101
CMOS Analog Design Using All-Region MOSFET Modeling 1 CMOS Analog Design Using All-Region MOSFET Modeling Chapter 2 Advanced MOS transistor modeling

CMOS Analog Design Using All-Region MOSFET Modeling 1 Chapter 2 Advanced MOS transistor modeling

Embed Size (px)

Citation preview

CMOS Analog Design Using All-Region MOSFET Modeling

1

CMOS Analog Design Using All-Region MOSFET Modeling

Chapter 2

Advanced MOS transistor modeling

CMOS Analog Design Using All-Region MOSFET Modeling

2

Semiconductors Four types of charge are present inside a

semiconductor: the fixed positive charge of ionized donors, the fixed negative charge of ionized acceptors, the positive mobile charge of holes, and the negative mobile charge of electrons.

We consider all donors and acceptors ionized

On this basis, the net positive charge density ρ is

and D D A AN N N N

( )D Aq N N p n

CMOS Analog Design Using All-Region MOSFET Modeling

3

Boltzmann’s Law – (1)

In equilibrium electrons and holes follow Boltzmann’s

law and their concentrations (number per unit

volume) are proportional to

k=1.38x10-23 J/K - Boltzmann constant

T - absolute temperature (K).

electron and hole densities in equilibrium are related

to electrostatic potential by

q=1.6x10-19 C

-( / )Energy kTe

1 2( )1

2

( )

( )

q

kTp

ep

CMOS Analog Design Using All-Region MOSFET Modeling

4

n0 and p0 - equilibrium electron and hole concentrations

in the neutral bulk (=0 )

- normalized electrostatic potential

- thermal voltage

the mass-action law is

ni - concentration of electrons (and holes) in the intrinsic

semiconductor

2inp n

0 0

qukTp p e p e

0 0

qukTn n e n e

/ tu /t kT q

Boltzmann’s Law – (2)

CMOS Analog Design Using All-Region MOSFET Modeling

5

Example: Calculate the built-in potential for a Si p-n junction with NA = 1017 atoms/cm3 and ND = 1018 atoms/cm3 ,T=300K

In equilibrium, if we choose the potential origin = 0 where the

semiconductor is intrinsic (i.e., where p0=n0=ni), then/

0t

ip n e /0

tin n e

Far from the junction in the n-side

Far from the junction in the p-side

/0

n region t

D in N n e /

0p region t

A ip N n e

The built-in potential is given by

2ln ln lnD A D A

bi n region p region t t ti i i

N N N N

n n n

1526 ln 10 900 mVbi

CMOS Analog Design Using All-Region MOSFET Modeling

6

The two-terminal MOS structure

CMOS Analog Design Using All-Region MOSFET Modeling

7

The ideal two-terminal MOS structure (VFB=0)

CG s

ox

QV

C

oxox

ox

AC

t

; G ox oxG ox

ox

Q CQ C

A A t

A - capacitor area,

tox - oxide thickness

ox - permittivity of oxide

M

O

S+

s

_

GG s

ox

QV

C

CQ

GQ

0G CQ Q

GV

CMOS Analog Design Using All-Region MOSFET Modeling

8

Example: oxide capacitance

(a) Calculate the oxide capacitance per unit area for tox= 5

and 20 nm assuming ox = 3.90, where 0= 8.85·10-14

F/cm is the permittivity of free space. (b) Determine the

area of a 1pF metal-oxide-metal capacitor for the two

oxide thicknesses given in (a).

Answer: (a) =690 nF/cm2 = 6.9 fF/m2 for tox=5 nm and =

172 nF/cm2= 1.7 fF/m2 for tox= 20 nm. The capacitor

areas are 145 and 580 m2 for oxide thicknesses of 5

and 20 nm, respectively.

CMOS Analog Design Using All-Region MOSFET Modeling

9

The flat-band voltage

In equilibrium (with the two terminals shortened/open), the

contact potential between the gate and the semiconductor

substrate of the MOS induces charges in the gate and the

semiconductor for VGB=0.

Charges inside the insulator and at the semiconductor-insulator

interface also induce a semiconductor charge at zero bias.

The effect of the contact potential and oxide charges can be

counterbalanced by applying a gate-bulk voltage called the

flat-band voltage VFB.

CG FB s

ox

QV V

C

CMOS Analog Design Using All-Region MOSFET Modeling

10

Example: flat-band voltage(a) Determine the expression for the flat-band voltage of n+

polysilicon-gate on p-type silicon (b) Calculate the flat-band voltage

for an n+ polysilicon-gate on p-type silicon structure with NA = 1017

atoms/cm3.

Answer: (a) In equilibrium, by analogy with an n+ p junction, the

potential of the n+-region is positive with respect to that of the p-

region. The flat-band condition is obtained by applying a negative

potential to the n+ gate with respect to the p-type semiconductor of

value

(b)

_ _ 0.56 V ln AFB n p bi n p t

i

NV

n

70.56 V ln 10 980 mVFB tV

CMOS Analog Design Using All-Region MOSFET Modeling

11

Regions of operation of the MOSFET:

Accumulation (p-substrate)

Holes + accumulate in the p-type semiconductor surface

0

0

GB FB

C

s

V V

Q

+ + + + + + + + + + + + + +VGB

G

B

- - - - - - - - - - -

+ + + +Qo

QG

QC

CMOS Analog Design Using All-Region MOSFET Modeling

12

VGB

G

B

+ + + + + + + + +

+ + + +Qo

QG

-- - -- -- -

-QC- -- --

F = Fermi potential ( to be defined)

0

0

GB FB

C

s F

V V

Q

Holes evacuate from the P

semiconductor surface and

acceptor ion charges

become uncovered-

Regions of operation of the MOSFET:

Depletion (p-substrate)

CMOS Analog Design Using All-Region MOSFET Modeling

13

VGB

G

B

+ + + + + + + + +

+ + + +Qo

QG

-- - -- -- --

QC- -- ---- - - - - -

--

0GB FB

C

s F

V V

Q

electrons approach the surface!

Regions of operation of the MOSFET:

Inversion (p-substrate)

CMOS Analog Design Using All-Region MOSFET Modeling

14

Inversion for p-type substrate

Volume charge density inside the semiconductor:

Depletion of holes prevails over electron charge when

or, equivalently

0 0 0 0( )u uq p e n e n p

0 0u up e n e

0

0

ln( )2

t p

n

For >F the concentration of minority carriers (n)

becomes higher than that of majority carriers (p); the

semiconductor operates in the inversion region

20 02

ln( ) ln( )2

tt F

i i

p p

n n

mass-action law

CMOS Analog Design Using All-Region MOSFET Modeling

15

Small-signal equivalent circuit of the MOS capacitor

G Cgb

G G

dQ dQC

dV dV

11

Cgb

C ss

ox C ox

dQC

dQ dd

C dQ C

11 1gb

c ox

C

C C

c C sC dQ d

B Ic b i

s

d Q QC C C

d

CMOS Analog Design Using All-Region MOSFET Modeling

16

Main approximation for compact MOS modeling: the charge-sheet model

Minority carriers occupy a zero-thickness layer at the Si-SiO2

interface, where

/s tIQ e

s

I Ii

s t

dQ QC

d

Charge-sheet + depletion approximation for the bulk charge gives

2 B A d s A s tQ qN x q N

2

2 2s A ox

b

s t s t

q N CC

2 /s A oxq N C

is the body-effect coefficient

CMOS Analog Design Using All-Region MOSFET Modeling

17

The three-terminal MOS structure

The origin of potential is taken deep in the bulk

n+ p

VGVC Carrier concentrations in Si

substrate follow Boltzmann’s

law:

n, p exp(-Energy/kT)

( )

0 0 0 0; C

C

q Vqu uukT kTp p e p e n n e n e

/2 2C C tu Vi ipn n e n e

electrons are no longer in equilibrium with holes due to the bias of

the source-bulk junction VC

CMOS Analog Design Using All-Region MOSFET Modeling

18

b ox iI

C i b ox

C C CdQ

dV C C C

1 1I C

ox b i

dQ dVC C C

Approximations:

1) depletion capacitance per unit area is constant along the channel and is calculated neglecting inversion charge

2) Charge sheet model /i I tC Q

Small-signal equivalent circuit of the 3-terminal MOS device

CMOS Analog Design Using All-Region MOSFET Modeling

19

Determination of

Potential balance

0ssa QI

1sa ox

G ox b

d C

dV C C n

2

4 2sa t G FB tV V

The linearization surface potential sa

BG FB sa sa sa t

ox

QV V

C

GV

s sa

BQ

+ _

bC+

_

0IQ

0iC

oxC

CMOS Analog Design Using All-Region MOSFET Modeling

20

Example: slope factor

For tox = 5 nm and 20 nm determine the minimum doping NA for

which the slope factor n < 1.25 at sa = 2F.

Answer: For sa=2F

Thus, for n=1.25

where F is a weak (logarithmic) function of NA. Using 2F = 0.8 V

for the first calculation, we obtain after two iterations that NA>

4.9x1015 atoms/cm3 for tox=5nm, and NA > 2.3·1014 atoms/cm3 for

tox=20 nm.

2 2 =1+ 1 1

2 2 2s A s Ab

ox ox sa ox F

q N q NCn

C C C

2 20.25 2 4 =

2F ox

As

CN

q

CMOS Analog Design Using All-Region MOSFET Modeling

21

The Unified Charge Control Model (UCCM) - 1

1 1I C

ox b i

dQ dVC C C

Approximations:

1) depletion capacitance per unit area is constant along the

channel and is calculated neglecting inversion charge

2) Charge sheet model /i I tC Q

CMOS Analog Design Using All-Region MOSFET Modeling

22

The Unified Charge Control Model (UCCM) - 2

1 1I C

ox b i

dQ dVC C C

/i I tC Q

1 tI C

ox I

dQ dVnC Q

1 bGB

ox

Cn n V

C

where

Integrating from an arbitrary channel potential VC to a reference

potential VP yields the unified charge control model (UCCM)

lnIP I IP C t

ox t IP

Q Q QV V

nC Q

C P

IP I V VQ Q

CMOS Analog Design Using All-Region MOSFET Modeling

23

The “regional” strong and weak inversion approximations

lnIP I IP C t

ox t IP

Q Q QV V

nC Q

I ox P CQ nC V V

P C tV V P C tV V

ln 1IP C t

IP

QV V

Q

or, equivalently

P C t

t

V V

I IPQ Q e

strong inversion weak inversion

CMOS Analog Design Using All-Region MOSFET Modeling

24

Example : approximate UCCM

(a)Calculate the value of the inversion charge density, normalized to , for which the value of the voltage VP-VS calculated using the SI approximation differs from that calculated using UCCM by 10 %; (b) Same using the WI approximation ; (c) comment on ‘moderate’ inversion (MI)

Answer: a) SI approximation error of less than 10 % for q’I > 20

b) WI approximation  WI approximation error of less than 10 % for q’I < 0.22.(c) MI region : SI and WI approximations give errors greater than

10 % for the control voltage VP-VS. The inversion charge density variation from the lower to the upper limit of the MI region is approximately two orders of magnitude (20/0.22).

ox tnC

( ) /I P C tq V V

P C t

t

V V

Iq e

CMOS Analog Design Using All-Region MOSFET Modeling

25

The pinch-off charge density

The channel charge density corresponding to the effective

channel capacitance times the thermal voltage, or thermal

charge, defines pinch-off

( )IP ox b t ox tQ C C nC

The name pinch-off is retained herein for historical reasons

and means the channel potential corresponding to a small

(but well-defined) amount of carriers in the channel.

CMOS Analog Design Using All-Region MOSFET Modeling

26

The pinch-off voltage VP

The channel-to-substrate voltage (VC) for which the channel

charge density equals is called the pinch-off voltage VP.

UCCM is

asymptotically correct

in weak inversion if

in weak

inversion

2 / 2 /( 1)sa F C t sa F C tV VI b t ox tQ C e C n e

2P sa FV

2 1 ln1P sa F t

nV

n

CMOS Analog Design Using All-Region MOSFET Modeling

27

Threshold voltage

Equilibrium threshold voltage VT0, for VC=0:

Gate voltage for which

or

Gate voltage for which VP=0

2P sa FV

G FB sa ox sa tV V C Recalling that

0 2 2 T FB F FV V it follows that

I IP ox tQ Q nC

CMOS Analog Design Using All-Region MOSFET Modeling

28

Example: threshold voltage

Estimate VT0 for an n-channel transistor with n+ polysilicon gate,

NA=1017 atoms/cm3 and tox=5 nm.

Answer: The flat-band voltage (slide 10) is -0.98 V; F=0.419; C’ox=

690 nF/cm2. The body-effect factor is

For this low value of the threshold voltage, the off-current (for VGS=0)

is too high for digital circuits.

Solution to control the magnitude of the threshold voltage without an

exaggerated increase in the slope factor a non-uniform

high-low channel doping.

2 / 0.264 Vs A oxq N C

0 2 2 = 0.98 0.838 0.264 0.838= 0.1VT FB F FV V

CMOS Analog Design Using All-Region MOSFET Modeling

29

nVV

V 0TGBP

Pinch-off voltage vs. gate voltage

Useful approximation:

-1.00E+00

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

0.00E+00 1.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00 6.00E+00

pin

ch-off v

oltage

0

0.5

1

1.5

2

slo

pe fa

cto

r

4.0

3.0

2.0

1.0

0

-1.0

0 1.0 2.0 3.0 4.0 5.0

2.0

1.5

1.0

0.5

0

VG (V)

VP

VT0 (equilibrium threshold voltage)

1sa oxP

G G b ox

d CdV

dV dV C C n

CMOS Analog Design Using All-Region MOSFET Modeling

30

The MOS transistor

0 0 0

i ix xW

D n nI J dxdz W J dx

CMOS Analog Design Using All-Region MOSFET Modeling

31

‘Exact’ I-V model of the MOSFET (1)

n nn

d dnJ qn qD

dy dy

( )

0 0

C

C

q Vu ukTn n e n e

C

t

dVdn n d

dy dy dy

Using the Einstein relationship n n tD

C Cn n n n

dV dVd dJ qn qn qn

dy dy dy dy

S C DV V V

drift diffusion

CMOS Analog Design Using All-Region MOSFET Modeling

32

0 0 0

i ix xW

D n nI J dxdz W J dx 0

xiC

D ndV

I qW n dxdy

C

n n

dVJ qn

dy

0

xi

IQ q ndx

D

S

Vn

D I CV

WI Q dV

L

L is the channel length

Since the current is constant along the channel

‘Exact’ I-V model of the MOSFET (2)

CD In

dVI QW

dy

CMOS Analog Design Using All-Region MOSFET Modeling

33

IC s t

I

dQdV d

Q

I i C sdQ C dV d

CdVsd

GVI

it

QC

IdQ+ _

Charge-sheet formula for the current

s ID drift diff n I n t

d dQI I I WQ W

dy dy

Cn n

dVJ qn

dy

CMOS Analog Design Using All-Region MOSFET Modeling

34

Charge control compact model (1)

sd

BdQ

+ _

GV

bC +

_

IdQ

iC

oxCCdV ( )I ox b s ox sdQ C C d nC d

s ID n I n t

d dQI WQ W

dy dy

( )n ID I t ox

ox

W dQI Q nC

nC dy

Integrating along the channel yields

2 2

2n IS ID

D t IS IDox

W Q QI Q Q

L nC

CMOS Analog Design Using All-Region MOSFET Modeling

35

2 2

2 2n IS ID IS ID IS ID

D t IS ID ox tnox ox

W Q Q Q Q Q QI Q Q W nC

L nC nC L

drift + diffusion

0

2IS ID s sL

D ox tn

Q QI W nC

L

average charge density

average electric field

“virtual” charge

Charge control compact model (2)

I ox sdQ nC d

CMOS Analog Design Using All-Region MOSFET Modeling

36

To emphasize the symmetry of the rectangular geometry

MOSFET

D F RI I I

2( )

( ) ( )2IS D

F R t IS Dnox

QWI Q

L nC

(compare with Ebers-Moll model of the BJT)

Charge control compact model (3)

CMOS Analog Design Using All-Region MOSFET Modeling

37

Drain current vs. gate-to-bulk voltage

CMOS Analog Design Using All-Region MOSFET Modeling

38

Comparing UCCM and the surface potential model with exact numerical solution of Poisson equation

CMOS Analog Design Using All-Region MOSFET Modeling

39

Modeling the bulk charge from accumulation to inversion

/sgn( ) ( 1)s tB s ox s tQ C e

/sgn 111 1 1

2 1

sa t

sa ts sa

sabB

ox s ox sa t

eCdQn

C d C e

/G FB s I B oxV V Q Q C

Charge-sheet approximation

122 tsaeVV tsasaFBG

0Isa s Q

Potential balance

CMOS Analog Design Using All-Region MOSFET Modeling

40

Modeling from accumulation to inversion: Surface potential and pinch-off voltage (VP)

CMOS Analog Design Using All-Region MOSFET Modeling

41

Transistor symmetry

, ,D D G S DI I V V V

Voltages referenced to local substrate:

VG VGB VS VSB VD VDB

VG

VDVS

B ID

1.

2. Symmetry

1 2 2 1, , , ,D G D GI V V V I V V V

VG

V2V1

B

ID

CMOS Analog Design Using All-Region MOSFET Modeling

42

, ,D F R S f r SQ G S G DW

I I I I i i I f V V f V VL

2

2

2

/

/

2

SF R IS D IS D

ox tIS D IS D

Sf r F R

tS ox SQ

I I q q

q Q nC

i I I

W WI C n I

L L

3. For a long-channel MOSFET

IS and ISQ are the normalization (specific) current and the “sheet” normalization current, slightly dependent on bias.

Normalization

D

S

B

ID

F RI IG

CMOS Analog Design Using All-Region MOSFET Modeling

43

Long-channel MOSFET ),(),( DGSGRFD VVIVVIIII

IF: forward current IR: reverse current

IF=

IR=

Forward and reverse currents

CMOS Analog Design Using All-Region MOSFET Modeling

44

The specific (normalization) current2

2t

S ox SQ

W WI C n I

L L

ISQ : process parameter slightly dependent on VG and T

ISQ 25 nA (p-channel)

ISQ 75 nA (n-channel)

in 0.35 m CMOS

Specific current

CMOS Analog Design Using All-Region MOSFET Modeling

45

22

0 2 22 2P G T F FV V V

( ) ( ) ( )1 lnP S D t IS D IS DV V q q ( ) ( )1 1IS D f rq i UCCM &

VT0

VP

VG

Slope =1 Slope =1/n

VG0

VP0

Linearization:

0

00

G GP P

G

V VV V

n V

0

0

12 2

G

P F

n VV

In particular:

0

0

G TP

T

V VV

n V

0 12 2

T

F

n V

Pinch-off voltage and slope factor (1)

CMOS Analog Design Using All-Region MOSFET Modeling

46

Determination of the pinch-off voltage and the slope factor as functions of VG. NMOS transistor W=20 m, L=2 m, 0.18 m CMOS technology.

Pinch-off voltage and slope factor (2)

CMOS Analog Design Using All-Region MOSFET Modeling

47

Common-source characteristics

1,00E-09

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

0,00E+00 5,00E-01 1,00E+00 1,50E+00 2,00E+00 2,50E+00 3,00E+00 3,50E+00 4,00E+00 4,50E+00

10-3

10-6

10-9

VS = 0 V

3.0

2.5

2.01.5

0.5 1.0

0 1 2 3 4 VG (V)

ID (A) VD = VG

1 2 ln 1 1P S t f fV V i i

VD

ID

VGVS

The I-V relationship (1)

CMOS Analog Design Using All-Region MOSFET Modeling

48

VG = 4.8 V

ID (A) VD = VG

10-3

10-6

10-9

0 1 2 3 VS (V)

0.8 V

Common-gate characteristics VG=0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V

VD

ID

VS

VG

( )1 2 ln 1 1P S t f f rV V i i

The I-V relationship (2)

CMOS Analog Design Using All-Region MOSFET Modeling

49

0( ) ( ) ( )1 2 ln 1 1G T

S D t f r f r

V VV i i

n

Weak inversion

if(r)<1

-1 if(r)/20 /

/0 1

G TS t

DS t

V VV

VnDI I e e

2 11

0 2ox Sn t

WI nC I ee

L

Weak inversion model

CMOS Analog Design Using All-Region MOSFET Modeling

50

0( ) ( ) ( )1 2 ln 1 1G T

S D t f r f r

V VV i i

n

Strong inversion

if(r)>>10

( ) ( ) ( )G T

S D t f r t F R S

V VV i I I

n

2 20 02D F R ox G T S G T Dn

WI I I C V V nV V V nV

nL

Moderate inversion 1<if(r) <100 Both sqrt(.) and ln(.) terms are important

Strong inversion model (1)

CMOS Analog Design Using All-Region MOSFET Modeling

51

ID/IF

1

VDSsat=VP=(VG-VT0)/n VDS

VDS

ID

VG

Transistor output characteristic

Strong inversion model (2)

CMOS Analog Design Using All-Region MOSFET Modeling

52

VDD

ID

VG

VGVT0

DI 02ox

D G T

C WI V V

n L

SCE, , n, “model”

0G TV V n

02ox

D G T S

C WI V V nV

n L

DI

VS

VDD

ID

VS

VG

Strong inversion model (3)

CMOS Analog Design Using All-Region MOSFET Modeling

53

1 1ln 1 1 ln

1 1

fDS ISIS ID f r

t ID r

iV qq q i i

q i

(a) if= 4.5x 10-2 (VG=0.7 V); (b) if= 65(VG= 1.2 V); (c) if= 9.5x102 (VG= 2.0 V); (d) if= 3.1x 103 (VG= 2.8 V); (e) if= 6.8x 103 (VG= 3.6 V); (f) if= 1.2x 104 (VG= 4.4 V).

Universal output characteristics

(o): measured (—): model

CMOS Analog Design Using All-Region MOSFET Modeling

54

Saturation voltage (VDSsat) – VDS such that /ID ISq q

ln 1 1 1 1DSsat t fV i 1 is the saturation level

Saturation voltage

CMOS Analog Design Using All-Region MOSFET Modeling

55

r r

G D

i i

V n V

F R Fms IS

S S

I I I Wg Q

V V L

BmbDmdSmsGmgD VgVgVgVgI

B

Dmb

D

Dmd

S

Dms

G

Dmg V

Ig

V

Ig

V

Ig

V

Ig

,,,

Transconductances

Calculation of gms

Pao-Sah ID (UCCM)md ID

Wg Q

L

G

rfSmg V

iiIg

)(

UCCM

f f

G S

i i

V n V

n

ggg mdms

mg

msmg

gg

n in saturation

Transconductances - 1

0mg ms md mbg g g g

CMOS Analog Design Using All-Region MOSFET Modeling

56

Source transconductance VG= 0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V (W=L=25 m, tox=280 Å)

VDD

ID

VS

VG

Transconductances - 2

CMOS Analog Design Using All-Region MOSFET Modeling

57

Gate transconductance VS= 0, 0.5, 1.0,1.5, 2.0, 2.5, and 3.0 V . W=L=25 m, tox=280 Å

VDD

ID

VGVS

Transconductances - 3

CMOS Analog Design Using All-Region MOSFET Modeling

58

Transconductance-to-current ratio 11

2

)()(

)(

rfRF

tdms

iI

g 1

( )

2

f ri

WI (if <1)

SI (if >>1)

W=25 m

L=25 m, tox= 280 Å

L=20 m, tox= 55 Å

The transconductance-to-current ratio - 1

10-4 10-2 100 102 104if

tox = 28 nm (IS = 26 nA)

model

102

101

100

gms/IF

tox = 5.5 nm (IS = 111 nA)

1,00E-03 1,00E-01

Seqüência1

Seqüência2

Seqüência3

CMOS Analog Design Using All-Region MOSFET Modeling

59

Transconductance-to-current ratio 11

2

)()(

)(

rfRF

tdms

iI

g 1

( )

2

f ri

WI (if <1)

SI (if >>1)

W=L=25 m, tox= 280 Å

1,00E+00

1,00E+01

1,00E+02

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04

Seqüência1

Seqüência2

Seqüência3

Seqüência4

10-4 10-2 100 102 104

VGB = 2.0 V (IS = 26 nA)

VGB = 1.0 V (IS = 33 nA)

VGB = 3.0 V (IS = 24 nA)

model

if

102

101

100

gms/IF

The transconductance-to-current ratio - 2

CMOS Analog Design Using All-Region MOSFET Modeling

60

Transconductance-to-current ratio 11

2

)()(

)(

rfRF

tdms

iI

g 1

( )

2

f ri

WI (if <1)

SI (if >>1)

W=25 m, tox= 280 Å

1

10

100

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,00E+05

Seqüência1

Seqüência2

Seqüência3

L = 25 m (IS = 26 nA)

model

10-4 10-2 100 102 104if

102

101

100

gms/IF

L = 2.5 m (IS = 260 nA)

The transconductance-to-current ratio - 3

CMOS Analog Design Using All-Region MOSFET Modeling

61

G

B

S D

id

dmd vg

bmbvg

smsvg

gmgvg

The low-frequency small-signal model

CMOS Analog Design Using All-Region MOSFET Modeling

62

Quasi-static charge-conserving model The current entering each terminal of the transistor is split into a transport

component (IT) and a capacitive charging term.

Quasi-static approximation: To calculate the stored charges we suppose

that the charge stored in the transistor depends only on the instantaneous

terminal voltages

( ) ( ) DD T

dQI t I t

dt

0

0

L

G G

L

B B

Q W Q dy

Q W Q dy

( ) GG

dQI t

dt

( ) BB

dQI t

dt

( ) ( )

V tD

V tS

T n I C CW

t Q V dVIL

Neglecting leakage currents

CMOS Analog Design Using All-Region MOSFET Modeling

63

Ward-Dutton partition of the channel charge

As expected

is the total inversion charge stored

in the channel0

L

I IQ W Q dy

0

L

D Iy

Q W Q dyL

( ) ( ) SD ID S

dQdQ dQI t I t

dt dt dt

0(1 )

L

S Iy

Q W Q dyL

( ) ( ) SS T

dQI t I t

dt ( ) ( ) D

D TdQ

I t I tdt

CMOS Analog Design Using All-Region MOSFET Modeling

64

Calculation of stored charge - 1

It is convenient to define

D drift diff

s II tn n

I I I

d dQWQ W

dy dy

I ox sdQ nC d '

nI ox t I

ox D

Wdy Q nC dQ

nC I

It I ox tQ Q nC

'n

It Itox D

Wdy Q dQ

nC I

CMOS Analog Design Using All-Region MOSFET Modeling

65

'n

It Itox D

Wdy Q dQ

nC I

2F

R

Qn

I It ox t It ItQD ox

WQ Q nC Q dQ

I nC

0

L

I IQ W Q dy

2 3 3 2 2

3 2n R F R F

I ox tox D

W Q Q Q QQ nC

nC I

2 22

3F F R R

ox tIF R

Q Q Q QWL nCQ

Q Q

2 22 3( ) ( )

2IS IS ID ID ox t IS ID

IIS ID ox t

Q Q Q Q nC Q QQ WL

Q Q nC

2 3I ISQ WLQ

( )

2IS ID

IQ Q

Q WL

In weak inversion

In strong inversion & saturation

or

( ) ( )F R IS D ox tQ Q nC

Using we find that

Calculation of stored charge - 2

2 2

2

( / )

2n t

D F R

ox t

W LI Q Q

nC

CMOS Analog Design Using All-Region MOSFET Modeling

66

Total inversion, source and drain charges

Channel linearity coefficient

ID ox tR

F IS ox t

Q nCQ

Q Q nC

=1 in WI

=1 in SI for VDS=0

0 in SI sat

22 1( )

3 1I IS ox t ox tQ WL Q nC nC

2 3

2

6 12 8 4( )

215 1S IS ox t ox t

nQ WL Q nC C

2 3

2

4 8 12 6( )

215 1D IS ox t ox t

nQ WL Q nC C

CMOS Analog Design Using All-Region MOSFET Modeling

67

Capacitive coefficients - 1

j j j j jG S D B

G S D B

dQ Q Q Q QdV dV dV dV

dt V dt V dt V dt V dt

0

jjk

k

QC j k

V

0

jjj

j

QC

V

/ /

/ /

/ /

//

gg gs gd gbG G

sg ss sd sbS S

dg ds dd db DD

Bbg bs bd bbB

dtdQ C C C C dV dt

dtdQ dV dtC C C C

dt dV dtdQ C C C C

dV dtdtdQ C C C C

Using the quasi-static approximation

Defining

CMOS Analog Design Using All-Region MOSFET Modeling

68

The 16 capacitive coefficients are not linearly

independent

Assume

Under equal terminal voltage variations, the charging

currents are zero. For the gate charging current, e.g.,

we have

Similarly, for S, D, and B nodes

( )G S D BV t V t V t V t V t

( ) 0Ggg gs gd gb

dQ dVC C C C

dt dt gg gs gd gbC C C C

ss sg sd sb

dd dg ds db

bb bg bs bd

C C C C

C C C C

C C C C

Capacitive coefficients - 2

CMOS Analog Design Using All-Region MOSFET Modeling

69

Assume that

The sum of all the charging currents is

Charge conservation,

d(QS+QD+QB+QG)/dt=0

0S D BdV dV dV

dt dt dt

, ,

,

G G S Ggg sg

G GD Bdg bg

d dQ QdV dVC C

dt dt dt dtd dQ QdV dV

C Cdt dt dt dt

( )G S GD Bgg sg dg bg

d d d dQ Q Q Q dVC C C C

dt dt dt dt dt

gg sg dg bgC C C C

Capacitive coefficients - 3

CMOS Analog Design Using All-Region MOSFET Modeling

70

Linear relationships between capacitive coefficients

Only nine out of the sixteen capacitive coefficients are linearly independent

gg gs gd gb sg dg bg

ss sg sd sb gs ds bs

dd dg ds db gd sd bd

bb bg bs bd gb sb db

C C C C C C C

C C C C C C C

C C C C C C C

C C C C C C C

Capacitive coefficients - 4

CMOS Analog Design Using All-Region MOSFET Modeling

71

A complete set of 9 capacitive coefficients for the MOSFET

2

2 1 2

3 11IS

gs oxIS

qC C

q

2

2

2 2

3 11ID

gd oxID

qC C

q

( ) ( )( 1)bs d gs dC n C

1( )gb gb ox gs gd

nC C C C C

n

2 3

3

4 3

15 11ID

sd oxID

qC nC

q

2

3

4 1 3

15 11IS

ds oxIS

qC nC

q

( ) / dg gd m sd dsC C C C C n

CMOS Analog Design Using All-Region MOSFET Modeling

72

Simplified small-signal MOSFET model

G

DS

B

DBmd DB sd

dvg v C

dt

GBmg GB m

dvg v C

dt

SBms SB ds

dvg v C

dt

Cgs

Cbs

Cgd

Cbd

Cgb

CMOS Analog Design Using All-Region MOSFET Modeling

73

The five capacitances of the simplified model

Intrinsic capacitances simulated from (___) the charge-based and (o) from the S- model (NMOS transistor, tox= 250Å, NA=2x1016 cm-3, and VT0=0.7V.

CMOS Analog Design Using All-Region MOSFET Modeling

74

Capacitances of extrinsic transistor - 1

CMOS Analog Design Using All-Region MOSFET Modeling

75

Capacitances of extrinsic transistor - 2

CMOS Analog Design Using All-Region MOSFET Modeling

76

Non-quasi-static (NQS) small-signal

model Channel segmentation: representation of the MOSFET

as a series combination of short transistors

CMOS Analog Design Using All-Region MOSFET Modeling

77

Simplified high-frequency MOSFET model

1 21gsC

j

1 21bsC

j

11md dg v

j

11mg gg v

j

11ms sg v

j

1 31gdC

j

1 41gb

gb

CC

j

1 31bdC

j

G

DS

B

CMOS Analog Design Using All-Region MOSFET Modeling

78

Time constants of the NQS MOSFET model

2

1 3

4 1 3

1 15 1ISq

2

2 2

1 2 8 5

1 15 (1 ) (1 2 )ISq

2

3 2

1 5 8 2

1 15 (1 (2 ))ISq

2

t

L

CMOS Analog Design Using All-Region MOSFET Modeling

79

Quasi-static small-signal model

1<<1 2(3)<<1 non-quasi-static model reduces to the five-capacitor model

B

G

DS

md DBg v

mg GBg v

ms SBg v

gsC

bsC

gdC

bdC

gbC

CMOS Analog Design Using All-Region MOSFET Modeling

80

Calculate ID, VDSsat and small-signal parameters of a saturated n-

channel MOSFET in 0.35 m technology at if = 3 with

VSB= 0. W=10 m, L=1 m, tox=7 nm, n=1.2, n=400 cm2/V-s at 300 K. Answer:

=493 nF/cm2 and = 80 nA.

gmd = 0, Cgd = 0 and Cbd = 0 since the transistor is saturated.

oxC 2 / 2SH n ox tI C n

( / ) 10 80 3 2.4 μAD F SH fI I W L I i

3 1 26(3 2) 130 mVDSsat t fV i

(2 / ) 1 1mg S t fg I n i

1 1 1 3 1 1ISIS f

ox t

Qq i

nC

2 10 80 nA51 μA/V

1.2 0.026 Vmgg

Example: Small-signal parameters

CMOS Analog Design Using All-Region MOSFET Modeling

81

=1/(1+1)=0.5

2

2 1 2

3 11IS

gs oxIS

qC C

q

1

( )gb ox gs gdn

C C C Cn

49 fFox oxC WLC

1 1

1 1ID

IS IS

q

q q

22 1 1 1

49 14.5 fF3 1 11 0.5

gsC

0.2(49 14.5 0) 5.75 fF

1.2gbC

Example: Small-signal parameters (continued)

CMOS Analog Design Using All-Region MOSFET Modeling

82

Intrinsic transition frequency

2 2mg ms

Tgs gb gs gb

g gf

C C n C C

22 1 1

2t

T ff iL

CMOS Analog Design Using All-Region MOSFET Modeling

83

Determine the inversion level for which the transition frequency of a minimum (nominal) length NMOS transistor in the 0.35 m technology is 10 GHz at room

Answer:

Assuming that n=1.2 and n = 400 cm2/V-s at 300 K it

follows that

Thus, operation in moderate inversion can be

considered for a design at 1 GHz, for example.

221 / 1 21f T n ti L f

Example: Transition frequency

CMOS Analog Design Using All-Region MOSFET Modeling

84

Main short-channel effects

Mobility dependence on the electric field Channel length modulation Drain-induced barrier lowering Velocity saturation

CMOS Analog Design Using All-Region MOSFET Modeling

85

Mobility dependence on the electric field

Inclusion of mobility variations in compact modeling: the constant

mobility is substituted with an effective mobility, which depends

on the applied voltages.

0, the low-field mobility and , the scattering constant, are fitting

parameters

Another simplification: the effective transversal field is assumed

constant along the channel and equal to its value at pinch-off.

0

12 2

effBS IS BD ID

s s

Q Q Q Q

0

1eff

Ba

s

Q

CMOS Analog Design Using All-Region MOSFET Modeling

86

Channel length modulation The dependence of the effective channel length on the drain-to-source

voltage is referred to as the channel length modulation (CLM).

ln 1 DS DSsatC

p

V VL L

V

21

11

IS IDD S IS ID

IS ID

q qI I q q

L q qL

y

S

0

ID

VDSsat

Le L

VDS

L

D

CMOS Analog Design Using All-Region MOSFET Modeling

87

Drain-induced barrier lowering (DIBL) An increase in the drain voltage produces an increase in the

surface potential in the channel and, consequently, a reduction in the potential barrier seen by the electrons at the source ( DIBL).

The inclusion of the DIBL effect in MOSFET models is generally through the threshold voltage.

11, 4

exp26

d

LVV

d

tVV DSBSbi

oxlcTT

,T DBSBT lc bi biV V V V

CMOS Analog Design Using All-Region MOSFET Modeling

88

1 1

s s

s S

C sat

F dF v dy

satC

s

vF

SdF

dy

(longitudinal field)

vsat

v

F

s

FC

Velocity saturation effects - 1

Allows analytical integration for ID

CMOS Analog Design Using All-Region MOSFET Modeling

89

1

s

s I

ox sat

dQ

nC v dy

Velocity saturation effects - 2

I ox sdQ nC d

CD I

dVI WQ

dy 1 t CI

ox I

dVdQ

dy nC Q dy

11

1

s I tID

I ox I

ox C

WQ dQI

dQ dy nC QnC F dy

1

21

ID ISsD IP ID IS

ID ISox

C ox

Q QWI Q Q Q

Q QnC LLF nC

CMOS Analog Design Using All-Region MOSFET Modeling

90

Velocity saturation effects - 3

2

2t

S s oxW

I nCL

2

1IS ID

D IS IDIS ID

q qi q q

q q

/I I ox tq Q nC

Normalized current vs. normalized charge densities

/D D Si I I

Normalization (specific) current

: ratio of diffusion-related velocity to saturation velocity

/s t

sat

L

v

short-channel short-channel parameter

CMOS Analog Design Using All-Region MOSFET Modeling

91

0

SD

ID

VDS

IDQ

IDSATQ

ISQ IQ

Saturation: The minimum amount of electron charge flowing at the saturation velocity, required to sustain the current is

/IDSAT D satQ I Wv

Velocity saturation effects - 4

21 1IS IDsat IDsatq q q

CMOS Analog Design Using All-Region MOSFET Modeling

92

Velocity saturation effects - 5

21 1IS IDsat IDsatq q q

10-2 100 102 104

1

weak inversion

strong inversion

toxIS CnQ

ISIDSAT QQ

s t

sat

L

v

Short channel

Long channel

CMOS Analog Design Using All-Region MOSFET Modeling

93

Small dimension effects on charges and capacitances

s DI ox t I

ox D sat

W Idy Q nC dQ

nC I Wv

1

s

s I

ox sat

dQ

nC v dy

CD I

dVI WQ

dy 1 t CI

ox I

dVdQ

dy nC Q dy

CMOS Analog Design Using All-Region MOSFET Modeling

94

Virtual inversion charge density

inversion +pinch off -saturation charge densities

Along the channel

DV I ox t

sat

IQ Q nC

Wv

V IdQ dQ

s sDI ox t I V V

ox D sat ox D

W WIdy Q nC dQ Q dQ

nC I Wv nC I

Virtual charge formalism - 1

CMOS Analog Design Using All-Region MOSFET Modeling

95CMOS Analog Design Using All Region MOSFET Modeling

95

The drift of the virtual charge produces the same current as the actual movement of the real charge, which includes drift, diffusion and velocity saturation

s V sD V s V

ox

W dQ dI Q WQ

nC dy dy

Virtual charge formalism -2

CMOS Analog Design Using All-Region MOSFET Modeling

96

Channel linearity coefficient with vsat

The integration of from

source to drain results in

where

s VD V

ox

W dQI Q

nC dy

2 2

20 1

2s VS VD

D Dox

W Q QI I

C L n

ID ox D satVD t

VS IS ox D satt

Q nC I WvQ

Q Q nC I Wv

CMOS Analog Design Using All-Region MOSFET Modeling

97

Stored charges including vsat

The stored charge

is calculated changing the integration variable

from y to

resulting in

0L L

I I IDsatQ W Q dy W LQ

sV V

ox D

Wdy Q dQ

nC I

22 1( )

3 1D

VS ox tIsat

LIW L L Q nCQ

v

VQ

CMOS Analog Design Using All-Region MOSFET Modeling

98

Source and drain charges including vsat

CMOS Analog Design Using All-Region MOSFET Modeling

99

Capacitive coefficients including vsat - 1

2

2 2

12 1 2

3 1 3(1 ) 1IS e ms

gs e oxIS sat

q L gC WL C

q nv

22

2 2

12 2

3 1 3(1 ) 1e mdID

gd e oxID sat

L gqC WL C

q nv

( ) ( )1bs d gs dC n C

2

2

11

3 1

e mggb bg ox gso gdo

sat

L gnC C C C C

n v

22 22

3 3

3 7 14 1 3 1

15 1 301 1

ee IS msds ox

IS sat

gq LLC nC WL q v L

22 3 22

3 3

3 7 14 3 1

15 1 301 1

ee mdIDsd ox

ID sat

gq LLC nC WL q v L

/dg gd sd dsC C C C n

CMOS Analog Design Using All-Region MOSFET Modeling

100

Normalized capacitances versus drain-source voltage

Capacitive coefficients including vsat - 1

CMOS Analog Design Using All-Region MOSFET Modeling

101

Gate-to-bulk capacitance with and without the effect of velocity saturation