Chapter 9 Jan13

  • Upload
    kumutha

  • View
    232

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 Chapter 9 Jan13

    1/40

    1

    Chapter 9:

    Molecular Geometry

  • 8/12/2019 Chapter 9 Jan13

    2/40

    2

    Learning Outcomes

    Student should be able to use Lewis structure

    to determine the electron domain geometry and

    the molecular shape of a compound.

  • 8/12/2019 Chapter 9 Jan13

    3/40

    3

    Molecular Shapes

    Lewis electron-dot structures:- give us the connectivity between atoms.- is drawn with atoms in the same plane.

    e.g. Lewis structure of CF4shows 4F atomsbonded to a central C atom.

    C

    F

    F

    F

    F

  • 8/12/2019 Chapter 9 Jan13

    4/40

    4

    The actual 3D arrangement of the atoms has Fatoms at the corners of atetrahedron.

    (4 corners, 4 faces, each which is an equilateraltriangle)

    The overall shape of a molecule is determined byits bond angle.

    In CF4: all 6 C-F angles = 109.5o- characteristicof tetrahedron.

    109.5o

  • 8/12/2019 Chapter 9 Jan13

    5/40

    5

    The VSEPR Model

    Valence Shell Electron Pair Repulsion Theory(think in 3D)

    Developed by Ron Gillespie and IstvnHargittai in 1957.Assumption: electron pairs repel, so the

    bonding pairs and lone pairs attached to acentral atom are located as far apart fromeach other as possible.

    Bonding pair of electron: a region/domain in

    which it is most likely to find electrons.

    Nonbonding pair/lone pair: an electron domainthat is located principally on 1 atom.

  • 8/12/2019 Chapter 9 Jan13

    6/40

    6

    e.g.

    Electron domain geometry: arrangement ofelectron pairs/domainsaround the central atom.

    Molecular geometry: arrangement of atomsaround the central atom.

    When describing shapes of molecules - give themolecular geometry rather than electron domaingeometry.

    N

    HH

    H

    Non bonding pair/lone pair

    electron

    All the N-H bonds involve

    bonding electron pairs

  • 8/12/2019 Chapter 9 Jan13

    7/407

    The VSEPR Model

    5 Basic Arrangements of Electron Pair s/Domain:

    No. of electrondomain

    2

    3

    Electron-domain Geometry

    Linear

    Trigonalplanar

    Bond angles

    180o

    120o

  • 8/12/2019 Chapter 9 Jan13

    8/408

    No. of electron

    domain

    4

    5

    6

    Electron-domain Geometry

    Tetrahedral

    Trigonal

    bipyramidal

    Octahedral

    Bond angles

    109.5o

    120oand 90o

    90

  • 8/12/2019 Chapter 9 Jan13

    9/409

    The VSEPR Model Trigonal bipyramid:

    the electron domainscan point toward 2

    distinct type of positions.

    2 positions arecalled axial positions,

    remaining 3 -

    equatorial

    positions.

    120o

    90o

    120o

  • 8/12/2019 Chapter 9 Jan13

    10/40

    10

    The VSEPR Model

    Axial (ax)

    Axial (ax)

    Equatorial (eq)

  • 8/12/2019 Chapter 9 Jan13

    11/40

    11

  • 8/12/2019 Chapter 9 Jan13

    12/40

    12

    Effects of Lone Pair Electrons on Bond Angle

    E.g. All 3 compounds below have tetrahedral

    electron-domain geometries, but their bond anglesdiffer slightly. Why?

    Note that the bond angle decreases as no. of lonepair electrons increases.

    C

    H

    HH

    H

    NHH

    H

    O

    H

    H

    107.643o

    105.611o

    109.471o

  • 8/12/2019 Chapter 9 Jan13

    13/40

    13

    Reasons: Lone pairs repel more than bonding pairs. Therefore, the lone pairs cause the bond angles

    to close up.

    Bonding pair of electrons is attracted by both

    nuclei of the bonded atoms whereas lone pairelectronis attracted by only 1 nucleus. Because lone pair electrons experiences less

    nuclear attraction, its electron domain is spread

    out more in space/exert greater repulsion onadjacent electron domains (compress bondangles).

  • 8/12/2019 Chapter 9 Jan13

    14/40

    14

  • 8/12/2019 Chapter 9 Jan13

    15/40

    Electron domain geometry: Trigonal Planar

    :

    Molecular

    Geometry: Trigonal Planar Bent

    :

    120o

    Eg: BF3

    B

    F

    F F

    Eg: NO2-

    N

    O O

    115.4o

  • 8/12/2019 Chapter 9 Jan13

    16/40

    16

  • 8/12/2019 Chapter 9 Jan13

    17/40

    Electron domain geometry: Tetrahedral

    :

    Molecular

    Geometry::

    Tetrahedral

    :

    Trigonal

    pyramidal:Bent

    109.5o

    N

    H

    H

    H

    C

    H

    H

    H

    H

    O

    H

    H

  • 8/12/2019 Chapter 9 Jan13

    18/40

    18

    Molecules with Expanded Valence Shells When the central atom of a molecule is from the

    3rd period and beyond of the periodic table, theatoms may have 4 electron pairs around it.

    Molecules with 5/6 electron domains display avariety of molecular geometries.

    E.g.: Trigonal bipyramidal: will lone pair electrondomain occupy axial or equatorial positions?

    Repulsions between domain is greater if they aresituated 90ofrom each other than when they are

    120o. Hence equatorial domain experiences lessrepulsion than axial domain.

    Thus, lone pair electrons always occupy equatorialpositions in a trigonal bipyramidal.

  • 8/12/2019 Chapter 9 Jan13

    19/40

    19

    The VSEPR Model

    120o

    90o

    120o

  • 8/12/2019 Chapter 9 Jan13

    20/40

    20

  • 8/12/2019 Chapter 9 Jan13

    21/40

    21

    Octahedron - solid object with 6 vertices and8 faces, each of which is an equilateraltriangle.

    All angles are 90o, and all 6 positions areequivalent, thus lone pair electrons may

    occupy any of the 6 vertices.

    However, if there are 2 lone pair electron

    domains, their repulsions are minimized bypointing them toward opposite sides of theoctahedron.

  • 8/12/2019 Chapter 9 Jan13

    22/40

    22

  • 8/12/2019 Chapter 9 Jan13

    23/40

    23

    Steps to predict molecular geometries usingVSEPR model1. Sketch Lewis structure of the molecule/ion.

    2. Count total no. of electron domains and arrange themin the way that minimizes repulsions among them.

    3. Describe molecular geometry.

    4. A double/triple bond is counted as 1 electron domain.Note:

    # of electron domains

    = (# of atoms bondedto the central atom) +

    (# of nonbondingpairson the central atom)

  • 8/12/2019 Chapter 9 Jan13

    24/40

    24

  • 8/12/2019 Chapter 9 Jan13

    25/40

    25

    Determine the molecular geometry in ammonia, NH3.

    Valence Electrons:

    N = 5

    3H = 3 1 = 3

    Total = 8

    Example 1:

    N

    H

    HHN

    H

    HH N HH

    H

  • 8/12/2019 Chapter 9 Jan13

    26/40

    26

    4 electron pairs around N:

    Electron domain geometry istetrahedral.

    3 atoms around N with 1 lone pair:

    Molecular geometry is trigonal pyramidal.

    H

    H

    H

    N

    107.6

  • 8/12/2019 Chapter 9 Jan13

    27/40

    27

    Example 2:

    Determine the molecular geometry and bond angles in

    the ammonium ion, NH4+.

    Valence Electrons:

    N = 5

    4H = 4 1 = 4

    Charge = -1

    Total = 8

    N

    H

    HH

    H

    N

    H

    HH

    H

    N

    H

    H

    H

    H

  • 8/12/2019 Chapter 9 Jan13

    28/40

    28

    N

    H

    H

    H

    H

    4 pairsof electrons around N:Electron domain geometry is tetrahedral.

    4 atomsaround N:Molecular geometry istetrahedral.

    No lone pairs: Bond angles are 109.5o

    .

    N

    H

    HHH

    109.5o

  • 8/12/2019 Chapter 9 Jan13

    29/40

    29

    Determine the molecular geometry and bond angles in

    water.Valence Electrons:

    O = 6

    2H = 2 1 = 2

    Total = 8

    Example 3:

    O HH O HH O HH

  • 8/12/2019 Chapter 9 Jan13

    30/40

    30

    4 pairsof electrons around O:Electron domain geometry istetrahedral.

    2 atomsaround O:Molecular geometry isbent.

    Two lone pairs:Bond angle is less than 109.5o.

    O HH O

    H

    H105.6

    o

  • 8/12/2019 Chapter 9 Jan13

    31/40

    31

    Determine the molecular geometry and bond angles in

    CO2.Valence Electrons:

    C = 4

    2O = 2 6 = 12

    Total = 16

    Example 4:

    O C O O C O O C O C OO

  • 8/12/2019 Chapter 9 Jan13

    32/40

    32

    In VSEPR, we count multiple bonds as a singleelectron domain.2 pairsof electrons around C:

    Electron domain geometry is linear.

    2 atomsaround C: Molecular geometry is linear.

    No lone pairs on C: Bond angle is 180o.

    C OO CO O

    180o

  • 8/12/2019 Chapter 9 Jan13

    33/40

    33

    Determine the molecular geometry and approximate bond

    angles in XeOF4.Valence Electrons:

    Xe = 8

    O = 6

    4F = 4 7 = 28

    Total = 42

    Example 5:

    Xe

    O

    F

    FF

    F

    O

    F

    FF

    F

    XeXe

    OF

    F F

    F

    6 f l d

  • 8/12/2019 Chapter 9 Jan13

    34/40

    34

    6 pairsof electrons around Xe:Electron domain geometry is octahedral.

    5 atomsaround Xe:Molecular geometry is square pyramidal.

    One lone pair on Xe:O-Xe-F bond angle is less than 90o.

    Xe

    O

    F

    F F

    F O

    XeF F

    FF

    E i

  • 8/12/2019 Chapter 9 Jan13

    35/40

    35

    Exercises:

    Determine the molecular geometry in each of the

    following:

    (a)SF4

    (b)CH2O

    F S F

    F F

    C

    O

    HH

    See-

    saw

    Trigonal

    planar

  • 8/12/2019 Chapter 9 Jan13

    36/40

    36

    End of Chapter 9

  • 8/12/2019 Chapter 9 Jan13

    37/40

    37

    The Lewis structure of phosphine, PH3

    has

    _____________ of electrons.

    A. four bonding pairs

    B. three bonding pairs and one lone pair

    C. one bonding pair and three lone pairs

    D. two bonding pairs and two lone pairs

  • 8/12/2019 Chapter 9 Jan13

    38/40

    38

    The Lewis structure of phosphine, PH3

    has

    _____________ of electrons.

    A. four bonding pairs

    B. three bonding pairs and one lone pair

    C. one bonding pair and three lone pairs

    D. two bonding pairs and two lone pairs

  • 8/12/2019 Chapter 9 Jan13

    39/40

    39

    Use Valence Shell Electron Pair Repulsion (VSEPR)

    theory to predict the molecular geometry of CO32

    ion.

    A. Linear

    B. Tetrahedral

    C. Trigonal planar

    D. Trigonal pyramidal

  • 8/12/2019 Chapter 9 Jan13

    40/40

    Use Valence Shell Electron Pair Repulsion (VSEPR)

    theory to predict the molecular geometry of CO32

    ion.

    A. Linear

    B. Tetrahedral

    C. Trigonal planar

    D. Trigonal pyramidal