View
2
Download
0
Embed Size (px)
Chemical reacting transport phenomena and multiscale
models for SOFCs
Martin Andersson Dept. of Energy sciences Lund University, Sweden
Heat Transfer 2008, 9-11 July, Maribor
Updated version for group seminar
Agenda
• Introduction to Fuel Cells (FC) – Market potential – Different types
• Modeling at different scales • Current and Future research • Conclusion
M. Andersson HEAT 2008
Fuel Cells
• Principle discovered in 1838 • High efficiency • No pollution • Fuel Cells are classified according to
their ionic conductor (electrolyte) – AFC, PEMFC, PAFC, MCFC, SOFC
M. Andersson HEAT 2008
Fuel Cells
• Prices needs to be lowered for commercialisation: – 50 $/kW for “normal” cars – 135 $/kW for delivery vans – 200 $/kW for buses
• First big market ???
• Toyota claims they can build FC stacks for 500 $/kW
M. Andersson HEAT 2008
5
from: IEA
6
from: IEA
Fuel Cells
M. Andersson HEAT 2008
Alkali Fuel Cell (AFC)
M. Andersson HEAT 2008
• Working temperature: 20-250°C • Lifetime: 8000 h • Efficiency: 60 % • Electrolyte: Potassium hydroxide • Space missions • Vulnerable to CO2 poisoning
Proton Exchange Membrane (PEMFC)
M. Andersson HEAT 2008
• Working temperature: ~80°C • Current stack cost: 2000 $/kW • Electrolyte: Solid polymer • Transportation sector
– Fast start-up time – High power to weight ratio
• Vulnerable to CO poisoning
Phosphoric acid (PAFC)
M. Andersson HEAT 2008
• Working temperature: ~200°C • Overall Efficiency: 85 %
– 40% electricity • Electrolyte: Phosphoric acid
Price: 4000$/kW – Due to their platinum catalyst
Molten carbonate (MCFC)
M. Andersson HEAT 2008
• Working temperature: >650°C • Combined with gas turbine • Overall Efficiency 90%
– 60% electricity • Stationary use • Internal reforming possible
SOFCs • Working temperature: 600 – 1000°C • Combined with gas turbine • Overall Efficiency: >85 %
– 70% electricity • Stationary use • Internal reforming is possible • Current Cost: 12000 $/kW • Vulnerable to sulfur poisoning
M. Andersson HEAT 2008
SOFC - reactions
exothermic
exothermic
exothermic
endothermic
exothermic
M. Andersson HEAT 2008
Modeling at different scales
• System scale ~102 m • Component scale ~101 m • Flow/diffusion morphologies ~10-3 m • Material structure ~10-6 m • Functional material levels ~10-9 m
M. Andersson HEAT 2008
Modeling at different scales • Microscale ()
– Global flow field – Empirical factors from mirco/mesoscale
can be used for macroscale modeling
M. Andersson HEAT 2008
Modeling at different scales • Microscale
– Theoretical knowledge • Macroscale
– Empirical data
M. Andersson HEAT 2008
Modeling at microscale
•Diffusion at atomistic scale [Å-nm] –Density Functional Theory (DFT) •Oxygen ion-hoping phenomena inside YSC electrolyte –Molecular Dynamics(MD) •Mass transport of gases inside porous structures –Lattice Bolzmann Method (LBM) [example]
M. Andersson HEAT 2008
Modeling at microscale
Porous anode SOFC structure:
Lattice Bolzmann Method (LBM) is used to calculate a steady state mole fraction variation in a typical porous geometry.
M. Andersson HEAT 2008
Modeling at microscale
•Prediction of concentration over potential –Dusty Gas Model (DGM) –Ficks Model (FM) –Stefan-Maxwell Model (SMM) Does not consider Knudsen diffusion
M. Andersson HEAT 2008
Possible to use SMM in COMSOL Multiphysics
Modeling at mesoscale
• Simulation of open circuit voltage – Kinetic Monte Carlo (KMC)
• Multiphysics processes in cathode/electrolyte interface considering geometry and detailed distribution of the pores – Finite Elements Method (FEM)
M. Andersson HEAT 2008
Modeling at macroscale
• Commercial codes are used to solve momentum, mass, energy and electrochemical kinetics – COMSOL Multiphysics
• Finite Element Method (FEM) – FLUENT, CFX, STAR-CD
• Finite Volume Method (FVM)
M. Andersson HEAT 2008
Modeling at macroscale
SOFC anode supported button cell:
Dusty gas model is used in FLUENT(FVM) to calculate the velocity profile (m/s) within the anode compartment.
M. Andersson HEAT 2008
Integration issues • Multiphysics modeling considers
interaction between two or more physical disciplines
• Hierarchical methods – Starts at smaller scale
• Hybrid and Cocurrent method – Solve for several scales at same time
M. Andersson HEAT 2008
SOFC multiscale • FC operation depends on interaction
between: – Mass transport – Heat transfer – Electrochemical/chemical reactions – Multi-phase fluid flow
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
• User friendly • Powerful • Ability to model several physical
phenomena simultaneously – The free variable in one mode can be
used as input in another, for example temperature, velocity, pressure.
• Many post processing options
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
• Define a geometry (1D, 2D, 3D) • Boundary conditions • Subdomain conditions • Adjust mesh • Time dependent / Stationary
conditions
M. Andersson HEAT 2008
• Our model: – Intermediate temperature anode supported
SOFC (T = 700°C) – Current density, inlet temperature and
velocity for fuel need to be assumed/specified (“input”)
– Mass fraction, temperature distribution, heat transfer etc. are the “output”
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
x=0.2
COMSOL Multiphysics (FEM)
M. Andersson HEAT 2008
x=0.2
Future research
• Compare different materials • Design optimisation • Add CH4, CO, CO2 to the model
(internal reforming) • Current density as a function of
conditions inside the FC
M. Andersson HEAT 2008
Future research
• Microscale modeling can be used to calculate the “input” parameters for macroscale model in COMSOL Multiphysics
• Better understanding of phenomena at anode Triple Phase Boundary (TPB) – ionic, electronic, porous
M. Andersson HEAT 2008
Conclusions
• SOFCs can be described at different scales
• Multiscale models are promising – Understanding of heat- and mass
transport and chemical- and electrochemical reactions
– Lower cost for development, i.e., the commercialisation of fuel cells will be promoted
M. Andersson HEAT 2008
Questions ???
Clarifications ???
Comments ???
M. Andersson HEAT 2008