CICC 05 Slides

Embed Size (px)

Citation preview

  • 7/28/2019 CICC 05 Slides

    1/61

    Algorithmic Design Methodologies and

    Design Porting of Wireline TransceiverIC Building Blocks Between Technology

    Nodes

    S.P. Voinigescu1, T.O. Dickson1, T. Chalvatzis1, A.Hazneci1, E. Laskin1,

    R. Beerkens2, and I. Khalid2

    1) University of Toronto2) STMicroelectronics, Ottawa, Canada

    CICC, San Diego, Sept.19, 2005

  • 7/28/2019 CICC 05 Slides

    2/61

    Outline

    Introduction

    Low-noise broadband inputcomparators

    Mm-wave VCOs

    High-speed logic gates

    Circuits beyond 40 Gb/s

    Summary

  • 7/28/2019 CICC 05 Slides

    3/61

    Si(Ge Bi)CMOS speed is free ... if you canafford the mask costs!

    MOS-HBT(BiCMOS)Cascode

    MAG > 8 dB @ 65 GHz in HBTs and MOSFETs

    HBT-based cascodes have highest gain

    Benefits of the MOS cascode questionable at 65 GHz

  • 7/28/2019 CICC 05 Slides

    4/61

    Fundamental limitationsof dynamic range

    Noise

    floor

    Breakdown voltage

    Dynamic Range

    Voltage

    Bandwidth

    Dynamic range

    compressed as data

    rates increase

    Emphasizes need for low-noise design

    methodologies

  • 7/28/2019 CICC 05 Slides

    5/61

    Power dissipation a major limitation incircuits beyond 40 Gb/s

    Bipolar only implementations suffer from

    VCC >= 3.3V

    40 GHz latch consumes more than 50 mW

    CMOS has lower supply voltage and lower powerdissipation but

    40 GHz latch has yet to be demonstrated

    - must design in 90/65 nm with first pass success

    Emphasizes need for new low-voltage, high-speedlogic topologies and robust design methodologies

  • 7/28/2019 CICC 05 Slides

    6/61

    Goal of this presentation

    Prove that algorithmic design methodologies existfor optimal solutions for all wireline building blocks

    Broadband input amplifiers

    VCOs

    (Bi)MOS-CML logic gates

    Prove that CMOS implementations are portable

    between technology nodes and foundries

  • 7/28/2019 CICC 05 Slides

    7/61

    Key enablers

    Invariance of characteristic current densities inMOSFETs

    Low-noise broadband matching, biasing, and sizing

    Low-voltage (Bi)CMOS topologies

    Small footprint (less than 20 mm per side) inductors

    with SRF> 100 GHz

  • 7/28/2019 CICC 05 Slides

    8/61

    MOSFET characteristic current densitiesMOSFET characteristic current densitiesinvariant across nodes & foundriesinvariant across nodes & foundries

    Peak fT

    @ 0.3 mA/mm Peak fMAX

    @ 0.2 mA/mm NFMIN

    @ 0.15 mA/mm

  • 7/28/2019 CICC 05 Slides

    9/61

    Characteristic MOSFET current densitiesinvariant over CS and cascode topologies

    The peak fTcurrent

    density of a MOSFETcascode stage remains0.3 mA/mm

    Cascode stage can betreated as a compositetransistorin circuit

    design (fT, fMAX, NFMIN)

    fTof MOSFET cascode

    is < 60% of MOSFET fT

  • 7/28/2019 CICC 05 Slides

    10/61

    Vertically stacked, multi-metalinductors for CML logic

    Q is not important

    Size is important

    Maximize L*SRFto

    trade-off tail current for

    bandwidth

    Use 3-7 metals

    T. Dickson et al. IMS-2004

  • 7/28/2019 CICC 05 Slides

    11/61

    Low-noise broadband amplifiers

    RCZ0

    L0

    LC

    RE

    Q1

    VOUT

    IN

    VCC

    Z0

    L0

    RC

    LC

    Q2

    VOUTV

    IN

    VCC

    Q1 V

    OUT

    VCC

    RF

    LF

    RC

    LC

    Q2

    VIN

    Q1

    RC

    VDD = 1.2 V

    LC

    M1

    IT

    Z0

    L0

    200 Ohm 600 pH

    W = 20 um

    W = 40 um

    W = 40 um

    VDD = 1.2 V

    180 pH

    W = 60 um

    W = 120 um

    W = 40 um

    180 pH

    200 Ohm 650 pH

    W = 40 um

    3mA

    VDD = 1.2 V

  • 7/28/2019 CICC 05 Slides

    12/61

    Transistor low-noise design(S. Voinigescu et al., BCTM 1996)

    Lowest noise achieved when transistor biased at JOPT (0.15mA/mm).

    Transistor noise parameters scale with emitter length/ gate width.RN = R/LE GN = G

    2LE GCOR = GC2LE BCOR = BLE

    RN

    = R/W GN = G2W GCOR = GC

    2W BCOR = BW

    Optimal biasing and sizing of transistor @ BW3dB is key to low noise design.

    JOPT JOPT

    HBT 130nm MOSFET

  • 7/28/2019 CICC 05 Slides

    13/61

    Sizing SiGe HBT TIA & INV designs for noisematching

    lEOPT

    TIA requires much smaller

    transistor size:Higher bandwidth

    Broadband input match

    Lower power consumption

  • 7/28/2019 CICC 05 Slides

    14/61

    Broadband CMOS LNA topology scaling

    Biased at 0.15 mA/mm

    W, IDS do not change withnodes

    NF50and BW3dB

    improve

    as technology scales

    RC

    VDD = 1.2 V

    LC

    M1

    IT

    Z0

    L0

    200 Ohm 600 pH

    W = 20 um

    W = 40 um

    W = 40 um

    VDD = 1.2 V

    180 pH

    W = 60 um

    W = 120 um

    W = 40 um

    180 pH

    200 Ohm 650 pH

    W = 40 um

    3mA

    VDD = 1.2 V

    Al ith i d i th d l f

  • 7/28/2019 CICC 05 Slides

    15/61

    Algorithmic design methodology forbroadband low-noise TIAs

    1. Bias HBT(MOSFET) at optimal noise current densityJOPT (0.15 mA/mm) at 3dB frequency

    2. Choose the DC voltage drop across RC for linearity

    requirements. This fixes the loop gain T = gmRC (=gm*ro)

    3. Set the feedback resistance RF for 50 input match.

    4. Size the emitter length (gate width) of Q1 for low-noise, such that the TIA noise impedance is 50 .

    5. Add inductors to extend bandwidth and filter high-frequency noise.

  • 7/28/2019 CICC 05 Slides

    16/61

    Measured single-ended 50-Ohm noise figure

    Differential versions of three

    circuits implemented

    Measured single-ended noisefigure in 50 Ohm

    TIA has low noise over entiremeasured bandwidth

    RCZ0

    L0

    LC

    RE

    Q1

    VOUT

    IN

    VCC

    Z0

    L0

    RC

    LC

    Q2

    VOUTV

    IN

    VCC

    Q1 V

    OUT

    VCC

    RF

    LF

    RC

    LC

    Q2

    VIN

    Q1

  • 7/28/2019 CICC 05 Slides

    17/61

    40-Gb/s eye diagrams

    Eye quality better for TIA (7.0) than EF-INV (5.8)

    20-mV single-ended input (10-mV per side)

    TIAEF-INV

  • 7/28/2019 CICC 05 Slides

    18/61

    90-nm SOI TIA

    8-dB noise figure 1V supply

    6 mW

    p-MOS load

    40mm

    10 Gb/s

    15 Gb/s

  • 7/28/2019 CICC 05 Slides

    19/61

    VCOs

  • 7/28/2019 CICC 05 Slides

    20/61

    Differential Colpitts topology

    HBT VCOs

    1 2

    2Neg. Res. m

    b

    gR

    C C= -

    1 2

    1 2

    1

    2,

    osc EQ

    B EQ

    C Cf C

    C CL C= =

    +

  • 7/28/2019 CICC 05 Slides

    21/61

    SiGe HBT oscillator measurements

    Impact of: 1. base (tank) inductor

    2. inductive emitter degeneration (LE)

    C. Lee et al. CSICS-2004

  • 7/28/2019 CICC 05 Slides

    22/61

    Vop

    2L

    Von

    Q2

    Q1

    VDD

    = 1 V

    ISS

    Vop

    LL

    Von

    Q2

    Q1

    VDD

    = 1 V

    ISS

    C C

    CMOS VCOs

    osc ,CMOS23

    g 'mQeff

    C 'gs4C 'gdC 'dbCL

    W

    osc ,nMOSg 'mQeff

    C 'gs4C 'gdC 'dbCL

    W

    WnMOS ,cross1

    osc

    2L [C '

    gs4C '

    gdC '

    db]

  • 7/28/2019 CICC 05 Slides

    23/61

    Colpitts CMOS/BiCMOS VCOs

    RSS

    C2

    C1

    LT

    Vop

    C2

    C1

    LT

    LS

    VCON

    LS

    LD

    LD

    Von

    Q2

    Q1

    30x1mmx65nm30x1mmx65nm

    40 .. 80 fF 40 .. 80 fF

    40 fF 40 fF

    200 pH

    100 pH

    80 pH80 pH

    VDD

    = 1 V

    LSS

    200 pH

    200 pH

    CSS

    =0.5 pF

    100 pH

    RSS

    C2

    C1

    LT

    Vop

    C2

    C1

    LT

    LS

    VCON

    LS

    LD

    LD

    Von

    Q2

    Q1

    33x1mmx130nm33x1mmx130nm

    230 fF 230 fF

    30 fF 30 fF

    415 pH

    200 pH

    100 pH100 pH VDD = 2.5 V

    415 pH

    CSS =1 pF

    200 pH

    3x9mm 3x9mmQ4 Q3

    WnMOS ,Colpitts1

    osc2 L [C 'gsC 'sb

    C 'gsC 'sbk C 'gd]

    AE ,HBT ,Colpitts

    1

    osc2

    L [CjbA

    CvarAE

    C 'jbACvarAE

    k CjcA ]Colpitts has higherfOSC

    and

    built-in buffering over X-coupled

  • 7/28/2019 CICC 05 Slides

    24/61

    BiCMOS cascode oscillator measurements

    Measured phase noise at 35 GHz and simulated

    NFMIN

    of SiGe MOS-HBT cascode stage as a

    function of gate voltage

  • 7/28/2019 CICC 05 Slides

    25/61

    VCO design methodology

    VCOs treated as LNAs matched to the source impedance

    Rp. This is generally not possible in cross-coupled VCOs! VCO topology (CS/CE or cascode) biased at optimum

    NFMIN

    current density (0.15 mA/mm in FETs)

    Vosc

    must be set close to VMAX

    to minimize phase noise

    Lower inductance, higher bias current, better L(fm)

    HBT-VCOs have 6..10 dB better phase noise due to largerV

    MAX

    L fm=

    In2

    Vosc

    2

    1

    fm

    2

    1

    C1

    2 C1C2

    12

    C2

    C1

    L

    RS

    V1

    VOSC

    R

  • 7/28/2019 CICC 05 Slides

    26/61

    High-Speed Logic

  • 7/28/2019 CICC 05 Slides

    27/61

    Logic families

    Unlike conventional CMOS, gate & subthreshold

    leakage is not a problem in MOS-CML

    In MOS-CML low-VT is desirable

    MOS-CML with peaking is > 3x faster than CMOS

    Fig. 9. Inverters in various CMOS and SiGe BiCMOS logic families.

    Wn

    Wp

    kWn

    kWp

    DV

    DV

    IT

    RL

    DV

    DV

    RL

    IT

    IT

    INN

    INP

    OUTP OUTN

    RL

    RL

  • 7/28/2019 CICC 05 Slides

    28/61

    MOS/BiCMOS CML device sizing & biasing

    For a given speed and technology there is a maximum realizable Lpmax

    Speed improvement as CMOS scales is due solely to Veff

    (DV) scaling.

    250

    VDD

    = 1.8 V

    1 nH

    IT

    Q1

    Q2

    Q3 Q

    4

    1 nH

    250

    CLK

    DATA

    OUT

    330

    VDD

    = 1.8 V

    1 nH

    IT

    Q1

    Q2

    Q3 Q

    4

    1 nH

    330

    CLK

    DATA

    OUT

    CLK

    DATA

    OUT

    W=IT

    1.5 JpeakfMAX=

    IT

    0.3mA /m; AE=

    IT

    1.5JpeakfMAX

    Lp=CLRL

    2

    3.1BW3dB=

    1.6IT

    2VCLITmin=V

    CL3.1Lpmax

    Lp=C

    L3.1

    V2

    IT2

    2VeffV2Veff scales with L

  • 7/28/2019 CICC 05 Slides

    29/61

    BiCMOS ECL latches (> 49 GHz)

    BiCMOS cascode with EF (SF)

    EF vs. SF:

    higher gain, lower E-S capacitance

    VBE > VGS

    2.5 V supply, IT=2 .. 4mA 3.3 V supply, I

    T=2 .. 4mA

  • 7/28/2019 CICC 05 Slides

    30/61

    Evolution to 1-V, 40-GHz latch

    330

    VDD

    = 1 V

    1 nH

    Q1

    Q2

    Q3 Q

    4

    1 nH

    330

    CLK

    DATA

    OUT

    HVTHVT

    LVTLVT

    S D1 S D2 S D2 S D1 S

    G

    1

    Dum

    my

    Dum

    my

    G

    1

    G

    2

    G

    2

    G

    2

    G

    2

    G

    1

    G

    1

    S D1 S D2 S D2 S D1 S

    G1

    Dummy

    Dummy

    G1

    G2

    G2

    G2

    G2

    G1

    G1

    S D1 S D2 S D2 S D1 S

    G1

    Dummy

    Dummy

    G1

    G2

    G2

    G2

    G2

    G1

    G1

    DUMMY DUMMY

    HVT Pair

    LVT QUAD

  • 7/28/2019 CICC 05 Slides

    31/61

    Wireline circuits beyond 40 Gb/s

  • 7/28/2019 CICC 05 Slides

    32/61

    2.5-V, Broadband 49-GHz MS DFF2.5-V, Broadband 49-GHz MS DFF

    45 GbsD QTransimpedance

    Preamplifier50- Output

    Driver

    BiCMOSD-Flip Flop

    CLKBuffer

    CLK

    Data

    In

    Data

    Out

    12 Gb/s 40 Gb/s

  • 7/28/2019 CICC 05 Slides

    33/61

    2.5-V, 80-GHz driver with pre-emphasis and2.5-V, 80-GHz driver with pre-emphasis andgain controlgain control

    Vop V

    onQ2

    Q1 33x2mmx130nm

    125 pH

    50 pH

    VDD

    = 2.5 V

    55

    4x4.8mm

    Q4

    Q3

    50 pH

    27.5

    2x4.8mm3x4.8mm

    10 mA 10 mA

    10 mA

    10 mA 10 mA 10 mA

    20 mA

    2x4.8mm

    23.5

    3x4.8mm

    Adjustable gain with peaking

    Gain > 0 dB @ 94 GHz

    S22

  • 7/28/2019 CICC 05 Slides

    34/61

    80-Gbs SiGe BiCMOS 280-Gbs SiGe BiCMOS 23131-1 PRBS Generator-1 PRBS Generator

    T. Dickson et al. ISSCC-2005

  • 7/28/2019 CICC 05 Slides

    35/61

    Selector: BiCMOS 80-Gb/s

    RLRLLP1 LP1 LP2

    LP2D1D2

    CLK

    VGTAIL

    VCC = 3.3V

    DOUT

    EF2 & series-shunt peaking for

    highest speed3-D stacked inductor for reducedarea and high SRF

    D1

    D2

    CLK

    DOUT

  • 7/28/2019 CICC 05 Slides

    36/61

    40-Gb/s Feed Forward Equalizer40-Gb/s Feed Forward Equalizer

    core of each gain stageis a Gilbert cell

    tail current of the

    differential pair controlsthe tap weight (GAINpad)

    SP/N pads control thetap sign

    A. Hazneci et al. CSICS-2004

  • 7/28/2019 CICC 05 Slides

    37/61

    40 Gb/s over 9-ft SMA cable + 3dB attn.40 Gb/s over 9-ft SMA cable + 3dB attn.

    input output

  • 7/28/2019 CICC 05 Slides

    38/61

    10 Gb/s equalization over 24-ft SMA cable +6dB attn.10 Gb/s equalization over 24-ft SMA cable +6dB attn.

  • 7/28/2019 CICC 05 Slides

    39/61

    100-Gb/s transmission over 5cm of on-chip100-Gb/s transmission over 5cm of on-chipinterconnect possible in 90nm SiGe BiCMOSinterconnect possible in 90nm SiGe BiCMOS

    Model extracted from

    meas. on 3.6-mm long line 7-tap FFE equalizer

  • 7/28/2019 CICC 05 Slides

    40/61

    Summary

    Key design ideas:

    Optimal solutions exist for LNA, TIA, VCO, (Bi)CMOS-CML gate topologies

    Biasing at minimum noise figure current density

    Matching noise impedance to signal source (tank)impedance

    Key MOSFET circuit scaling ideas

    FETs should be biased at constant current density

    Circuit size and bias current invariant over nodes

    while performance improves with scaling Circuits in the 50-80 GHz range

    Sub-3W, 100 Gb/s Ethernet transceiver possible in 250-GHz, 90-nm SiGe BiCMOS technology

  • 7/28/2019 CICC 05 Slides

    41/61

    Acknowledgments

    Bernard Sautreuil for his support over many years

    STMicroelectronics for fabrication

    Micronet, NSERC, Gennum Corporation andSTMicroelectronics for financial support

    OIT and CFI for equipment grant

    CMC for CAD licenses

  • 7/28/2019 CICC 05 Slides

    42/61

    Backup

    I t f li i d b i

  • 7/28/2019 CICC 05 Slides

    43/61

    Impact of scaling in deep-submicronMOSFETs (500nm to 50nm)

    As a result of the constant-field scaling rules beingapplied to every new CMOS technology node:

    Voltages scale by factorS

    Vertical & lateral electric fields remain constant

    Charge per unit gate width and current per unit gatewidth remain constant

    The classical MOSFET I-Vsquare law remains validonly at very low V

    effbeyond which it becomes linear

  • 7/28/2019 CICC 05 Slides

    44/61

    Mobility degradation

    Mobility degradation due to the

    vertical gate field dominatesbehaviour (based on Intel data, S.Thompson, IEDM'99 Short Course).

    The lateral field (due to VDS

    bias) is about 50 times smallerthan the vertical field

    ac[ cm2

    Vs ]330Eeff1/3[ MVcm ]sr

    [

    cm2

    Vs

    ]1450Eeff

    2.9

    [

    MV

    cm

    ]

    eff=acsr

    acsr

    M d f & b h h ld

  • 7/28/2019 CICC 05 Slides

    45/61

    Measured transfer & subthresholdcharacteristics in 90-nm n-MOSFETS

    Meas red small signal g C C

  • 7/28/2019 CICC 05 Slides

    46/61

    Measured small signal gm, C

    gs, C

    gd

    characteristics in 90-nm n-MOSFETS

  • 7/28/2019 CICC 05 Slides

    47/61

    Si vs. III-V FETs: fT, f

    MAX

    peak fT: 0.3 mA/mm

    peak fMAX: 0.2 mA/mm

    S. Voinigescu et al. JHSES,March 2003

  • 7/28/2019 CICC 05 Slides

    48/61

    Consequences of constant-field scalingin 500 nm to 50 nm MOSFET channels:

    C'gs,C'gd, C'db constant over nodes down to 130 nmthen decreasing as scaling oft

    OXstopped at 1.2 nm

    g'm, g'ds, fT, fMAX increase

    FMIN, Rn decrease RF & high-speed performance (except output

    swing) improves with scaling

    Constant current density biasing ensures design

    robustness over bias current, VT, process variation,nodes & foundries

    Scaling is good for high-speed digital/wireline

  • 7/28/2019 CICC 05 Slides

    49/61

    Slide 49

    60-GHz, single metal inductor for VCOs

    Planar spiral inductor:

    Diameter = 27 mm

    Turns = 1 S = 2 mm, W = 2.5 mm

    C. Lee et al. CSICS-2004

  • 7/28/2019 CICC 05 Slides

    50/61

    Applying negative feedback for noisematching

    Negative feedback has similar impact on noise andinput impedance

    Use Y-matrix to analyze noise params of:

    Multifinger MOSFETs

    CMOS inverter topology

    Parallel (transimpedance) feedback circuits

    Use Z-matrix to analyze noise params of:

    Differential stage Series feedback circuits:

    Tuned LNA with L (xfmr) degeneration

    EF input

    Inverter with resistive degeneration

  • 7/28/2019 CICC 05 Slides

    51/61

    Series feedback for noise matching

    zSOP=rSOPA2 rNF

    gNA2rCORAZ11F

    2Z11FzCORFZ11F

    2gNF

    gNAj[XSOPZ11F]

    FMIN=12gNA [rCORArSOPZ11 F]

  • 7/28/2019 CICC 05 Slides

    52/61

    Parallel feedback for noise matching

    YSOP=GSOPA2 GNFRNA

    2GCORAY11F2Y11F

    YCORFY11F2

    RNF

    RNAj[BSOPY11F

    FMIN=12RNA [GCORAGSOPY11F]

  • 7/28/2019 CICC 05 Slides

    53/61

    Inverter noise matching

    FZo=11

    1L0Z0

    2Z0

    RN

    YCOR

    2

    Z0

    2

    GN

    lEWOPT=

    1

    2

    Z0

    1

    GRGC2B2

    TIA noise matching

    FZo=1RNA Z0YCORA1

    Z0

    1

    RF

    1j0

    102

    2

    Z0 GNAZ0

    RF

    1

    102

    lEWOPT=1

    1

    Z0

    1

    RF

    1

    102

    2

    1

    RF

    0

    102

    2

    1

    GRGC

    2B2

    RF > Z0 for 50match, resulting in lower noise & smaller transistor

    size than low-noise INV design

    ZIN=RF

    1RC IT

  • 7/28/2019 CICC 05 Slides

    54/61

    CMOS topology

    In 90-nm CMOS, the p-MOSFET is low-noise andfast enough for most applications up to 40 Gb/s

    Use CMOS inverter to improve gm/I, Rn to savecurrent over NMOS-only implementations

    Si CMOS SiGe BiCMOS InP low noiseSi CMOS SiGe BiCMOS InP low noise

  • 7/28/2019 CICC 05 Slides

    55/61

    Si CMOS, SiGe BiCMOS, InP low-noiseSi CMOS, SiGe BiCMOS, InP low-noisebroadband preampsbroadband preamps

    OUT+

    OUT-

    IN+

    IN-

    IN

    OUT+

    OUT+

    Low noise broadband preamps: InP vs SiGeLow noise broadband preamps: InP vs SiGe

  • 7/28/2019 CICC 05 Slides

    56/61

    Low-noise broadband preamps: InP vs. SiGeLow-noise broadband preamps: InP vs. SiGeBiCMOSBiCMOS

    (H. Tran et al. GaAs IC Symp. 2003 for InP TIA)(H. Tran et al. GaAs IC Symp. 2003 for InP TIA)

    InP: 40 Gbs

    NF at 10 Ghz Data Rate Sensitivity

    CMOS 16.5 dB 20 Gb/s 20 mVpp

    SiGe-HBT 10 dB 40 Gb/s 20 mVpp

    InP-HBT 11.5 dB 40 Gb/s 8 mVpp

    SiGe: 40 Gbs

    Push-Push VCO measurements (cont)

  • 7/28/2019 CICC 05 Slides

    57/61

    Slide 57

    Push-Push VCO measurements (con t)

    Tuning characteristics:

    Tuning: 10 GHz

    (10.2%)

    Tuning: 15 GHz

    (21%)

    C. Lee et al. CSICS-2004

  • 7/28/2019 CICC 05 Slides

    58/61

    CMOS VCO design scaling and porting

    As technology scales to next node, g'm increases butV

    MAXdecreases,

    Ideally Wand IDS are fixed to maintain VOSC

    In reality Wand IDS

    must be reduced in sync with VMAX

    maximum fOSC increases hence largerCvarcan be used

    Scaling allows for smallerIDS&Wbut not necessarily better

    L(fm)

    Hi h S d L i F M

  • 7/28/2019 CICC 05 Slides

    59/61

    High-Speed Logic FoM:CML Gate Delay

    SLHBT=ICpeakfT

    CbcCcsSLFET=

    IDpeakfT

    CgdCdb

    HBTV CbcCcsIT

    kRb

    RL V C1AVCbc

    IT

    FETV

    CgdCdb

    IT

    k

    Rg

    RL

    V

    Cgs1AVCgd

    IT

    BiCMOSVC

    Ccs

    ITkRgRL V

    CgsCgdIT

    Scaling of MOS/BiCMOS CML logic

  • 7/28/2019 CICC 05 Slides

    60/61

    Scaling of MOS/BiCMOS CML logic

    Assumes maximum inductor SRF of 80 GHz*nH andSRF=2*Bitrate

    Numbers in brackets include emitter(source) followers

    Table 1: fanout-of-1 latches ideal i.e. no parasitics, *) measured

    Latch Family Rate:Gbs VDD (V) DV (V) IT(mA) P D(mW) Ind (nH)

    130nm MOSCML 40 1.8 0.5 1.5(2.4) 2.7 2

    130nm BiCMOSCML

    40 1.8 0.2 0.83 (1.6) 1.5 (2.9) 1

    130nm BiCMOSCML *)

    12 2.5 0.2 1 2.5 0

    130nm BiCMOSECL *) 50 2.5 0.25 7.5(12.5) 18(30) 0.25

    90nm MOSCML 40 1.2 0.38 1.8 2.2 0.5

    90nm BiCMOSCML

    40 1.5 0.2 1 1.5 0.5

    90nm BiCMOS

    CML extracted

    30 1.5 0.2 1 1.5 0.5

    65-nm MOSCML 60 1 0.35 2.5 2.5 0.5

    49 Gb/ 6 ft bl49 Gb/ 6 ft bl

  • 7/28/2019 CICC 05 Slides

    61/61

    49 Gb/s over 6-ft cable49 Gb/s over 6-ft cable

    49 Gbs

    43 Gbs