103

Click here to load reader

Chapter 8 Spectroscopic methods of structure determination

Embed Size (px)

DESCRIPTION

Chapter 8 Spectroscopic methods of structure determination. 结构测定的波谱方法. Introduction Ultraviolet Spectroscopy (UV) 紫外光谱 ---- 测定有机物中是否存在共轭双键和芳香族化合物 Infrared Spectroscopy (IR) 红外光谱 ---- 测定有机物中官能团。 - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 8 Spectroscopic methods of structure determination

Chapter 8Spectroscopic methods of structure determination

结构测定的波谱方法

Page 2: Chapter 8 Spectroscopic methods of structure determination

Introduction

1. Ultraviolet Spectroscopy (UV) 紫外光谱 ---- 测定有机物中是否存在共轭双键和芳香族化合物

2. Infrared Spectroscopy (IR) 红外光谱 ---- 测定有机物中官能团。

3. Nuclear Magnetic Resonance Spectroscopy (NMR) 核磁共振谱 ---- 测定有机物中不同类型的氢或碳的数目和位置。( 1H NMR and 13C NMR)

4. Mass Spectrometry (MS) 质谱 ---- 测定有机物的分子量。

Page 3: Chapter 8 Spectroscopic methods of structure determination

The characteristics of spectroscopic determination

1. Microscale sample (1 – 5 mg, 样品少 )2. It need short time to determine sample( 时间短 )3. Identify structure very fast.( 结构确认快而准 )4. Most are nondestructive ( 多不破坏样品 )

重点 : 了解简单原理 , 简单识谱

Page 4: Chapter 8 Spectroscopic methods of structure determination

Wavelength

波长 λcm10-9 γ-rays

10-7 X-rays ionization

10-5Vacuum UV

( 真空紫外 )

10-4Near UV

( 近紫外 ) Electronic transition

电子跃迁

UV-vis

紫外 - 可见光谱10-3

Visible(vis)

( 可见光 )

10-1Infrared(IR)

( 红外 )

Molecular vibration

分子振动

IR

红外光谱

10-2Microwave

( 微波 )

Rotational motion

10-4Radio

( 无线电波 )

Nuclear spin transition

核自旋跃迁

NMR

核磁共振谱

The electromagnetic spectrum电磁波谱

¦Ë=

hcE = hv

Page 5: Chapter 8 Spectroscopic methods of structure determination

• UV spectoscopy observes electronic transitions and provides information on the electronic bonding in the sample.

1. Ultraviolet spectroscopy( 紫外光谱 , 15-13, p 666)

Page 6: Chapter 8 Spectroscopic methods of structure determination

1) Spectral region of UV: 200-400nm

2) Ultraviolet light and electronic transition    ( 紫外光与电子跃迁 )

σ→ σ*

π→ π*

n→ π*

n→ σ*ΔE

σ

π

π*

σ *

nE

UV

Page 7: Chapter 8 Spectroscopic methods of structure determination

π→ π* : K 带 , 吸收峰强 , 共轭双键增加 , 向长波方向移动 , B 带 , 苯的吸收带 , 宽 230~270 nm, 中心 254 nm

E 带 , 把苯环看成乙烯键或共轭乙烯键跃迁引起的吸收带 .

n→ π*:   R 带 , > 270 nm, 吸收峰较弱 , C=O, C=N, -NO2

Page 8: Chapter 8 Spectroscopic methods of structure determination

Wavelength

Absorptance

π→ π* : K 带

n→ π*:   R 带

Page 9: Chapter 8 Spectroscopic methods of structure determination

A compounds that contain a longer chain of conjugated double bonds absorbs light at a longer wavelength.共轭体系增加 , 吸收波长增大 , 即吸收“红移”

¦Ëmax

methanol

171 nm

217 nm

CH2=CH2

258 nm

CH2=CHCH=CH2

CH2=CHCH=CHCH=CH2

CH2=CHCH=CHCH=CHCH=CH2 290 nm

增大

Page 10: Chapter 8 Spectroscopic methods of structure determination

¦Ëmax

methanol171 nm ¦Ëmax

methanol217 nm

CH2=CH2 CH2=CHCH=CH2

HOMO

LUMO

HOMO

LUMO

excitationexcitation

¦Ð¦Ð1

¦Ð2

¦Ð* ¦Ð*

¦Ð*E

nerg

y

Page 11: Chapter 8 Spectroscopic methods of structure determination

β – Carotene 胡罗卜素

Lycopene 番茄红素

¦Ëmax

methanol

497 nm (red orange) (Visible region)

¦Ëmax

methanol

505 nm (red) ( Visible region )

β – Carotene 胡罗卜素

¦Ëmax

methanol

497 nm (red orange) (Visible region)

¦Ëmax

methanol

505 nm (red) ( Visible region )

Page 12: Chapter 8 Spectroscopic methods of structure determination

C O

O

C

O

O

HO OH HO O

酚酞

酸式结构 , 无色 碱式结构 , 红色

Page 13: Chapter 8 Spectroscopic methods of structure determination

3) Obtaining an UV spectrum

Page 14: Chapter 8 Spectroscopic methods of structure determination

detector检测仪

source光源

monochromator单色器

sample cell样品池

reference cell

Ir

Is

recorder记录仪

A

λ

UV 测定常用溶剂 : CH3OH, CH3CH2OH

Page 15: Chapter 8 Spectroscopic methods of structure determination

Is --- 透过样品的光强度Ir --- 透过空白样的光强度

A----absorbance 吸光度ε--- molar extinction coefficient 摩尔消光系数c----molar concentration of sample , mol/Ll-------the length, cm 液层厚度

A = logIr

Is= ¦Å c lLambert-Beer Rule

朗伯-比尔定律

UV principle

Page 16: Chapter 8 Spectroscopic methods of structure determination

¦Ëmax

methanol

171 nmCH2=CH2

CH2=CHCH2CH=CH2

CH2=CHCH=CH2

¦Ëmax

methanol

178 nm

¦Ëmax

methanol217 nm

non conjugate system

conjugate system

4) Interpreting UV spectra ( 解谱 )

(1) 判断有无共轭体系存在,或有无芳烃、醛、酮、羧酸、芳胺等有机物。

每增加一个共轭双键,波长增加 30~40 nm; 每增加一个烷基取代基 , 波长增加约 5 nm.

See: Table 15-2 (p 671)(problem: 15-3, 15-22)

Page 17: Chapter 8 Spectroscopic methods of structure determination

发色基;

O O N O NO

O

C

O

C

ON=N

±½õ« ÑÇÏõ »ù Ïõ »ù 1£¬2-¶þͪ »ù żµª»ù

2,5-Dimethyl-2,4-hexadiene

¦Ëmax

methanol242.5 nm ( ¦Å= 13.100 M-1 cm-1 )

(2) 共轭链连有未共用电子对基团如: -NH2, -NR2, -OH, -OR, -SR, -Cl, -Br, -I,  可产生 p~π 共轭,使化合物颜色加深, λmax 向长波方向移动 ----- 把这样的基团称为助色基.

记录格式

Page 18: Chapter 8 Spectroscopic methods of structure determination

苯在己烷中的吸收光谱 联苯类化合物的紫外光谱图

logε ε

λ/nm λ/nm

Page 19: Chapter 8 Spectroscopic methods of structure determination
Page 20: Chapter 8 Spectroscopic methods of structure determination

280nm (ε13500); 295nm (ε27000)

顺式: 由于位阻,共轭不是太好,故波长短, ε 小些反式: 共轭效果好,故波长增加, ε 增大

Page 21: Chapter 8 Spectroscopic methods of structure determination

Assignment : T-1, 15-28; T-2 , 8-2

Page 22: Chapter 8 Spectroscopic methods of structure determination

2. Infrared spectroscopy (IR, 红外光谱 , 12-1~12, p 490-519)

IR spectroscopy observes the vibrations of the bonds and provides evidence of the functional groups present.

Page 23: Chapter 8 Spectroscopic methods of structure determination

1) Spectral region of IR: 中红外 : λ2.5-25 μm ( 波数 4000~400 cm-1)

V =¦Ë

1-²¨Êý;Wavenumber

Page 24: Chapter 8 Spectroscopic methods of structure determination

2) Molecular vibrations and IR spectroscopy

Stretching vibration伸缩振动

Bending vibration弯曲振动

symmetric stretching antisymmetric stretching

Rocking Twisting Scissoring wagging

Page 25: Chapter 8 Spectroscopic methods of structure determination

ν :振动频率k:化学键的力常数μ :折合质量

Frequency: decreases with increasing atomic weight; increase with bonding energy.键能越大,折合质量越小,频率越高,峰出现在高波数区.

like a spring

IR principle

Page 26: Chapter 8 Spectroscopic methods of structure determination

entry bond bond energy (kJ) stretching frequency(cm-1)

1 C-H 420 3000

2 C-D 420 2100

3 C-C 350 1200

4 C=C 611 1660

5 C≡C 840 2200

6 C-N 305 1200

7 C=N 615 1650

8 C≡N 891 2200

9 C-O 360 1100

10 C=O 745 1700

Bond stretching frequency (Table 12-1)

entry bond bond energy (kJ) stretching frequency(cm-1)

1 C-H 420 3000

2 C-D 420 2100

3 C-C 350 1200

4 C=C 611 1660

5 C≡C 840 2200

6 C-N 305 1200

7 C=N 615 1650

8 C≡N 891 2200

9 C-O 360 1100

10 C=O 745 1700

Page 27: Chapter 8 Spectroscopic methods of structure determination

Frequency range of functional groups

<1500, fingerprint region指纹区

1500-3600, functional group region官能团区

Page 28: Chapter 8 Spectroscopic methods of structure determination

IR-active and IR-inactive vibration

 偶极矩变化越大,红外吸收越强. 偶极矩变化与以下因素有关 : 电负性 ( 电负性差别大,吸收强 ) 、   振动方式 ( 不对称伸缩 > 对称伸缩 > 弯曲振动 )   分子的对称性 ( 对称性差,吸收峰强 )   氢键 ( 使吸收峰变宽变强 )

problem 12-2

  只有分子振动时偶极矩( dipole moment )发生变化的振动( Δμ≠0 )才有红外吸收。偶极矩 μ=δ× d    

• A polar bond is usually IR-active.

• A nonpolar bond in a symmetrical molecule will absorb weakly or not at all.

Page 29: Chapter 8 Spectroscopic methods of structure determination

3) Measurement of the IR spectrum

Infrared spectrometer ( 红外光谱仪 )

A Nicolet 800 FT-IR, 400 to 4000 cm-1 )

红外测定方法:

1. KBr disc (KBr压片法 ) 2. 液膜法( NaCl盐片 ) 3 石腊油法

Page 30: Chapter 8 Spectroscopic methods of structure determination

4) Characteristic absorptions of common functional groups( 常见官能团的特征吸收 )

hydrocarbons ( 烃 ):

bond frequency bond frequency

-C-H 2800-3000 C-C 1200

=C-H 3000-3100 C=C 1660

C=C-C=C 1620

Ar-H 3000-3100 C=C (Ar) 1600, 1500

≡C-H 3300 C≡C 2100-2200

stretching frequency(cm-1)

Page 31: Chapter 8 Spectroscopic methods of structure determination

CH3(CH2)6CH3

CH3: 1380

Alkane

Page 32: Chapter 8 Spectroscopic methods of structure determination

CH3(CH2)3CH=CH2Alkene

Page 33: Chapter 8 Spectroscopic methods of structure determination

Alkyne

Page 34: Chapter 8 Spectroscopic methods of structure determination

benzene

toluene

Aromatic compounds

=C-H

Page 35: Chapter 8 Spectroscopic methods of structure determination

Alcohols and amines ( 醇和胺 ):

bond frequency

-O-H3300, broad with rounded tip, srong

-NH23300, broad with spikes ( 尖峰 ) ,middle( 中强 ), two sharp spikes

-NHR one sharp spike

-NRR’ no N-H

Page 36: Chapter 8 Spectroscopic methods of structure determination

Alcohol

Page 37: Chapter 8 Spectroscopic methods of structure determination
Page 38: Chapter 8 Spectroscopic methods of structure determination

Amine

Page 39: Chapter 8 Spectroscopic methods of structure determination
Page 40: Chapter 8 Spectroscopic methods of structure determination

EthersC - O - C 1150-1070 [strong]

1120

Page 41: Chapter 8 Spectroscopic methods of structure determination

bond frequency

C=O 1710 (strong)

ketone ( 酮 ) 1710 (strong)

aldehyde ( 醛 ) 1710 (strong)

acid 1710 (strong)

ester ( 酯 ) 1750-1730 (strong)

amide ( 酰胺 ) 1690-1650 (N-H: 3300)

C=C-C=O 1685-1665 (strong)

O=C-H 2720, 2820

O=C-O-H 3300-2500 (broad)

carbonyl compounds ( 羰基化合物 ):

Usually, it’s the strongest IR signal.

Page 42: Chapter 8 Spectroscopic methods of structure determination

Ketone

Page 43: Chapter 8 Spectroscopic methods of structure determination

Aldehyde

Page 44: Chapter 8 Spectroscopic methods of structure determination

Carboxylic acid

Page 45: Chapter 8 Spectroscopic methods of structure determination

Amide

1681C=O

3348, 3173N-H

Acetamide, 乙酰胺

Page 46: Chapter 8 Spectroscopic methods of structure determination

Carbon - Nitrogen Stretching

• C - N 1200 cm-1.• C = N 1660 cm-1 and is much stronger than

the C = C absorption in the same region.• C N absorbs strongly just above 2200 cm-1.

The alkyne C C signal is much weaker and is just below 2200 cm-1 .

Page 47: Chapter 8 Spectroscopic methods of structure determination

A Nitrile IR Spectrum

=>

Page 48: Chapter 8 Spectroscopic methods of structure determination

Summary of IR Absorptions

Page 49: Chapter 8 Spectroscopic methods of structure determination

红外光谱主要是获得有机物官能团信息.

(1) 吸收峰的位置、强度和形状。(2) 先特征峰,后一般峰。先强峰,后次强峰,

再中强峰,同时注意峰形,宽,尖,单峰或双峰。相关峰。

与标准图谱对照可以确认化合物。

5) Interpretation of the IR spectra    ( 红外光谱解析 )

Page 50: Chapter 8 Spectroscopic methods of structure determination

3-pentanone CH3CH2COCH2CH3 Diethyl ketone

C5H10O

1716

Page 51: Chapter 8 Spectroscopic methods of structure determination

C7H8O

3400 cm-1: strong OH peak present. 3100 cm-1: weak peak suggesting sp2 CH 2900 cm-1: weak peak suggesting sp3 CH. 1610 , 1497 , 1454 cm-1: peaks suggesting Ar C=C

OH

Page 52: Chapter 8 Spectroscopic methods of structure determination

C8H8O

3100 cm-1: moderate peak suggesting sp2 CH 2900 cm-1: weak peak suggesting sp3 CH 1690 cm-1: strong carbonyl absorbance 1600 cm-1: Ar C=C

O

Page 53: Chapter 8 Spectroscopic methods of structure determination

C7H6O

3100 cm-1: moderate peak suggesting sp2 CH. 2720 , 2820 cm-1: moderate peak suggesting aldehyde CH. 1700 cm-1: strong carbonyl absorbance. 1600 cm-1: bands consistent with Ar C=C.

O

H

Page 54: Chapter 8 Spectroscopic methods of structure determination

C4H8O2

¦¸ = 1

1760 cm-1: strong carbonyl absorbance.

2900 cm-1: minor peak suggesting sp3 CH. CH3C

O

OCH2CH3

Page 55: Chapter 8 Spectroscopic methods of structure determination

Assignments

• Text-1: p 533-538: 12-15, 16, 25

• Text-2: p 222: 5, 6, 7

Page 56: Chapter 8 Spectroscopic methods of structure determination

3. Mass Spectrometry (质谱)

• Molecular weight can be obtained from a very small sample.

• It does not involve the absorption or emission of light.

• A beam of high-energy electrons breaks the molecule apart.

• The masses of the fragments and their relative abundance reveal information about the structure of the molecule.

Page 57: Chapter 8 Spectroscopic methods of structure determination

1) Mass spectrometer ( 质谱仪 )

进样系统 ion sourse离子源

magnetic deflection

高真空系统

detector

Page 58: Chapter 8 Spectroscopic methods of structure determination

Electron Impact Ionization

A high-energy electron can dislodge an electron from a bond, creating a radical cation (a positive ion with an unpaired e-).

e- + H C

H

H

C

H

H

H

H C

H

H

C

H

H

H

H C

H

H

C

H

H

+ H

H C

H

H

C

H

H

H

+

Page 59: Chapter 8 Spectroscopic methods of structure determination

2) The mass spectrum ( 质谱图 )

molecular ion peak ( 分子离子峰 ): M+, 一般为偶数 , 含奇数氮时为奇数 .base peak ( 基峰 ): 丰度 100%isotopic peak ( 同位素峰 ): 13C (1.1%)

m/z

M+: 86

AlkaneAbundance 丰度

Page 60: Chapter 8 Spectroscopic methods of structure determination

1. 产物稳定性原则:正碳离子的稳定性顺序为叔> 仲 > 伯;2. 最大烷基丢失原则:失去的烷基愈大,裂解反应愈有利,因而对应的产物离子丰度愈高。

Common peaks: 15 (CH3

+), 29 (CH3CH2+), 43 , 57, 71……

Page 61: Chapter 8 Spectroscopic methods of structure determination

More stable carbocations will be more abundant.

Page 62: Chapter 8 Spectroscopic methods of structure determination

Alkene

烯丙基裂解 m/z = 41

Page 63: Chapter 8 Spectroscopic methods of structure determination

Resonance-stabilized cations favored.

Page 64: Chapter 8 Spectroscopic methods of structure determination

Alcohol and ether

醇、醚等易发生

46, M+

Page 65: Chapter 8 Spectroscopic methods of structure determination

HO CH3

3-methylheptan-3-ol

M+: 130

解释 115, 101, 73 三个峰

HO CH3分别是 115(M+-CH3) 、 101(M+-C2H5) 、 73(M+-C4H9)

Page 66: Chapter 8 Spectroscopic methods of structure determination

• Alcohols usually lose a water molecule.• M+ may not be visible.

=>

Page 67: Chapter 8 Spectroscopic methods of structure determination

Isotopic Abundance 同位素丰度

81Br

Page 68: Chapter 8 Spectroscopic methods of structure determination

Molecules with Heteroatoms

• Isotopes: present in their usual abundance.• Hydrocarbons contain 1.1% C-13, so there will be

a small M+1 peak.• If Br is present, M+2 is equal to M+.• If Cl is present, M+2 is one-third of M+.• If I is present, peak at 127, large gap.• If N is present, M+ will be an odd number.• If S is present, M+2 will be 4% of M+.

Page 69: Chapter 8 Spectroscopic methods of structure determination

同位素峰

Page 70: Chapter 8 Spectroscopic methods of structure determination

=>

同位素峰

Page 71: Chapter 8 Spectroscopic methods of structure determination

=>

同位素峰

Page 72: Chapter 8 Spectroscopic methods of structure determination

Application of MS

• MS can provide informations shown below: molecular weight ( 分子量 , 由 M+) molecular formular (high resolution mass spect

roscopy, HRMS)( 分子式 , 高分辨质谱 ) heteroatom ( 杂原子 , 由同位素峰、 M+ 等可知 ) functional group ( 官能团,由碎片峰等知 ) alkyl substituents ( 烷基取代基,由碎片峰等知 )

Page 73: Chapter 8 Spectroscopic methods of structure determination

• NMR is the most powerful tool available for organic structure determination.

• It is used to study a wide variety of nuclei:– 1H– 13C– 15N– 19F– 31P

4. Nuclear Magnetic Resonance Spectroscopy (NMR, 核磁共振谱 )

1H NMR--- 核磁共振氢谱,给出有机物中含有多少氢原子及其位置。

13C NMR--- 核磁共振碳谱,给出有机物中含有多少碳原子及其位置。

Page 74: Chapter 8 Spectroscopic methods of structure determination

Nuclear Spin 核的自旋

凡是原子的原子序数或质量数为奇数时,如 1H, 13C, 19F, 31

P, 原子核能发生自旋( spin )。自旋的核类似于一个磁棒。

Principle of NMR

Page 75: Chapter 8 Spectroscopic methods of structure determination

External Magnetic Field (外加磁场)在外加磁场中,自旋的核就象一个小磁棒,其产生的磁矩有两种取向 , 分别与外加磁场方向相同或相反 , 有低 / 高两个能态 , 其中低能态多。

Page 76: Chapter 8 Spectroscopic methods of structure determination

stateµÍÄÜ̬

state¸ßÄÜ̬

E B0

E = r2

hB0

= r2

1B0

用能量为 ΔE= hν 的无线电波射频辐射 , 使核由低能态跃迁至高能态 , 则称核发生了共振,产生核磁共振信号 .

Page 77: Chapter 8 Spectroscopic methods of structure determination

The NMR spectrometer ( 核磁共振仪 )

Page 78: Chapter 8 Spectroscopic methods of structure determination

Using Deuterium 氘 solvents dissolve sample for NMR determinations. CDCl3, D2O, CD3OD, D6-DMSO.

Page 79: Chapter 8 Spectroscopic methods of structure determination

1H NMR 核磁共振氢谱

Shielding and Deshielding of Protons ( 质子的屏蔽和去屏蔽)

¸ÐÉú́ų¡

µç×Ó»·Á÷

B0

Ô ×ÓºË

Page 80: Chapter 8 Spectroscopic methods of structure determination

有机化合物中的 H 核外有电子云,在磁场作用下产生的磁矩与外加磁场方向相反,削弱了外加磁场对核的照射,称为屏蔽( shielding )。反之,称为去屏蔽( deshielding )。 不同化学环境下的 H 核其核外电子云不同,受到的屏蔽也不同。质子的外层电子密度越大,则屏蔽越大,需要增大外加磁场才能使核跃迁,发生共振,因此质子的信号出现在高场;反之出现在低场。

=>

Page 81: Chapter 8 Spectroscopic methods of structure determination
Page 82: Chapter 8 Spectroscopic methods of structure determination

H H

H H

H H

B0

benzene去屏蔽 , 出现在低场 alkyne

屏蔽 , 出现在高场

C

C

H

H

B0

π 电子的作用

B0

C CH H

HH

alkene , (aldehyde proton)去屏蔽 , 出现在低场

σB0

Page 83: Chapter 8 Spectroscopic methods of structure determination

H

H

HH

H

H

H

H

H

H

H

HH

H

H

H

H

H

µÍ³¡¸ß³¡

[18] Annulene(轮烯 ). The internal protons are highly shield. The external protons are highly deshielded.

Page 84: Chapter 8 Spectroscopic methods of structure determination

The chemical shift 化学位移 δ

由于分子中氢所处的化学环境不同,显示不同的吸收峰,峰与峰之间的差距,就称为化学位移 δ ( chemical shift).

参比试剂: Si(CH3)4, 四甲基硅烷 tetramethylsilane (TMS)

610

核磁共振仪所用频率

参比样品

ppm

Page 85: Chapter 8 Spectroscopic methods of structure determination
Page 86: Chapter 8 Spectroscopic methods of structure determination

CH3

CH3

1.01.5

4H 6H

δ = 2.30 ppmδ = 7.05 ppm

化学位移与氢的电子云密度有关 , 密度越大 , 化学位移越小 , 信号出现在高场 ; 反之 , 化学位移大 , 信号出现在低场 . 信号强度与质子数成正比 , 通过积分峰面积可以得知氢的相对数目 .

低场 高场

Page 87: Chapter 8 Spectroscopic methods of structure determination

=>

Approximate proton chemical shifts.

Page 88: Chapter 8 Spectroscopic methods of structure determination

The number of signals

Page 89: Chapter 8 Spectroscopic methods of structure determination

Ha

HbHb

Ha

Hc

X

单取代苯 , 三种 H, 故可能给出多重峰

H3CH2C CH2CH3

e. CH3COOCH3

f. CH3COOCH(CH3)2

a. CH3CH3

b. CH3CH2CH3

c. CH3OCH3

d.

1

2

1

3

2

3

Page 90: Chapter 8 Spectroscopic methods of structure determination

(n+1) rule: 与某一个质子邻近的等价质子数为 n 时,核磁共振信号裂分为( n+1 )重峰,其强度如下:

Signal splitting( 信号裂分) : spin-spin coupling (自旋 - 自旋偶合)

Page 91: Chapter 8 Spectroscopic methods of structure determination
Page 92: Chapter 8 Spectroscopic methods of structure determination
Page 93: Chapter 8 Spectroscopic methods of structure determination
Page 94: Chapter 8 Spectroscopic methods of structure determination

Cl2CHCH2CHBr2 中的 CH2应裂分为( 1+1) (1+1) = 4

重峰,且此四重峰强度相等。

与某一质子的邻近质子不相同时,裂分数目为 (n+1)(n’+1)(n”+1) 重峰。

Page 95: Chapter 8 Spectroscopic methods of structure determination

13C NMR( 核磁共振碳谱 )

• 12C has no magnetic spin.

• 13C has a magnetic spin, but is only 1% of the carbon in a sample.

• The gyromagnetic ratio of 13C is one-fourth of that of 1H.

• Signals are weak, getting lost in noise.

• Hundreds of spectra are taken, averaged.

Page 96: Chapter 8 Spectroscopic methods of structure determination

Hydrogen and Carbon Chemical Shifts

=>

Page 97: Chapter 8 Spectroscopic methods of structure determination

Combined 13C and 1H Spectra

注 : N 上 H 在 10.8 ppm

Page 98: Chapter 8 Spectroscopic methods of structure determination

用 IR, 1H NMR, MS综合分析推出未知物的结构C5H10O

C5H10O

Page 99: Chapter 8 Spectroscopic methods of structure determination

C5H10O

septetÆßÖØ·å

singletdoublet

CHCH3

CH3

CH3C

O

Page 100: Chapter 8 Spectroscopic methods of structure determination

C5H10O

CHCH3

CH3

CH3C

OH3C C O

Page 101: Chapter 8 Spectroscopic methods of structure determination

N

HO

N

HOTs

Page 102: Chapter 8 Spectroscopic methods of structure determination

N

HO

N

HOTs

Page 103: Chapter 8 Spectroscopic methods of structure determination

Summary

• 由氢谱可知有机化合物中氢的种类(化学位移)、数目(峰强度积分)和相互关系(偶合常数)。

• 对一些简单化合物由氢谱即可确定其结构。

• 作业: T-1 p-594, 13-36, 38• T-2 15 , 16 , 17 , 21 , 23