40
Cognitive radio experimentation with VESNA platform Miha Smolnikar Jozef Stefan Institute ICTP School on Applications of Open Spectrum and White Spaces Technologies

Cognitive radio experimentation with VESNA platformwireless.ictp.it/school_2014/Lectures/Day6/VESNA.pdf · Cognitive radio experimentation with VESNA platform ... •Sensor node &

  • Upload
    lekhanh

  • View
    226

  • Download
    6

Embed Size (px)

Citation preview

Cognitive radio experimentation with VESNA platform

Miha Smolnikar

Jozef Stefan Institute

ICTP School on Applications of Open Spectrum and White Spaces Technologies

Outline

1. VESNA platform

2. LOG-a-TEC testbed

3. CREW project

4. Demos

2

VESNA platform

3

Concept

• A HW/SW platform for wireless sensor networks• High processing power and low energy consumption• Sensor node & concentrator/gateway capability• Battery, solar or external power supply• Multiple communication technologies• Extensive portfolio of sensors and actuators• JTAG debug interface• OS ports: Contiki, NuttX, (RIOT)• Libraries ports: Arduino (Maple, Spark, …), panStamp, OpenWSN, Wiselib, SensLAB …• Arduino compatibility

• Development, prototyping and testbed platform

• Design files & source code• https://github.com/sensorlab/ 4

Supported …… sensors• Temperature

• Air pressure

• Pressure (absolute, differential)

• Humidity

• Luminance

• Acceleration

• Gyroskop

• GPS/position

• Microwave radar

• Lightning

• Microphone (intensity, spectrum)

• Radio spectrum (ISM, UHF)

• Voltage

… communication interfaces• IEEE 802.15.4

• ZigBee

• 6LoWPAN

• Wireless M-BUS

• Bluetooth 4.0

• Wi-Fi

• GSM/GPRS

• Ethernet

… peripherals• RS-232

• RS-422/485

• CAN

• USB (slave)

• SPI

• I2C

• 1wire

• SDIO

• 4…20 mA

• 1-10 V

…• Current (AC/DC, Hall,

resistor)

• Power quality (parametrization)

• RFID, NFC

• Ultrasound

• IR (PIR, on-off, distance, temperature)

• Capacitive/inductive touch/distance

• Color

• Reflectance

• Hall

• Load cell (weigh)

• Weather station• Rainfall rate

• Wind speed & direction

• Sun radiation (UV, VIS)

…• Gas / Particles

• CO2

• VOC

• NO, NO2, CO, O3, SO2

• PM, Pollen

• Camera

• …

5

Modularity

• VESNA=SNC+SNR+SNE• SNC = 7 cm x 5 cm

• SNR = 3 cm x 5 cm

• SNE = 7 (10) cm x 5 cm

• Existing modules• SNC-STM32

• SNR-TRX, SNR-MOD

• SNE-PROTO, SNE-WG, SNE-WLG, SNE-ISMTV, SNE-ESHTER, SNE-SENS, SNE-AQA, SNE-AMIO, SNE-SH, SNE-BEECO, SNE-PMC

Sensor Node Core (SNC)data acquisition and processing,versatile power supply

Sensor Node Radio (SNR)communication withinthe sensor network

Sensor connector

Power supply and RS-232

USB

SDIO

Battery / solar

Antenna

Radio connector

Sensor Node Expansion (SNE)application specific HW, firmware debugging over JTAG

6

SNC-STM32

• Microcontroller• ST STM32F103xx

• ST STM32L1zzxx

• MRAM

• Instrumentational amplifier

• External / battery / solar power supply + charger

• USB, RS232/UART, SPI, I2C, 12-bit DAC, 12-bit ADC

• SD card slot

7

SNR-TRX (transceiver)

• 315/433 MHz, 868/915 MHz• TI CC1101

• Atmel AT86RF212 (IEEE 802.15.4)

• 2.4 GHz• TI CC2500

• Atmel AT86RF231 (IEEE 802.15.4)

• nRF8001 (BLE)

• Range extenders• TI CC1190 (sub-GHz) / TI CC2590 (2.4 GHz)

8

SNR-MOD (OEM module)

• Digi XBee (ZigBee, proprietary)

• Atmel ATZB-900 (ZigBee)

• Atmel ATZB-24 (ZigBee)

• Telit • ME50-868, (ME50-169) (WMBUS)

• LExx, NEexx (pin compatible, proprietary)

• ZExx-2.4 (pin compatible, ZigBee)

9

SNE-WG (wired gateway)

• Lantronix Xport / Digi ConnectMe (Ethernet)

• Power over Ethernet

• CAN

• RS-485/422

10

SNE-WLG (wireless gateway)

• GainSpan GS1011 (WiFi)

• BlueRadio BR-LE4.0 (Bluetooth 4.0 )

• Telit GL865 (GSM/GPRS)

• uBlox MAX-6G (GPS)

• Power supply

11

SNE-ISMTV (spectrum sensing) 1/2

• SNE-CREWTV

• One PCB with several placement options1. VHF/UHF (TVWS)

• NXP TDA18219HN silicon tuner

• Analog devices AD8307 demodulating logarithmic amplifier

• RF input range: 420 – 870 MHz

• Bandwidth: 1.7 MHz, 8 MHz

• Linearity: ±1 dB

• Dynamic range: 60 dB

12

SNE-ISMTV (spectrum sensing) 2/2

2. Sub-GHz ISM (315, 433, 783, 868, 915 MHz)• TI CC1101

• Receiver sensitivity: -112 dBm @ 868 Mhz

• Programmable output power: 12 dBm

3. 2.4 GHz ISM• TI CC2500

• Receiver sensitivity: -104 dBm

• Programmable output power: 1 dBm

• IEEE 802.15.4 transceiver (ISM 868 MHz)• Atmel AT86RF212

13

SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT

• Embedded Sensing Hardware for TVWS Experimental Radio (ESHTER)• http://www.tablix.org/~avian/blog/articles/talks/next_generation_tv_band_r

eceiver_for_vesna.pdf

• Motivation for redesign• Experiment with advanced spectrum sensing methods (require access to

signal magnitude and phase)

• Higher frequency resolution for energy detection (wireless microphones occupy ~200 kHz of spectrum, 1700 kHz narrowest TDA18219HN channel setting)

• Practical problems (form-factor, EMI noise cancellation)

14

SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT

15

• Going beyond energy detection• Covariance Absolute Value detector

• Eigenvalue detector

• Information-theoretic detection

• Compressive sensing

• Block diagram

LOG-a-TEC testbed

16

Projects

• Photovoltaic power plant monitoring (Telekom Slovenije)• http://sensors.ijs.si/

• Air quality (FP7 CITI-SENSE)• http://www.citi-sense.eu/

• Sensor support for unexpected & temporary events (FP7 ABSOLUTE)• http://www.absolute-project.eu/

• Robust network infrastructure for smart distribution grids (FP7 SUNSEED)• TBD

• Spectrum sensing and cognitive radio (FP7 CREW)• http://www.crew-project.eu/

17

PV power plant monitoring

• Systematically investigate the pros and cons of different PV technologies (amorphous & crystalline silicon), effect of panels deployment (S, E, W orientation) and impact of environment (weather) conditions

• Sensorics on 5 sets of PV panels• Light intensity in different spectrum (UV/VIS/IR)• Solar pannel U/I characteristic • Performance of inverter MPP tracker• Temperature of a PN junction • Environment conditions (context)

• 7 VESNA sensor nodes, 1 VESNA gateway, ZigBee network @ 868 MHz

18

Air quality

19

• Static indoor unit (Wi-Fi)• T, rH, PM• Gas: CO2 (CO2-IRC-A1), VOC, NH3 (B1)

• Static outdoor unit (Wi-Fi)• Weather: T, rH, wind speed & direction, rainfall rate• Solar radiation: VIS, IR• Lightning • Gas: NO, NO2, SO2, O3, CO (ISB-B4)

• Portable unit (Wi-Fi / BLE)• VESNA SNE-AQA

• T, rH, accelerometer• Gas: NO2, O3, CO (AFE-A4)

Spectrum sensing testbed location

• Deployed in the city of Logatec, Slovenia

• Based on wireless sensor network

• Sensor nodes are (mostly) installed on public light poles

• Infrastructure rewiring ensures 24/7 power supply

• Used to support the experimentally-driven research20

Spectrum sensing VESNA nodesSNE-ISMTV

868 MHz TRX

CC1101

TV UHF RX

TDA18219HN

SPI, GPIO

2.4 GHz TRX

CC2500

868 MHz TRX

AT86RF212

SNC v1.0 SNR-MOD v1.0

ATZB-900-B0

custom code

or

Contiki + custom code

SP

I / UA

RT

21

Spectrum sensing VESNA nodes deployment

22

Spectrum sensing infrastructure

• 50+ sensor nodes are deployed in 3 clusters• City center (23)• Industrial zone (27)• JSI campus

• Management network ZigBee @ 868 MHz, Ethernet gateway

green – UHF, blue - ISM 868 MHz, red - ISM 2400 MHz, yellow - reserve locations23

CREW project

24

FP7 project CREW

• Cognitive Radio Experimentation World• http://www.crew-project.eu/• Establish an open federated test platform• Research on advanced spectrum sensing,

cognitive radio and cognitive networking • Horizontal and vertical spectrum sharing in

licensed and unlicensed bands

• LOG-a-TEC• Outdoor• ISM/TVWS• Spectrum sensing and

cognitive radio

25

LOG-a-TEC spectrumsensing infrastructure• 3 clusters

• Sensor nodes (23+27+1)• SNC-STM32

• SNR-MOD (ZigBee mesh @ 868 MHz)

• SNE-ISMTV

• Gateways • SNC-STM32

• SNR-MOD (ZigBee mesh @ 868 MHz)

• SNE-WG

Cit

y o

f Lo

gate

cJS

I Cam

pu

s /

Lju

blja

na

26

LOG-a-TEC spectrum sensing infrastructure

• Web access portal

• User administration and scheduling

• Python library

• SSL connection and protocol proxy

• GRAS-RaPlaT

27

LOG-a-TEC testbed access portal• Testbed access portal available

at www.log-a-tec.eu allows to• Show node status

• Choose particular cluster

• Perform an experiment • Described as a sequence of GET and POST requests

• Remote (over-the-air) reprograming

28

LOG-a-TEC testbed access portalSensor node clusters

29

LOG-a-TEC testbed access portalUHF, 868 MHz, 2.4 GHz spectrum sensing demos

30

LOG-a-TEC testbed access portalDirect interaction with nodes using GET and POST requests

31

LOG-a-TEC testbed access portalExecution of predefined experiments (sequence of GET and POST requests / Python script)

32

LOG-a-TEC testbed access portalGRASS-RaPlaT radio coverage simulations

33

VESNA spectrum sensing experimentation

• VESNA spectrum sensing software

• A batch of pre-prepared spectrum sensing profiles is available

• Once profile is selected VESNA sensor node is accordingly configured

• Experiment is run according to spectrum sensing specifications

• Results are saved locally on the SD card and sent in batches to the server

34

Sensing profile• Frequency band• Channel bandwidth• Averaging• …

GRASS-RaPlaT experimentation

• Integrated Radio Planning Tool (RaPlaT)based on open-source GIS system GRASS • Experiment planning• Tx radio coverage calculation • Visualization • Supporting REM estimation

• Incorporating • Digital Elevation Model• Clutter file• Six path loss prediction models• Ray-tracing approach for rural

and urban environments

35http://www-e6.ijs.si/en/software/grass-raplat

Experimentation in LOG-a-TEC

1. Remote experiments (RE)• Define your experiments• Ask for an account to LOG-a-TEC• Use the Python scripts https://github.com/sensorlab/vesna-alh-tools to develop

your own experiment• Use the web portal to run pre-defined experiments and simulations

https://crn.log-a-tec.eu/

2. On site experiments (OE)• If the experiments requires mobile equipment or a particular type of equipment to

be brought on site

3. A mix of remote and on-site experiments (ME)• A combination of the above

36

Demos

37

Demos

1. UHF coverage simulation

2. Context awareness in TVWS

38

Acknowledgements

• Thanks to colleagues in SensorLab who greatly contributed to this work.

• The work reported in this presentation has been partially funded by the European Community through the FP7 project CREW (FP7–258301).

40

Thanks for attention!

[email protected]

http://sensorlab.ijs.si/