68
4: DC and Transient Response Slide 1 CMOS VLSI Design EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters

CMOS VLSI Design4: DC and Transient ResponseSlide 1 EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

4: DC and Transient Response Slide 1CMOS VLSI Design

EE466: VLSI Design

Lecture 05: DC and transient response – CMOS Inverters

4: DC and Transient Response Slide 2CMOS VLSI Design

Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation

4: DC and Transient Response Slide 3CMOS VLSI Design

Activity1)     If the width of a transistor increases, the current will 

increase decrease not change 2)     If the length of a transistor increases, the current will

increase decrease not change3)     If the supply voltage of a chip increases, the maximum

transistor current willincrease decrease not change

4)     If the width of a transistor increases, its gate capacitance willincrease decrease not change

5)     If the length of a transistor increases, its gate capacitance willincrease decrease not change

6)     If the supply voltage of a chip increases, the gate capacitance of each transistor willincrease decrease not change

4: DC and Transient Response Slide 4CMOS VLSI Design

Activity1)     If the width of a transistor increases, the current will 

increase decrease not change 2)     If the length of a transistor increases, the current will

increase decrease not change3)     If the supply voltage of a chip increases, the maximum

transistor current willincrease decrease not change

4)     If the width of a transistor increases, its gate capacitance willincrease decrease not change

5)     If the length of a transistor increases, its gate capacitance willincrease decrease not change

6)     If the supply voltage of a chip increases, the gate capacitance of each transistor willincrease decrease not change

4: DC and Transient Response Slide 5CMOS VLSI Design

DC Response DC Response: Vout vs. Vin for a gate

Ex: Inverter

– When Vin = 0 -> Vout = VDD

– When Vin = VDD -> Vout = 0

– In between, Vout depends on

transistor size and current– By KCL, must settle such that

Idsn = |Idsp|

– We could solve equations– But graphical solution gives more insight

Idsn

Idsp Vout

VDD

Vin

4: DC and Transient Response Slide 6CMOS VLSI Design

Transistor Operation Current depends on region of transistor behavior For what Vin and Vout are nMOS and pMOS in

– Cutoff?– Linear?– Saturation?

4: DC and Transient Response Slide 7CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vgsn >

Vdsn <

Vgsn >

Vdsn >

Idsn

Idsp Vout

VDD

Vin

4: DC and Transient Response Slide 8CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

4: DC and Transient Response Slide 9CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

4: DC and Transient Response Slide 10CMOS VLSI Design

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn

Vin < Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

4: DC and Transient Response Slide 11CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vgsp <

Vdsp >

Vgsp <

Vdsp <

Idsn

Idsp Vout

VDD

Vin

4: DC and Transient Response Slide 12CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

4: DC and Transient Response Slide 13CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

4: DC and Transient Response Slide 14CMOS VLSI Design

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp

Vin > VDD + Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

4: DC and Transient Response Slide 15CMOS VLSI Design

I-V Characteristics Make pMOS is wider than nMOS such that n = p

Vgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

4: DC and Transient Response Slide 16CMOS VLSI Design

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

4: DC and Transient Response Slide 17CMOS VLSI Design

Load Line Analysis

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

For a given Vin:

– Plot Idsn, Idsp vs. Vout

– Vout must be where |currents| are equal in

Idsn

Idsp Vout

VDD

Vin

4: DC and Transient Response Slide 18CMOS VLSI Design

Load Line Analysis

Vin0

Vin0

Idsn, |Idsp|

VoutVDD

Vin = 0

4: DC and Transient Response Slide 19CMOS VLSI Design

Load Line Analysis

Vin1

Vin1Idsn, |Idsp|

VoutVDD

Vin = 0.2VDD

4: DC and Transient Response Slide 20CMOS VLSI Design

Load Line Analysis

Vin2

Vin2

Idsn, |Idsp|

VoutVDD

Vin = 0.4VDD

4: DC and Transient Response Slide 21CMOS VLSI Design

Load Line Analysis

Vin3

Vin3

Idsn, |Idsp|

VoutVDD

Vin = 0.6VDD

4: DC and Transient Response Slide 22CMOS VLSI Design

Load Line Analysis

Vin4

Vin4

Idsn, |Idsp|

VoutVDD

Vin = 0.8VDD

4: DC and Transient Response Slide 23CMOS VLSI Design

Load Line Analysis

Vin5Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Vin = VDD

4: DC and Transient Response Slide 24CMOS VLSI Design

Load Line Summary

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

4: DC and Transient Response Slide 25CMOS VLSI Design

DC Transfer Curve Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

4: DC and Transient Response Slide 26CMOS VLSI Design

Operating Regions Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region nMOS pMOS

A

B

C

D

E

4: DC and Transient Response Slide 27CMOS VLSI Design

Operating Regions Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region nMOS pMOS

A Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

4: DC and Transient Response Slide 28CMOS VLSI Design

Beta Ratio If p / n 1, switching point will move from VDD/2

Called skewed gate Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.51

2

10p

n

0.1p

n

4: DC and Transient Response Slide 29CMOS VLSI Design

Noise Margins How much noise can a gate input see before it does

not recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

4: DC and Transient Response Slide 30CMOS VLSI Design

Logic Levels To maximize noise margins, select logic levels at

VDD

Vin

Vout

VDD

p/n > 1

Vin Vout

0

4: DC and Transient Response Slide 31CMOS VLSI Design

Logic Levels To maximize noise margins, select logic levels at

– unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain PointsSlope = -1

VDD-|Vtp|

p/n > 1

Vin Vout

0

4: DC and Transient Response Slide 32CMOS VLSI Design

Transient Response DC analysis tells us Vout if Vin is constant

Transient analysis tells us Vout(t) if Vin(t) changes

– Requires solving differential equations Input is usually considered to be a step or ramp

– From 0 to VDD or vice versa

4: DC and Transient Response Slide 33CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0( )

(

)

)

(o

i

ut

n

out

V t t

t

V

t

V

d

d

t

Vin(t) Vout(t)Cload

Idsn(t)

4: DC and Transient Response Slide 34CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

( )

ou

DDin

t

out

u t t V

d

d

t

t t

V t

V

V

t

Vin(t) Vout(t)Cload

Idsn(t)

4: DC and Transient Response Slide 35CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0(

( ))

(

(

)

)

DD

Do

i

D

o t

n

ut

u

V t

u t t V

V

d

d

t

t

V

V

t

t

Vin(t) Vout(t)Cload

Idsn(t)

4: DC and Transient Response Slide 36CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

( ) DD tout

ou

ds

t DD t

nI t V V

VV V

V

t t

Vin(t) Vout(t)Cload

Idsn(t)

4: DC and Transient Response Slide 37CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

Vin(t) Vout(t)Cload

Idsn(t)

4: DC and Transient Response Slide 38CMOS VLSI Design

Inverter Step Response Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

Vout(t)

Vin(t)

t0t

Vin(t) Vout(t)Cload

Idsn(t)

4: DC and Transient Response Slide 39CMOS VLSI Design

Delay Definitions tpdr:

tpdf:

tpd:

tr:

tf: fall time

4: DC and Transient Response Slide 40CMOS VLSI Design

Delay Definitions tpdr: rising propagation delay

– From input to rising output crossing VDD/2

tpdf: falling propagation delay

– From input to falling output crossing VDD/2

tpd: average propagation delay

– tpd = (tpdr + tpdf)/2

tr: rise time

– From output crossing 0.2 VDD to 0.8 VDD

tf: fall time

– From output crossing 0.8 VDD to 0.2 VDD

4: DC and Transient Response Slide 41CMOS VLSI Design

Delay Definitions tcdr: rising contamination delay

– From input to rising output crossing VDD/2

tcdf: falling contamination delay

– From input to falling output crossing VDD/2

tcd: average contamination delay

– tpd = (tcdr + tcdf)/2

4: DC and Transient Response Slide 42CMOS VLSI Design

Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically

– Uses more accurate I-V models too! But simulations take time to write

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf = 66ps tpdr = 83psVin Vout

4: DC and Transient Response Slide 43CMOS VLSI Design

Delay Estimation We would like to be able to easily estimate delay

– Not as accurate as simulation– But easier to ask “What if?”

The step response usually looks like a 1st order RC response with a decaying exponential.

Use RC delay models to estimate delay– C = total capacitance on output node– Use effective resistance R– So that tpd = RC

Characterize transistors by finding their effective R– Depends on average current as gate switches

4: DC and Transient Response Slide 44CMOS VLSI Design

Effective Resistance Shockley models have limited value

– Not accurate enough for modern transistors– Too complicated for much hand analysis

Simplification: treat transistor as resistor

– Replace Ids(Vds, Vgs) with effective resistance R

• Ids = Vds/R

– R averaged across switching of digital gate Too inaccurate to predict current at any given time

– But good enough to predict RC delay

4: DC and Transient Response Slide 45CMOS VLSI Design

RC Delay Model Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance– Unit nMOS has resistance R, capacitance C– Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

4: DC and Transient Response Slide 46CMOS VLSI Design

RC Values Capacitance

– C = Cg = Cs = Cd = 2 fF/m of gate width

– Values similar across many processes Resistance

– R 6 K*m in 0.6um process– Improves with shorter channel lengths

Unit transistors– May refer to minimum contacted device (4/2 )– Or maybe 1 m wide device– Doesn’t matter as long as you are consistent

4: DC and Transient Response Slide 47CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

2

1A

Y 2

1

4: DC and Transient Response Slide 48CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

Y2

1

4: DC and Transient Response Slide 49CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

4: DC and Transient Response Slide 50CMOS VLSI Design

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

d = 6RC

4: DC and Transient Response Slide 51CMOS VLSI Design

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen

to achieve effective rise and fall resistances equal to a unit inverter (R).

4: DC and Transient Response Slide 52CMOS VLSI Design

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen

to achieve effective rise and fall resistances equal to a unit inverter (R).

4: DC and Transient Response Slide 53CMOS VLSI Design

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen

to achieve effective rise and fall resistances equal to a unit inverter (R).

3

3

222

3

4: DC and Transient Response Slide 54CMOS VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

3

4: DC and Transient Response Slide 55CMOS VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

33C

3C

3C

3C

2C

2C

2C

2C

2C

2C

3C

3C

3C

2C 2C 2C

4: DC and Transient Response Slide 56CMOS VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

9C

3C

3C3

3

3

222

5C

5C

5C

4: DC and Transient Response Slide 57CMOS VLSI Design

Elmore Delay ON transistors look like resistors Pullup or pulldown network modeled as RC ladder Elmore delay of RC ladder

R1 R2 R3 RN

C1 C2 C3 CN

nodes

1 1 1 2 2 1 2... ...

pd i to source ii

N N

t R C

RC R R C R R R C

4: DC and Transient Response Slide 58CMOS VLSI Design

Example: 2-input NAND Estimate worst-case rising and falling delay of 2-

input NAND driving h identical gates.

h copies

2

2

22

B

Ax

Y

4: DC and Transient Response Slide 59CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

4: DC and Transient Response Slide 60CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY

pdrt

4: DC and Transient Response Slide 61CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY 6 4pdrt h RC

4: DC and Transient Response Slide 62CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

4: DC and Transient Response Slide 63CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

pdft (6+4h)C2CR/2

R/2x Y

4: DC and Transient Response Slide 64CMOS VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

2 2 22 6 4

7 4

R R Rpdft C h C

h RC

(6+4h)C2CR/2

R/2x Y

4: DC and Transient Response Slide 65CMOS VLSI Design

Delay Components Delay has two parts

– Parasitic delay• 6 or 7 RC• Independent of load

– Effort delay• 4h RC• Proportional to load capacitance

4: DC and Transient Response Slide 66CMOS VLSI Design

Contamination Delay Best-case (contamination) delay can be substantially

less than propagation delay. Ex: If both inputs fall simultaneously

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CYR

3 2cdrt h RC

4: DC and Transient Response Slide 67CMOS VLSI Design

7C

3C

3C3

3

3

222

3C

2C2C

3C3C

IsolatedContactedDiffusionMerged

UncontactedDiffusion

SharedContactedDiffusion

Diffusion Capacitance we assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NAND3 layout shares one diffusion contact

– Reduces output capacitance by 2C– Merged uncontacted diffusion might help too

4: DC and Transient Response Slide 68CMOS VLSI Design

Layout Comparison Which layout is better?

AVDD

GND

B

Y

AVDD

GND

B

Y