32
Colegio San Jorge Trabajo extraclase de química Alumna: Alejandra Madrigal murillo. Profesora: Pamela Briceño Rojas . Año:2011 . Séptimo año

Colegio San Jorge

  • Upload
    orenda

  • View
    76

  • Download
    0

Embed Size (px)

DESCRIPTION

Colegio San Jorge . Trabajo extraclase de química. Alumna: Alejandra Madrigal murillo. Profesora: Pamela Briceño Rojas . . Año:2011. Séptimo año. ESTADOS DE LA MATERIA Y ESTADOS DE AGREGACIÓN- CICLO HIDROLÓGICO. Índice. Características generales. Estados de la materia. Estado sólido. - PowerPoint PPT Presentation

Citation preview

Page 1: Colegio San Jorge

Colegio San Jorge

Trabajo extraclase de química

Alumna: Alejandra Madrigal murillo.

Profesora: Pamela Briceño Rojas .

Año:2011.Séptimo año

Page 2: Colegio San Jorge

ESTADOS DE LA MATERIA Y ESTADOS

DE AGREGACIÓN- CICLO HIDROLÓGICO

Page 3: Colegio San Jorge

Características generalesEstados de la materia Estado

sólido. Estado líquido. Estado gaseoso.

Estado plasma.

Resumen.Cambios de estado

Temperatura y teoría cinética. Fusión y solidificación. Vaporización y condensación. Sublimación.

Resumen

ÍNDICE

Ciclo hidrológico.

Page 4: Colegio San Jorge

CARACTERÍSTICAS GENERALESTradicionalmente, se suele decir que la materia se presenta en los estados de agregación: sólido, líquido y gaseoso.Las características diferenciales de estos tres estados son:

Estado

Sólido

Líquido

Gaseoso

Forma Constante Variable Variable Volumen Constante Constante Variable Rigidez Rígidos No rígidos No rígidos

Fluyen Fluyen Fluidez No fluyen

Fluidos

Otras características

Resistentes a la deformación

Superficie libre plana y horizontal

Compresibles y

expansibles

Aparte de estos tres estados de agregación es interesante considerar un cuarto estado, llamado plasma, en el que la materia está formada por una mezcla de núcleos atómicos y electrones. El plasma constituye el 99% de la materia del universo, pues en él se encuentra toda la materia que forma el Sol y las demás estrellas, a temperaturas de miles y millones de grados.

Page 5: Colegio San Jorge

ESTADO SÓLIDO

En los sólidos cristalinos, las partículas obedecen aun orden geométrico, que se repite a través de todo el sólido, constituyendo la red o retículo cristalino. De éste puede considerarse sólo una parte representativa que se llama celdilla unidad. Las diversas formas de cristales no son más que la traducción externa de la simetría interna de la red.

Lo usual es que en los sólidos no se aprecie, a simple vista la ordenación cristalina. Esto se debe a que cualquier porción de materia no es un retículo cristalino gigante, sino un conjunto de pequeños cristales interpenetrados estrechamente.

En los sólidos amorfos, como el vidrio o las resinas sintéticas, la distribución de las partículas carece del orden mencionado.

Celdilla unidad del NaCl.

Red simetría cúbica

En estado sólido las partículas últimas (ya sean moléculas, átomos o iones), se encuentran en contacto unas con otras y dispuestas en posiciones fijas. Las partículas pueden vibrar alrededor de sus posiciones fijas, pero no pueden cambiar de posición. De ahí la forma y el volumen invariables y la débil compresibilidad de los sólidos.

El SiO2 se presenta en dos formas: a) el cuarzo cristalino, b) el vidrio de cuarzo, amorfo. (Las estructuras se han representado en dos dimensiones, por esto, parece como si él Si tuviese valencia 3)

Page 6: Colegio San Jorge

Red iónica NaCl

Red atómica Diamante (C)

Red metálica Au

ESTADO SÓLIDORed atómica Sílice (SiO2)

Page 7: Colegio San Jorge

ESTADO SÓLIDO

•Es utilizado en la fabricación de objetos como: violines, pantallas de televisión, diamantes, tenis, celulares, vehículos, casas, hielo, etc.

Page 8: Colegio San Jorge

ESTADO LÍQUIDOEn los líquidos las partículas constituyentes están en contacto unas con otras.

De ahí que los líquidos posean volumen constante y débil compresibilidad, También por esto, las densidades de los líquidos son, en general, algo inferiores a las de los sólidos, aunque del mismo orden.

Las partículas que constituyen el líquido no se encuentran fijas, sino que pueden moverse unas en relación a otras.

Por esto los líquidos fluyen y no tienen forma propia, adoptan la forma del recipiente que los contiene.

Page 9: Colegio San Jorge

Br2 líquido (Bromato)

H2O líquida

ESTADO LÍQUIDO

Hg líquido (Mercurio)

Page 10: Colegio San Jorge

ESTADO LÍQUIDO•Es utilizado en bebidas, agua embotellada, jarabes, aceites de cocina, aceite para motores, inyectables, etc.

Page 11: Colegio San Jorge

ESTADO GASEOSOEn estado gaseoso las partículas son independientes unas de otras, están separadas por enormes distancias con relación a su tamaño. Tal es así, que en las mismas condiciones de presión y temperatura, el volumen de un gas no depende más que del número de partículas (ley de Avogadro) y no del tamaño de éstas, despreciable frente a sus distancias. De ahí, la gran compresibilidad y los valores extremadamente pequeños de las densidades de los gases

Las partículas de un gas se mueven con total libertad y tienden a separarse, aumentando la distancia entre ellas hasta ocupar todo el espacio disponible. Por esto los gases tienden a ocupar todo el volumen del recipiente que los contiene. Las partículas de un gas se encuentran en constante movimiento en línea recta y cambian de dirección cuando chocan entre ellas y con las paredes del recipiente. Estos choques de las partículas del gas con las paredes del recipiente que lo contiene son los responsables de la presión del gas. Las colisiones son rápidas y elásticas (la energía total del gas permanece constante).

Page 12: Colegio San Jorge

Cl2 gaseoso (Dicloro)

HCl (Ácido Clorhídrico)y NH3 (Amoníaco) gaseosos

ESTADO GASEOSO

Page 13: Colegio San Jorge

ESTADO GASEOSO

•Usado para llenar dirigible, globos, para gasificar bebidas, para aerosoles ,insecticidas, desodorantes, perfumes, lubricantes, etc.

Page 14: Colegio San Jorge
Page 15: Colegio San Jorge

Plasmas cotidianos

Los plasmas conducen la corriente eléctrica, característica que el hombre ha aprovechado para desarrollar aplicaciones relacionas con la producción de energía eléctrica. Las lámparas o tubos fluorescentes contienen una pequeña cantidad de vapor de mercurio y un gas inerte (que no reacciona con nada) que acostumbra a ser argón. Al encender un fluorescente, el argón se ioniza (pierde electrones) formando así un plasma que excita a los átomos de mercurio. Como consecuencia de esta excitación, los átomos de mercurio emiten luz visible y ultravioleta. Dentro del tubo fluorescente existe un revestimiento que se encarga de filtrar la luz ultravioleta, de forma que sólo recibimos la radiación del visible. Las lámparas fluorescentes presentan una eficiencia energética considerablemente superior a la de una bombilla estándar. Los carteles de neón y el alumbrado urbano usan un principio similar. No sería atrevido decir que si algo ha hecho famoso al plasma por todas partes, no son ni los tubos fluorescentes ni los carteles de neón, sino las denominadas televisiones de plasma que lucen en los escaparates de las tiendas de electrónica y en un buen puñado de hogares. En el interior de una televisión de plasma se encuentran gases inertes (xenón y neón) en forma de plasma que reaccionan con el fósforo de cada subpíxel de la pantalla para producir luz coloreada. Las televisiones de plasma presentan una resolución superior a las televisiones convencionales, si bien hay que recordar que la duración de una pantalla de plasma no es indefinida y oscilaría entre doce y diecisiete años

Page 16: Colegio San Jorge

GASES Desorden total Partículas tienen

completa libertad de movimiento.

Partículas tienden a estar alejadas entre si

Forma y volumen variable

LÍQUIDOS Menor desorden Partículas tienen

movimiento relativo entre si

Partículas en contacto unas con otras

Forma determinada al recipiente que los contieneVolumen constante

SÓLIDOS Orden Partículas fijas en

posiciones determinadas.

Partículas unidas entre si. Fuerzas de cohesión mayores

Forma y volumen constante

Calentar

Enfriar

Calentar o reducir presión

Enfriar o comprimir

RESUMENCARACTERÍSTICAS ESTADOS DE LA MATERIA

Page 17: Colegio San Jorge

TEMPERATURA Y TEORÍA CINÉTICA DE LA MATERIA

Cuando se calienta un cuerpo, las partículas que lo constituyen adquieren más energía y esto les permite moverse aún más rápidamente.La energía relacionada con el movimiento (velocidad) de las partículas, se denomina energía cinética. No todas las partículas de un cuerpo tienen la misma energía cinética; algunas la pierden al chocar con sus vecinas y otras, por el contrario, la ganan.La temperatura mide la energía cinética media (promedio) de las partículas de un cuerpo La temperatura de un cuerpo es proporcional al movimiento de agitación de sus partículas.Los cambios de estado pueden explicarse convenientemente según la teoría cinética de la materia:

Page 18: Colegio San Jorge

FUSIÓN Y SOLIDIFICACIÓNLa fusión es el paso de sólido a líquido. Para conseguirla hay que aumentar la temperatura del sólido.

Al calentar un cuerpo sólido, aumenta la energía de las partículas y, con ella, la amplitud de las vibraciones, esto hace que el sólido se dilate.

Llega un momento en que esta energía es suficiente para vencer las fuerzas de cohesión entre las partículas y éstas comienzan a resbalar unas sobre otras. Entonces se produce la fusión

La forma de fusión de un cuerpo depende de su naturaleza. Así, distinguiremos entre cuerpos cristalinos y amorfos.

En los sólidos cristalinos, la fusión se produce a una temperatura constante, denominada temperatura de fusión que puede variar según la presión. Una vez alcanzada la temperatura o punto de fusión (que es característica para cada sustancia pura), aunque se siga calentando, la temperatura no se eleva y se mantiene constante hasta que la totalidad del sólido se ha fundido.

En los sólidos amorfos, la fusión se produce dentro de un intervalo amplio de temperaturas, durante el cual el cuerpo pasa por un estado pastoso intermedio.

Page 19: Colegio San Jorge

El proceso inverso a la fusión se denomina solidificación, es el paso de líquido a sólido, y para conseguirla hay que disminuir la temperatura del cuerpo.

FUSIÓN Y SOLIDIFICACIÓN

Fusión

Solidificación

Page 20: Colegio San Jorge

Fusión del hielo H2O

Fusión del hierro

Page 21: Colegio San Jorge

FUSIÓN

Durante la fusión, la energía calorífica se emplea en romper las fuerzas atractivas entre las moléculas, no en aumentar la temperatura que, como puede observarse en la gráfica, permanece constante.

Gráfica temperatura-tiempo de calentamiento para una sustancia pura

Page 22: Colegio San Jorge

VAPORIZACIÓN Y CONDENSACIÓN

El proceso de vaporización tiene lugar de dos formas: La evaporación es un fenómeno que se produce exclusivamente en la superficie del

líquido y a cualquier temperatura. La evaporación aumenta al aumentar la temperatura y disminuir la presión sobre el líquido.

La ebullición es un fenómeno que afecta a toda la masa del líquido. Tiene lugar a una temperatura determinada constante, llamada temperatura o punto de ebullición de la sustancia que también depende de la presión.

La vaporización es el paso del estado líquido al gaseoso.

Puede conseguirse aumentando la temperatura del líquido o bien disminuyendo la presión sobre él.

Al calentar un líquido, aumenta la velocidad de desplazamiento de las partículas y, con ella, su energía.

Esta energía es suficiente para que las partículas próximas a la superficie del líquido puedan vencer las fuerzas de cohesión que las demás les ejercen y escapar a su atracción. Entonces se produce la vaporización.

Al elevarse la temperatura del líquido, la velocidad media de las partículas aumenta y cada vez es mayor el número de ellas que pueden escapar y pasar al estado gaseoso, grupos grandes de partículas se mueven en todas las direcciones y dejan espacios vacíos entre ellos (burbujas); dichos espacios, contienen unas pocas partículas en movimiento muy rápido.

Page 23: Colegio San Jorge

VAPORIZACIÓN Y CONDENSACIÓN

El proceso inverso a la vaporización se llama condensación o licuación, es el paso de gas a líquido, Se consigue disminuyendo la temperatura del gas o bien aumentando la presión sobre él.

A medida que disminuye la energía de las partículas gaseosas, éstas son capturadas por las fuerzas de cohesión y pasan al estado líquido.

Vaporización

Condensación

Page 24: Colegio San Jorge

Vaporización de nitrógeno N2

Vaporización de bromo

Page 25: Colegio San Jorge

SUBLIMACIÓNLa sublimación es el paso directo del estado sólido al gaseoso. La sublimación regresiva es el proceso inversoPara que se produzca es necesario que los cuerpos se encuentren en unas determinadas condiciones de presión y temperatura, que varían según la sustancia de que se trate.

Sublimación de yodo

Page 26: Colegio San Jorge

CAMBIOS DE ESTADO

S Ó L I D O L Í Q U I D O G A S E O S O

sublimación

fusión vaporización

sublimación regresiva

solidificación condensación

Page 27: Colegio San Jorge

SolidificaciónFusión

CondensaciónVaporización

Sublimación Sublimación Regresiva

Sólido

Gas

líquido

TEM

PERA

TURA

RESUMENCAMBIOS DE ESTADO DE AGREGACIÓN

Page 28: Colegio San Jorge

CICLO HIDROLÓGICO

Page 29: Colegio San Jorge

El agua existe en la Tierra en tres estados: sólido (hielo, nieve), líquido y gas (vapor de agua). Océanos, ríos, nubes y lluvia están en constante cambio: el agua de la superficie se evapora, el agua de las nubes precipita, la lluvia se filtra por la tierra, etc. Sin embargo, la cantidad total de agua en el planeta no cambia. La circulación y conservación de agua en la Tierra se llama ciclo hidrológico, o ciclo del agua.El ciclo hidrológico comienza con la evaporación del agua desde la superficie del océano. A medida que se eleva, el aire humedecido se enfría y el vapor se transforma en agua: es la condensación. Las gotas se juntan y forman una nube. Luego, caen por su propio peso: es la precipitación. Si en la atmósfera hace mucho frío, el agua cae como nieve o granizo. Si es más cálida, caerán gotas de lluvia.Una parte del agua que llega a la tierra será aprovechada por los seres vivos; otra escurrirá por el terreno hasta llegar a un río, un lago o el océano. A este fenómeno se le conoce como escorrentía. Otro poco del agua se filtrará a través del suelo, formando capas de agua subterránea, este proceso es la percolación. Más tarde o más temprano, toda esta agua volverá nuevamente a la atmósfera, debido principalmente a la evaporación.Al evaporarse, el agua deja atrás todos los elementos que la contaminan o la hacen no apta para beber (sales minerales, químicos, desechos). Por eso el ciclo del agua nos entrega un elemento puro. Pero hay otro proceso que también purifica el agua, y es parte del ciclo: la transpiración de las plantas. Las raíces de las plantas absorben el agua, la cual se desplaza hacia arriba a través de los tallos o troncos, movilizando consigo a los elementos que necesita la planta para nutrirse. Al llegar a las hojas y flores, se evapora hacia el aire en forma de vapor de agua. Este fenómeno es la transpiración.

Page 30: Colegio San Jorge

CONCLUSION

JKJKKJKJKJLKJLKJKJKJKJLÑKLKLKÑKLÑKLKÑLÑ

Page 31: Colegio San Jorge

http://graficas.explora.cl/otros/agua/ciclo2.html

http://www.slideshare.net/tango67/08-aplicaciones-quimica-estado-solido-infantes

http://www.portaleureka.com/accesible/quimica/81-quimica/212-plasma-el-cuarto-estado-materia

http://www.visionlearning.com/library/module_viewer.php?mid=120&l=s

Bibliografía o paginas utilizadas

Page 32: Colegio San Jorge

fin