Chapter2 Precipitation

Embed Size (px)

Citation preview

  • 7/28/2019 Chapter2 Precipitation

    1/30

    Precipitation

    CTP Review

    June 23, 2012

  • 7/28/2019 Chapter2 Precipitation

    2/30

    Precipitation

    Single strongest variable driving

    hydrologic processes

    Formed water vapor in the atmosphere

    As air cools its ability to hold water

    decreases and some turns to liquid or ice-

    i.e. glass condensation (Figure 2.1)

  • 7/28/2019 Chapter2 Precipitation

    3/30

    Air Saturation

  • 7/28/2019 Chapter2 Precipitation

    4/30

    Weather Patterns

    Weather (day to day) vs. climate (years-

    decades and patterns)

    What are hydrologists most concerned

    with?

    Climate and geography result in biome

    classification

  • 7/28/2019 Chapter2 Precipitation

    5/30

    Figure 2.2

    Biomes and Rainfall

  • 7/28/2019 Chapter2 Precipitation

    6/30

    Causes of Precipitation

  • 7/28/2019 Chapter2 Precipitation

    7/30

    Measurement of Precipitation

    Terminology (2.3)

    Types of devices (2.4.2)

    Snowfall conversions (2.4.1)

    Location of devices (2.4)

    Interpretation of data (2.3.3, 2.6)

  • 7/28/2019 Chapter2 Precipitation

    8/30

    Rainfall Terminology

    Type-hail, rain, snow, sleet

    Depth

    Storm Duration

    Average rate of precipitation-Intensity

    Return Period or Recurrence Interval

  • 7/28/2019 Chapter2 Precipitation

    9/30

    Types of Rain Gages

  • 7/28/2019 Chapter2 Precipitation

    10/30

    Snow Measurement

    Determine the water equivalent

    5%-60% of snow depth may be water

    equivalent-- density

    Snow pillows use antifreeze solution and

    pressure measurement to measure water

    equivalent

  • 7/28/2019 Chapter2 Precipitation

    11/30

    Location of Gages

    Gauges measurepoint rainfall

    True precipitation unaffected by

    surroundings-winds, trees, buildings

    Clearance distance 2 times height of object

    For large areas multiple gauges are needed

    for more accurate estimates

  • 7/28/2019 Chapter2 Precipitation

    12/30

    Table 2.3

    Size of Watershed Number of Gage SitesAcres

    40 2

    100 3

    600 4

    Square Miles

    5 10

    10 15

    100 50

    300 100

  • 7/28/2019 Chapter2 Precipitation

    13/30

    Rain Gage Density & Error

  • 7/28/2019 Chapter2 Precipitation

    14/30

    Interpretation of Data

    Time distributions

    Area distributions

    Using point data to find average rainfall

    Thiessen method

  • 7/28/2019 Chapter2 Precipitation

    15/30

    Figure 2.14

    Storm Patterns (Histograms)

  • 7/28/2019 Chapter2 Precipitation

    16/30

    Thiessen Method for Average Rain

    Step 1

  • 7/28/2019 Chapter2 Precipitation

    17/30

    Thiessen Method for Average Rain

    Step 2

  • 7/28/2019 Chapter2 Precipitation

    18/30

    Thiessen Method for Average Rain

    Step 3

  • 7/28/2019 Chapter2 Precipitation

    19/30

    Thiessen Method for Average Rain

    Step 4

  • 7/28/2019 Chapter2 Precipitation

    20/30

    Prediction-Frequency

    Distributions To plan and design projects must be able

    to predict probability of rainfall events

    Duration, Intensity, Return Period

    Often must estimate Return Periods

    UseHazen method to develop intensity-

    duration-frequency curve (Example 2.5).

  • 7/28/2019 Chapter2 Precipitation

    21/30

    Table 2.6Annual Precip. for LA, CA 1934-1953Year Depth (in) Rank Depth (in) Year1934 14.6 1 32.8 19411935 21.7 2 26.2 19521936 12.1 3 23.4 19381937 22.4 4 22.4 19371938 23.4 5 21.7 19351939 13.1 6 19.2 19401940 19.2 7 19.2 1944

    1941 32.8 8 18.2 19431942 11.2 9 14.6 19341943 18.2 10 13.1 19391944 19.2 11 12.7 19471945 11.6 12 12.1 19361946 11.6 13 11.6 1945

    1947 12.7 14 11.6 19461948 7.2 15 11.2 19421949 8 16 10.6 19501950 10.6 17 9.5 19531951 8.2 18 8.2 19511952 26.2 19 8 19491953 9.5 20 7.2 1948

    You have determined that

    more than 23.4 of annual

    rainfall will result in a net

    Economic loss for your

    crop.

    Now, you need to predictHow often this will occur.

  • 7/28/2019 Chapter2 Precipitation

    22/30

    Table 2.6Annual Precip. for LA, CA 1934-1953Year Depth (in) Rank Depth (in) Year1934 14.6 1 32.8 19411935 21.7 2 26.2 19521936 12.1 3 23.4 19381937 22.4 4 22.4 19371938 23.4 5 21.7 19351939 13.1 6 19.2 19401940 19.2 7 19.2 1944

    1941 32.8 8 18.2 19431942 11.2 9 14.6 19341943 18.2 10 13.1 19391944 19.2 11 12.7 19471945 11.6 12 12.1 19361946 11.6 13 11.6 1945

    1947 12.7 14 11.6 19461948 7.2 15 11.2 19421949 8 16 10.6 19501950 10.6 17 9.5 19531951 8.2 18 8.2 19511952 26.2 19 8 19491953 9.5 20 7.2 1948

  • 7/28/2019 Chapter2 Precipitation

    23/30

    Probability of Occurrence, Fa (%)=

    100 (2n-1)

    2y

    Equation 2.2, page 46

    n = the rank of each event

    y = the total number of events

    For Example:

    Year 1938--23.4 in--Rank #3

    100 (2*3-1)2*20

    = 12.5

  • 7/28/2019 Chapter2 Precipitation

    24/30

    Table 2.6Annual Precip. for LA, CA 1934-1953Year Depth (in) Rank Depth (in) Year Prob. F a1934 14.6 1 32.8 1941 2.51935 21.7 2 26.2 1952 7.5

    1936 12.1 3 23.4 1938 12.51937 22.4 4 22.4 1937 17.51938 23.4 5 21.7 1935 22.51939 13.1 6 19.2 1940 27.51940 19.2 7 19.2 1944 32.51941 32.8 8 18.2 1943 37.51942 11.2 9 14.6 1934 42.51943 18.2 10 13.1 1939 47.51944 19.2 11 12.7 1947 52.51945 11.6 12 12.1 1936 57.51946 11.6 13 11.6 1945 62.51947 12.7 14 11.6 1946 67.51948 7.2 15 11.2 1942 72.51949 8 16 10.6 1950 77.51950 10.6 17 9.5 1953 82.51951 8.2 18 8.2 1951 87.51952 26.2 19 8 1949 92.5

    1953 9.5 20 7.2 1948 97.5

  • 7/28/2019 Chapter2 Precipitation

    25/30

    Return Period=100

    Fa

    For Example:

    Year 1938-- Fa= 12.5

    10012.5

    = 8 yrs

    Fa= probability of occurrence (%)

  • 7/28/2019 Chapter2 Precipitation

    26/30

    Table 2.6Annual Precip. for LA, CA 1934-1953Year Depth (in) Rank Depth (in) Year Prob. F a Return Period1934 14.6 1 32.8 1941 2.5 40.01935 21.7 2 26.2 1952 7.5 13.31936 12.1 3 23.4 1938 12.5 8.01937 22.4 4 22.4 1937 17.5 5.71938 23.4 5 21.7 1935 22.5 4.41939 13.1 6 19.2 1940 27.5 3.61940 19.2 7 19.2 1944 32.5 3.1

    1941 32.8 8 18.2 1943 37.5 2.71942 11.2 9 14.6 1934 42.5 2.41943 18.2 10 13.1 1939 47.5 2.11944 19.2 11 12.7 1947 52.5 1.91945 11.6 12 12.1 1936 57.5 1.71946 11.6 13 11.6 1945 62.5 1.6

    1947 12.7 14 11.6 1946 67.5 1.51948 7.2 15 11.2 1942 72.5 1.41949 8 16 10.6 1950 77.5 1.31950 10.6 17 9.5 1953 82.5 1.21951 8.2 18 8.2 1951 87.5 1.11952 26.2 19 8 1949 92.5 1.1

    1953 9.5 20 7.2 1948 97.5 1.0

  • 7/28/2019 Chapter2 Precipitation

    27/30

    Frequency-Magnitude Graph

  • 7/28/2019 Chapter2 Precipitation

    28/30

    Predict probability of a given return period

    storm occurring within a given number of years

    What is the probability that the 8-year event will

    happen in LA within the next 5 years? Or, what

    The probability of an economic loss due to reduced

    Harvest in the next 5 years?

    equation 2.4, page 47

    P(T,n)= 1 - ( 1 - )n

    1T

    (49%) 0.49= 1 - ( 1 - )518

  • 7/28/2019 Chapter2 Precipitation

    29/30

    Figure 2.19

    Rainfall Rate-Duration-Frequency

    R i f ll R t D ti F

  • 7/28/2019 Chapter2 Precipitation

    30/30

    Figure 2.20

    Rainfall Rate-Duration-Frequency

    Prediction

    by Month