-SH

1

2

Figure 7.9

Citrate synthase

Isocitrate

-Ketoglutarate

Succinyl

CoA

NADH

NADH

NAD

NAD

+ H

CoA-SH

CO2

CO2

3

4

+ H

Figure 7.9

Fumarate

FADH2

CoA-SH6

Succinate

Succinyl

CoA

FAD

ADP

GTP GDP

P i

ATP

5

Figure 7.9

Succinic Acid Dehydrogenase

Oxaloacetate8

Malate

Fumarate

H2O

NADH

NAD

+ H

7

Figure 7.9

NADH

1

Acetyl CoA

CitrateIsocitrate

-Ketoglutarate

Succinyl

CoA

Succinate

Fumarate

Malate

Citric

acid

cycle

NAD

NADH

NADH

FADH2

ATP

+ H

+ H

+ H

NAD

NAD

H2O

H2O

ADP

GTP GDP

P i

FAD

3

2

4

5

6

7

8

CoA-SH

CO2

CoA-SH

CoA-SH

CO2

Oxaloacetate

Figure 7.9

Citrate synthase

Succinic Acid Dehydrogenase

GLYCOLYSISCITRIC

ACID

CYCLE

PYRUVATE

OXIDATION

ATP

OXIDATIVE

PHOSPHORYL-

ATION

Oxidative phosphorylation = ETC & Chemiosmosis

• Inner mito membrane

Figure 7.10NADH

FADH2

2 H + 1/2 O2

2 e

2 e

2 e

H2O

NAD

Multiprotein

complexes

(originally from

NADH or FADH2)

III

III

IV

50

40

30

20

10

0

Fre

e e

ne

rgy (

G)

rela

tive

to

O2

(kc

al/m

ol)

FMN

Fe•S Fe•S

FAD

Q

Cyt b

Cyt c1

Cyt c

Cyt a

Cyt a3

Fe•S

Electron Transport Chain

• Inner mitochondrial membrane

Figure 9.14

INTERMEMBRANE SPACE

Rotor

StatorH

Internal

rod

Catalytic

knob

ADP

+

P i ATP

MITOCHONDRIAL MATRIX

ATP synthase

• Inner mitochondrial membrane

Figure 7.11

Figure 7.12 – Oxidative PhosphorylationIncludes = electron transport chain + chemiosmosis

• Oxidative phosphorylation, the pH gradient formed by the electron transport chain is used by ATP synthase to form ATP.

Figure 7.12

Proteincomplexof electroncarriers

(carrying electronsfrom food)

Electron transport chain

Oxidative phosphorylation

Chemiosmosis

ATPsynth-ase

I

II

III

IVQ

Cyt c

FADFADH2

NADH ADP P iNAD

H

2 H + 1/2O2

H

HH

21

H

H2O

ATP

Oxidative Phosphorylation = ETC + Chemiosmosis

Electron shuttles

span membrane

+ 2 ATP

2 NADHor

2 FADH2

GLYCOLYSIS

Glucose 2Pyruvate

2 NADH

2 FADH26 NADH

CITRIC

ACID

CYCLE

PYRUVATE

OXIDATION

2 Acetyl CoA

+ 2 ATP

2 NADH

2 NADHor

2 FADH2

2 NADH 2 FADH26 NADH

OXIDATIVE

PHOSPHORYLATION

(Electron transport

and chemiosmosis)

+ about 26 or 28 ATP

Figure 9.16

Electron shuttlesspan membrane

MITOCHONDRION2 NADH

2 NADH 2 NADH 6 NADH

2 FADH2

2 FADH2

or

2 ATP 2 ATP about 26 or 28 ATP

Glycolysis

Glucose 2 Pyruvate

Pyruvate oxidation

2 Acetyl CoA

Citricacidcycle

Oxidativephosphorylation:electron transport

andchemiosmosis

CYTOSOL

Maximum per glucose:About

30 or 32 ATP

NADH ~ 2.5 ATP

FADH2 ~ 1.5 ATP

Oxidative Phosphorylation

Electron Transport Chain & Poisons

Figure 9.6-3

Electrons

carried

via NADH

Electrons carried

via NADH and

FADH2

Citric

acid

cycle

Pyruvate

oxidation

Acetyl CoA

Glycolysis

Glucose Pyruvate

Oxidative

phosphorylation:

electron transport

and

chemiosmosis

CYTOSOL MITOCHONDRION

ATP ATP ATP

Substrate-level

phosphorylationSubstrate-level

phosphorylation

Oxidative

phosphorylation

Overview of cellular respiration

Figure 9.18

Glucose

CYTOSOLGlycolysis

Pyruvate

No O2 present:

Fermentation

O2 present:

Aerobic cellular

respiration

Ethanol,

lactate, or

other products

Acetyl CoA

MITOCHONDRION

Citric

acid

cycle

Fate of pyruvate?

Figure 9.17a

2 ADP 2 P i 2 ATP

Glucose Glycolysis

2 Pyruvate

2 CO22 NAD

2 NADH

2 Ethanol 2 Acetaldehyde

(a) Alcohol fermentation

2 H

Animation: Fermentation Overview

Figure 9.17b

(b) Lactic acid fermentation

2 Lactate

2 Pyruvate

2 NADH

Glucose Glycolysis

2 ADP 2 P i 2 ATP

2 NAD

2 H

Glucose-lactate

Figure 7.14 – Lactic Acid Fermentation

Glucose-lactate

Cori CycleCarl & Gerty Cori

Depiction of the functional relationship between mitochondrial LDH and mMCT in operation of

the intracellular lactate shuttle.

Brooks G A et al. PNAS 1999;96:1129-1134

©1999 by The National Academy of Sciences

Proteins Carbohydrates Fats

Amino

acidsSugars Glycerol Fatty

acids

Other catabolic pathways

Proteins Carbohydrates Fats

Amino

acidsSugars Glycerol Fatty

acids

GLYCOLYSIS

Glucose

Glyceraldehyde 3- P

PyruvateNH3

Other catabolic pathways

Figure 7.17

Proteins Carbohydrates Fats

Amino

acidsSugars Glycerol Fatty

acids

GLYCOLYSIS

Glucose

Glyceraldehyde 3- P

Pyruvate

Acetyl CoA

NH3

Other catabolic pathways

Figure 7.17

Proteins Carbohydrates Fats

Amino

acidsSugars Glycerol Fatty

acids

GLYCOLYSIS

Glucose

Glyceraldehyde 3- P

Pyruvate

Acetyl CoA

CITRIC

ACID

CYCLE

NH3

Other catabolic pathways

Figure 7.17

Proteins Carbohydrates Fats

Amino

acidsSugars Glycerol Fatty

acids

GLYCOLYSIS

Glucose

Glyceraldehyde 3- P

Pyruvate

Acetyl CoA

CITRIC

ACID

CYCLE

OXIDATIVE

PHOSPHORYLATION

NH3

Other catabolic pathways

β oxidation

keto acids

Figure 7.17

Figure 7.16

• The carbon skeletons of certain amino acids (indicated in boxes) derived from proteins can

feed into the citric acid cycle. (credit: modification of work by Mikael Häggström)

Biosynthesis

Figure 9.20

Phosphofructokinase

Glucose

GlycolysisAMP

Stimulates

Fructose 6-phosphate

Fructose 1,6-bisphosphate

Pyruvate

Inhibits Inhibits

ATP Citrate

Citric

acid

cycle

Oxidative

phosphorylation

Acetyl CoA

Regulation via feedback