20
Chapter 4 (continued): Caching; Testing Memory Modules

Chapter 4 (continued): Caching; Testing Memory Modules

  • View
    239

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 4 (continued): Caching; Testing Memory Modules

Chapter 4 (continued):

Caching;

Testing Memory Modules

Page 2: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_30

Memory organization:

Typical “Memory map”

For power loss

Page 3: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_31

Memory hierarchy

Page 4: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_32

Paging / Caching

Why it typically works:

locality of reference

(spatial/temporal)

“working set”

Note: in real-time embedded systems, behavior may be atypical; but caching may still be a useful technique

Here we consider caching external to the CPU—the CPU may have one or more levels of caching built in

Page 5: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_33

Typical memory system with cache: hit rate (miss rate) important

Remember! Registers here

Page 6: Chapter 4 (continued): Caching; Testing Memory Modules

Basic caching strategies:

Direct-mapped Associative

Block-set associative questions:

what is “associative memory”?

what is overhead?

what is efficiency (hit rate)?

is bigger cache better?

Page 7: Chapter 4 (continued): Caching; Testing Memory Modules

Associative memory: storage location related to data storedExample—hashing:--When software program is compiled or assembled, a symbol table must be created to link addresses with symbolic names--table may be large; even binary search of names may be too slow--convert each name to a number associated with the name, this number will be the symbol table indexFor example, let a = 1, b = 2, c = 3,…Then “cab” has value 1 + 2 + 3 = 6 “ababab” has value 3 *(1 + 2) = 9And “vvvvv” has value 5*22 = 110Address will be modulo a prime p, if we expect about 50 unique identifiers, can take p = 101 (make storage about twice as large as number of items to be stored, reduce collisions)Now array of names in symbol table will look like:0—>1—>2--->…6--->cab…9--->ababab--->vvvvv…Here there is one collision, at address 9; the two items are stored in a linked listAccess time for an identifier <= (time to compute address) + 1 + length of longest linked list ~ constant

Page 8: Chapter 4 (continued): Caching; Testing Memory Modules

Caching: the basic process—note OVERHEAD for each task--program needs information M that is not in the CPU--cache is checked for M how do we know if M is in the cache?--hit: M is in cache and can be retrieved and used by CPU--miss: M is not in cache (M in RAM or in secondary memory) where is M?

* M must be brought into cache* if there is room, M is copied into cache how do we know if there is room?* if there is no room, must overwrite some info M’ how do we select M’?

++ if M’ has not been modified, overwrite it how do we know if M’ has been modified?++ if M’ has been modified, must save changeshow do we save changes to M’?

Page 9: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_34

Example: direct mapping32-bit words, cache holds 64K words, in 128 0.5K blocksMemory addresses 32 bitsMain memory 128M words; 2K pages, each holds 128 blocks (~ cache)

fig_04_35

fig_04_36

2 bits--byte; 9 bits--word address;7 bits—block address (index); 11 (of 15)—tag (page block is from)

Tag table: 128 entries (one for each block in the cache). Contains:Tag: page block came fromValid bit: does this block contain data write-through: any change propagated immediately to main memorydelayed write: since this data may change again soon, do not propagate change to main memory immediately—this saves overhead; instead, set the dirty bitIntermediate: use queue, update periodicallyWhen a new block is brought in, if the valid bit is true and the dirty bit is true, the old block must first be copied into main memoryReplacement algorithm: none; each block only has one valid cache location

Page 10: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_37

Problem with direct mapping: two frequently used parts of code can be in different “Block0’s”—so repeated swapping would be necessary; this can degrade performance unacceptably, especially in realtime systems (similar to “thrashing” in operating system virtual memory system)Another method: associative mapping: put new block anywhere in the cache; now we need an algorithm to decide which block should be removed, if cache is full

Page 11: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_38

Step 1: locate the desired block within the cache; must search tag table, linear search may be too slow; search all entries in parallel or use hashingStep 2: if miss, decide which block to replace.a.Add time accessed to tag table info, use temporal locality:Least recently used (LRU)—a FIFO-type algorithmMost recently used (MRU)—a LIFO-type algorithmb. Choose a block at random

Drawbacks: long search timesComplexity and cost of supporting logicAdvantages: more flexibility in managing cache contents

Page 12: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_39

Intermediate method: block-set associative cacheEach index now specifies a set of blocksMain memory: divided into m blocks organized into n groupsGroup number = m mod n Cache set number ~ main memory group numberBlock from main memory group j can go into cache set jSearch time is less, since search space is smallerHow many blocks: simulation answer (one rule of thumb: doubling associativity ~ doubling cache size, > 4-way probably not efficient)

Two-way set-associative scheme

Page 13: Chapter 4 (continued): Caching; Testing Memory Modules

Example: 256K memory-64 groups, 512 blocks Block Group (m mod

64)0 64 128 . . . 384 448 01 65 129 . . . 385 449 12 66 130 . . . 386 450 2. . .63 127 192 . . . 447 511 63

Page 14: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_40

Dynamic memory allocation “virtual storage”):--for programs larger than main memory--for multiple processes in main memory--for multiple programs in main memory

General strategies may not work well because of hard deadlines for real-time systems in embedded applications—general strategies are nondeterministic

Simple setup:Can swap processes/programsAnd their contexts--Need storage (may be infirmware)--Need small swap time comparedto run time--Need determinismEx: chemical processing, thermal control

Page 15: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_41

Overlays (“pre-virtual storage”):Seqment program into one main section and a set of overlays (kept in ROM?)Swap overlaysChoose segmentation carefully to prevent thrashing

Page 16: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_42

Multiprogramming: similar to paging

Fixed partition size: Can get memory fragmentationExample:If each partition is 2K and we have 3 jobs: J1 = 1.5K, J2 = 0.5K, J3 = 2.1KAllocate to successive partitions (4)J2 is using only 0.5 K J3 is using 2 partitions, one of size 0.1KIf a new job of size 1K enters system, there is no place for it, even though there is actually enough unused memory for it

Variable size:Use a scheme like pagingInclude compactionChoose parameters carefully to prevent thrashing

Page 17: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_43

Memory testing: Components and basic architecture

Page 18: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_45

Faults to test: data and address lines; stuck-at and bridging(if we assume no internal manufacturing defects)

Page 19: Chapter 4 (continued): Caching; Testing Memory Modules

fig_04_49

ROM testing: stuck-at faults, bridging faults, correct data stored Method: CRC (cyclic reduncancy check) or signature analysisUse LFSR to compress a data stream into a K-bit pattern, similar to error checking(Q: how is error checking done?)ROM contents modeled as N*M-bit data stream, N= address size, M = word size

Page 20: Chapter 4 (continued): Caching; Testing Memory Modules

Error checking: simple examples1.Detect one bit error: add a parity bit2.Correct a 1-bit error: Hamming codeExample: send m message bits + r parity bitsThe number of possible error positions ism + r + 1, we need 2r >= m + r + 1If m = 8, need r = 4; ri checks parity of bits with i in binary representationPattern:Bit #: 1 2 3 4 5 6 7 8 9 10 11 12Info: r0 r1 m1 r2 m2 m3 m4 r3 m5 m6 m7 m8

--- --- 1 --- 1 0 0 --- 0 1 1 1Set parity = 0 for each groupr0: bits 1 + 3 + 5 + 7 + 9 + 11 = r0 + 1 + 1 + 0 + 0 + 1 r0 = 1r1: bits 2 + 3 + 6 + 7 + 10 + 11 = r1 + 1 + 0 + 0 + 1 + 1 r1 = 1r2: bits 4 + 5 + 6 + 7 + 12 = r2 + 1 + 0 + 1 r2 = 0r3: bits 8 + 9 + 10 + 11 + 12 = r3 + 0 + 1 + 1 + 1 r3 = 1Exercise: suppose message is sent and 1 bit is flipped in received messageCompute the parity bits to see which bit is incorrect

Addition: add an overall parity bit to end of message to also detect two errors

Note: a.this is just one example, a more general formulation of Hamming codes using the finite field arithmetic can also be given b. this is one example of how error correcting codes can be obtained, there are many more complex examples, e.g., Reed-Solomon codes used in CD players