40
RNA Structures Stability, Folding and the Role of Hydrogen Bonding and Protons Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien Schloß Ringberg, 05.03.2002

Chemistry and Evolution at the Origin of Lifepks/Presentation/ringberg.pdfKinetic Structures Fr e e En e r gy S0 S 0 S1 S2 S3 S4 S5 S6 S7 S8 S10 S9 Minimum Free Energy Structure Suboptimal

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • RNA Structures

    Stability, Folding and the Role ofHydrogen Bonding and Protons

    Peter SchusterInstitut für Theoretische Chemie und Molekulare

    Strukturbiologie der Universität Wien

    Schloß Ringberg, 05.03.2002

  • OCH2

    OHO

    O

    PO

    O

    O

    N1

    OCH2

    OHO

    PO

    O

    O

    N2

    OCH2

    OHO

    PO

    O

    O

    N3

    OCH2

    OHO

    PO

    O

    O

    N4

    N A U G Ck = , , ,

    3' - end

    5' - end

    Na

    Na

    Na

    Na

    The chemical formula of RNA consisting of nucleobases, ribose rings, phosphate groups, and sodium counterions

  • Structural Constraints and Hydrogen Bonding in RNA

    Single stranded RNA molecules form structures, which combine double-helical stacking (A-type) regions with loops and metal ion (Mg2 )coordinated centers.

  • The three-dimensional structure of a short double helical stack

  • Canonical Watson-Crick base pairs:

    cytosine – guanineuracil – adenine

    W.Saenger, Principles of Nucleic Acid Structure, Springer, Berlin 1984

  • O

    O

    OO

    O

    H

    H

    HH

    H

    H

    H

    HH

    H

    H

    N

    NNN

    N

    N

    N

    N

    N

    N

    NO

    O

    HN

    N

    H

    O

    NN

    N

    NN

    N

    N

    G=U

    G C

    U=G

    Canonical Watson-Crick base-pair Wobble base-pairs

    Wobble base pairs in RNA double-helical stacks

  • CG

    ``A´´U

    2,6-diamino purine

    2-keto, 6-amino purine

    2,6-diketo purine

    5-keto, 7-amino, 1,6,8-triaza indolicine

    5- , 7- , 1,6,8-triaza indolicine

    amino keto

    2-amino,6-keto purine2-keto, 4-amino pyrimidine

    2- , 4- pyrimidineamino keto

    2,4-di pyrimidineketo

    2,6-diamin pyrimidineo

    2- , 6-keto pyrazineamino

    2- , 6- pyrazineketo amino

    Color code:

    Donor—Acceptor

    Acceptor—Donor

    Hydrogen bonding patterns for Watson-Crick base pairs

    S.A. Benner et al., Reading the palimpsest: Contemporary biochemical data and the RNA world. In: R.F.Gesteland and J.F.Atkins, eds. The RNA World, pp.27-70. CSHL Press, 1993

  • Classification of purine-pyrimidine base pairs

  • Classification of purine-purine base pairs

  • Classification of pyrimidine-pyrimidine base pairs

  • General classificationof base pairs

    N.B.Leontis and E. Westhof, RNA 7:499-512 (2001)

  • Stacking of heterocyclic aromatic molecules without sugar-phosphate backbone

    Example: N6,N9-dimethyl adenine, D. Pörschke and F. Eggers, Eur.J.Biochem. 26:490-498 (1972)

  • Stacking of RNA single strands

    Example: poly-A, D.Pörschke. Elementary steps of base recognition and helix-coil transitions in nucleic acids. In: I.Pecht and R.Rigler, eds. Chemical Relaxation in Molecular Biology, pp.191-218. Springer-Verlag, Berlin 1977.

  • Three-dimensional structure ofphenylalanyl-transfer-RNA

  • RNA Secondary Structures and their Properties

    RNA secondary structures are listings of Watson-Crick and GU wobble base pairs, which are free of knots and pseudokots. Secondary structures are folding intermediates in the formation of full three-dimensional structures.

    D.Thirumalai, N.Lee, S.A.Woodson, and D.K.Klimov. Annu.Rev.Phys.Chem. 52:751-762 (2001)

  • 5'-End

    5'-End

    5'-End

    3'-End

    3'-End

    3'-End

    70

    60

    50

    4030

    20

    10

    GCGGAU AUUCGCUUA AGDDGGGA M CUGAAYA AGMUC TPCGAUC A ACCAGCUC GAGC CCAGA UCUGG CUGUG CACAGSequence

    Secondary Structure

    Symbolic Notation

    Definition of the secondary structure of phenylalanyl-tRNA

  • 5.10

    2

    2.90

    8

    1415

    18

    2.60

    17

    23

    19

    2722

    38

    45

    25

    3633

    3940

    3.10

    43

    3.40

    41

    3.30

    7.40

    5

    3

    7

    3.00

    4

    109

    3.40

    6

    1312

    3.10

    11

    2120

    16

    2829

    26

    3032

    424644

    24

    353437

    49

    2.80

    31

    4748

    S0S1

    Kinetic Structures

    Free

    Ene

    rgy

    S0 S0S1

    S2

    S3S4S5 S6

    S7S8

    S10S9

    Minimum Free Energy Structure Suboptimal Structures

    T = 0 K , t T > 0 K , t T > 0 K , t finite

    5.90

    Different notions of RNA structure

  • RNA Minimum Free Energy Structures

    Efficient algorithms based on dynamical programming are available for computation of secondary structures for given sequences. Inverse folding algorithms compute sequences for given secondary structures.

    M.Zuker and P.Stiegler. Nucleic Acids Res. 9:133-148 (1981)

    Vienna RNA Package: http:www.tbi.univie.ac.at (includes inverse folding, suboptimal structures, kinetic folding, etc.)

    I.L.Hofacker, W. Fontana, P.F.Stadler, L.S.Bonhoeffer, M.Tacker, and P. Schuster. Mh.Chem. 125:167-188 (1994)

  • UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

    GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

    UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

    CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG

    GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

    Criterion ofMinimum Free Energy

    Sequence Space Shape Space

  • Sk I. = ( )ψ Gk k = ( )f S

    Sequence space Shape space Non-negativenumbers

    Mapping from sequence space into phenotype space and into free energies

  • .... GC UC ....CA

    .... GC UC ....GU

    .... GC UC ....GA .... GC UC ....CU

    d =1H

    d =1H

    d =2H

    Point mutations as moves in sequence space

  • λj = 27 ,/12 λk = (k)j

    | |Gk

    λ κcr = 1 - -1 ( 1)/ κ-

    λ λk cr . . . .>

    λ λk cr . . . .<

    Network is connectedGk

    Network is connectednotGk

    Connectivity Threshold:

    Alphabet Size : = 4AUGC

    G S Sk k k= ( ) | ( ) = -1 I Ij j

    cr

    2 0.5

    3 0.4226

    4 0.3700

    Mean degree of neutrality and connectivity of neutral networks

  • A connected neutral network

  • Giant Component

    A multi-component neutral network

  • Kinetic Folding of RNA at Elementary Step Resolution

    The RNA folding process is resolved to base pair closure, base pair cleavageand base pair shift. The kinetic folding behavior is determined by computation of a sufficiently large ensemble of individual folding trajectories and taking an average over them. The folding behavior is illustrated by barrier trees showing the path of lowest energy between two local minima of free energy.

    C.Flamm, W.Fontana, I.L.Hofacker and P.Schuster. RNA, 6:325-338 (2000)

  • closure

    shift

    cleavage

    Move set for elementary stepsin kinetic RNA folding

  • Folding dynamics of the sequence GGCCCCUUUGGGGGCCAGACCCCUAAAAAGGGUC

  • CUGGGAAAAAUCCCCAGACCGGGGGUUUCCCCGG

    G

    G

    G

    GG

    G

    G

    G

    G

    G

    G

    G

    G

    G

    G

    G

    G

    G

    C

    C

    C

    C

    C

    C

    CC

    UU

    UU

    U

    U

    G

    G

    G

    G

    G

    C

    C

    C

    C

    C

    C

    C

    CC

    C

    C

    C

    CU

    UU

    AA

    A

    AA

    A

    A

    A

    A

    A

    U

    3’-end

    Min

    imum

    free

    ene

    rgy

    conf

    orm

    atio

    n S 0

    Subo

    ptim

    al c

    onfo

    rmat

    ion

    S 1

    C

    G

    One sequence is compatible with two structures

  • Sh

    S1(h)

    S6(h)

    S7(h)

    S5(h)

    S2(h)

    S9(h)

    Free

    ene

    rgy

    G

    0

    Local minimum

    Suboptimal conformations

    Search for local minima in conformation space

  • Free

    ene

    rgy

    G

    0

    Free

    ene

    rgy

    G

    0

    "Reaction coordinate"

    Sk Sk

    S SSaddle point T k

    T k

    "Barrier tree"

  • 5.10

    2

    2.90

    8

    1415

    18

    2.60

    17

    23

    19

    2722

    38

    45

    25

    3633

    3940

    3.10

    43

    3.40

    41

    3.30

    7.40

    5

    3

    7

    3.00

    4

    109

    3.40

    6

    1312

    3.10

    11

    2120

    16

    2829

    26

    3032

    424644

    24

    353437

    49

    2.80

    31

    4748

    S0S1

    Barrier tree of a sequence with two conformations 5

    .90

  • A ribozyme switch

    E.A.Schultes, D.B.Bartel, One sequence, two ribozymes: Implication for the emergence of new ribozyme folds. Science 289 (2000), 448-452

  • U

    U

    U

    U

    U

    G

    G

    G

    G

    G

    G G

    G

    G

    G

    G

    G G

    G

    G

    G

    G

    A

    A

    A

    A

    A

    A

    A

    A

    A

    A

    C

    C

    C C

    C C

    C

    C

    C

    C

    C C

    C

    C

    C

    Cleavage site

    The "hammerhead" ribozyme

    OH

    OH

    OH

    ppp

    5'

    5'

    3'

    3'

    The smallest knowncatalytically activeRNA molecule

  • Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage ribozyme of hepatitis- -virus (B)

  • The sequence at the intersection:

    An RNA molecules which is 88 nucleotides long and can form both structures

  • Reference for the definition of the intersection and the proof of the intersection theorem

  • Two neutral walks through sequence space with conservation of structure and catalytic activity

  • Sequence of mutants from the intersection to both reference ribozymes

  • Reference for postulation and in silico verification of neutral networks

  • Coworkers

    Walter Fontana, Santa Fe Institute, NM

    Christian Reidys, Christian Forst, Los Alamos National Laboratory, NM

    Peter Stadler, Ivo L.Hofacker, Christoph Flamm, Universität Wien, AT

    Bärbel Stadler, Ulrike Mückstein, Andreas Wernitznig, Stefanie Widder, Stefan Wuchty, Universität Wien, AT

    Ulrike Göbel, Walter Grüner, Stefan Kopp, Jaqueline Weber, Institut für Molekulare Biotechnologie, Jena, GE

    RNA StructuresCoworkers