Author
aneko
View
24
Download
0
Embed Size (px)
DESCRIPTION
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms. Venkatesh Saligrama Boston University. Chun Lam Chan , Pak Hou Che and Sidharth Jaggi The Chinese University of Hong Kong. n-d. d. - PowerPoint PPT Presentation
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal
bounds with efficient algorithmsChun Lam Chan, Pak Hou Che and Sidharth Jaggi
The Chinese University of Hong KongVenkatesh Saligrama
Boston University
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal
bounds with efficient algorithmsChun Lam Chan, Pak Hou Che and Sidharth Jaggi
The Chinese University of Hong KongVenkatesh Saligrama
Boston University
n-dd
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal
bounds with efficient algorithmsChun Lam Chan, Pak Hou Che and Sidharth Jaggi
The Chinese University of Hong KongVenkatesh Saligrama
Boston University
n-dd
4
Literature No error: [DR82], [DRR89] With small error ϵ:
Upper bound: [AS09], [SJ10]
5
Literature No error: [DR82], [DRR89] With small error ϵ:
Upper bound: [AS09], [SJ10]
Lower bound: [Folklore]
Non-adaptive probabilistic group testing with noisy measurements: Near-optimal
bounds with efficient algorithms
7
Algorithms motivated by Compressive Sensing Combinatorial Basis Pursuit (CBP) Combinatorial Orthogonal Matching Pursuit
(COMP)
8
Noiseless CBP
n-dd
9
Noiseless CBP
n-dd
Discard
10
Noiseless CBP Sample g times to form a
group
n-dd
11
Noiseless CBP Sample g times to form a
group
n-dd
12
Noiseless CBP Sample g times to form a
group
n-dd
13
Noiseless CBP Sample g times to form a
group
n-dd
14
Noiseless CBP Sample g times to form a
group
Total non-defective items drawn:
n-dd
15
Noiseless CBP Sample g times to form a
group
Total non-defective items drawn:
Coupon collection:
n-dd
16
Noiseless CBP Sample g times to form a
group
Total non-defective items drawn:
Coupon collection:
Conclusion:
n-dd
17
Noisy CBP
n-dd
18
Noisy CBP
n-dd
19
Noisy CBP
n-dd
20
Noisy CBP
n-dd
21
Noiseless COMP
22
Noiseless COMP
23
Noiseless COMP
24
Noiseless COMP
25
Noiseless COMP
26
Noisy COMP
27
Noisy COMP
28
Noisy COMP
29
Noisy COMP
30
Noisy COMP
31
Noisy COMP
32
Noisy COMP
33
Simulations
0 100 200 300 400 500 600 700 8000
1
Experimental; q=0
Theoretical-lower; q=0
Theoretical-upper;q=0
number of tests (T)
succ
ess r
ate
34
Simulations
0 500 1000 1500 2000 2500 30000
1
Experimental; q=0Experimental; q=0.1Experimental; q=0.2Theoretical-lower; q=0Theoretical-lowerl; q=0.1Theoretical-lower; q=0.2Theoretical-upper;q=0Theoretical-lower; q=0.1Theoretical-lower; q=0.2
number of tests (T)
succ
ess r
ate
35
Summary
CBP COMPNoiselessNoisy
With small error ,
36
End
Thanks
37
Noiseless COMP
x 0 0 1 0 0 0 1 0 0
M y0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 00 0 1 1 0 1 1 0 0 1
38
x 0 0 1 0 0 0 1 0 0
M y0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 00 0 1 1 0 1 1 0 0 1
0 10 11 0 x90 1 → 00 11 00 1
Noiseless COMP
39
Noiseless COMP
x 0 0 1 0 0 0 1 0 0
M y0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 00 0 1 1 0 1 1 0 0 1
0 01 10 0 x71 1 → 11 10 01 1
40
Noiseless COMP
x 0 0 1 0 0 0 1 0 0
M y0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 00 0 1 1 0 1 1 0 0 1
1 11 10 0 x40 1 → 11 10 01 1
41
Noiseless COMP
x 0 0 1 0 0 0 1 0 0
M y0 1 1 1 0 0 0 0 0 10 0 0 1 0 0 1 0 0 10 1 0 0 0 0 0 0 1 01 1 1 0 0 0 1 1 0 10 0 1 1 0 1 1 0 0 10 0 0 0 1 0 0 1 1 00 0 1 1 0 1 1 0 0 1
1 1 0 0 0 11 1 1 1 0 10 0 x4 0 0 x7 1 0 x9
(a) 0 1 → 1 (b) 1 1 → 1 (c) 0 1 → 01 1 1 1 0 10 0 0 0 1 01 1 1 1 0 1
42
Noisy COMPx 0 0 1 0 0 0 1 0 0
M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1
0 00 00 11 01 10 01 1
43
Noisy COMPx 0 0 1 0 0 0 1 0 0
M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1
0 00 00 1 x31 0 → 11 10 01 1
If then =1 else =0
44
Noisy COMPx 0 0 1 0 0 0 1 0 0
M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1
1 00 01 1 x21 0 → 11 10 00 1
45
Noisy COMPx 0 0 1 0 0 0 1 0 0
M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1
0 01 00 1 x71 0 → 00 10 01 1
46
Noisy COMPx 0 0 1 0 0 0 1 0 0
M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1
1 0 0 0 0 00 0 0 0 1 01 1 x2 0 1 x3 0 1 x7
(a) 1 0 → 1 (b) 1 0 → 1 (c) 1 0 → 01 1 1 1 0 10 0 0 0 0 00 1 1 1 1 1
47
Noisy COMPx 0 0 1 0 0 0 1 0 0
M y ν ŷ0 1 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 1 1 00 1 0 0 0 0 0 0 1 0 1 11 1 1 0 0 0 1 1 1 1 + 1 → 00 1 1 1 0 1 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 1
1 0 0 0 0 00 0 0 0 1 01 1 x2 0 1 x3 0 1 x7
(a) 1 0 → 1 (b) 1 0 → 1 (c) 1 0 → 01 1 1 1 0 10 0 0 0 0 00 1 1 1 1 1