Chap5 Elasticity

Embed Size (px)

Citation preview

  • 8/13/2019 Chap5 Elasticity

    1/98

    Theory of Elasticity

    Introduction

    Elasticity of Solids

    Field Equations of Elasticity - DifferentialFormulation

    Prismatic Rods

    Plane Prob lems Theory and Solut ion s

    Plane Problems

    Applications

    Variational Formulation of Elasticity

    Three-dimensional Problems

    Index

    0

  • 8/13/2019 Chap5 Elasticity

    2/98

    Plane Problems Theory and

    Solutions

    Plane Strain and Plane Stress

    Planar Anisotropic Case

    Planar Isotropic Case

    Biharmonic

    Equation

    Solution in Cartesian Coordinates

    Solution in Polar Coordinates

    Kolosov-Muskhelishvili Method

    Chapter 5

    0

  • 8/13/2019 Chap5 Elasticity

    3/98

    Plane Strain and Plane Stress

    Plane Strain

    Chapter 5.1

    1

    The state of plane strain exists as a rigorous and

    non-conflicting case.

    Assumptions

    (1) A prismatic body whose length is much larger

    than any in-plane dimension, .

    (2) In-plane loads are independent of the out-of-plane coordinatex3.

    (3) Absence of normal strain , in a direction

    perpendicular to the plane.

    ma xRL

    033

    Tend

    R

    A

    end

    X

    Y

    Z

    Tside

    V

    L

    Aside

  • 8/13/2019 Chap5 Elasticity

    4/98

    Plane Strain and Plane Stress

    Plane Strain

    Chapter 5.1

    2

    Examples

  • 8/13/2019 Chap5 Elasticity

    5/98

  • 8/13/2019 Chap5 Elasticity

    6/98

    Plane Stress

    Plane Strain and Plane Stress

    Combination of the last two

    assumptions dictates that03 i

    Non-vanishing field variables:

    2133 ,,,, xxu

    1X

    2X

    3X

    L

    Chapter 5.1

    4

  • 8/13/2019 Chap5 Elasticity

    7/98

    Consistence Check by Compatibility Equations

    Plane Strain and Plane Stress

    Compatibility equation 0, klijnilmjkee

    In a planeproblem 0, ijnimj ee

    For a plane strainproblem 0, nm ee

    Non-trivial components3 nm

    0,,

    Chapter 5.1

    5

  • 8/13/2019 Chap5 Elasticity

    8/98

    Consistence Check by Compatibility Equations

    Plane Strain and Plane Stress

    For a plane stressproblem 033

    Alternatives:

    (1) If both mand nare not equal to 3, the indices iandjhas to be

    assigned as 3 to avoid the trivial identity of 00;

    (2) If both m and nare equal to 3, the indices iandjhas to be

    assigned as not 3 to avoid the trivial identity of 00, andconsequently producing ;

    (3) If either mor nis equal to 3 and the other is not, can

    only produce the trivial identity of 00.

    0,,

    0, ijnimj ee

    Chapter 5.1

    6

  • 8/13/2019 Chap5 Elasticity

    9/98

    Consistence Check by Compatibility Equations

    Plane Strain and Plane Stress

    Additional strain compatibility condition

    0,3333 ee

    The most general form of 33

    CBxAx 2133

    ijklijklij SS

    Constitutive law under the plane stresssituation

    Restriction CBxAxS 2133

    Chapter 5.1

    7

  • 8/13/2019 Chap5 Elasticity

    10/98

    Generalized Plane Stress

    Plane Strain and Plane Stress

    L

    xL 03d

    1

    The averaged in-plane components of stress

    and strain satisfy all in-plane equations.

    Chapter 5.1

    8

  • 8/13/2019 Chap5 Elasticity

    11/98

    Planar Anisotropic Case

    References

    Chapter 5.2

    9

    1. Cherkaev A., Lurie K., Milton G.W.,

    Proc. Roy. Soc. London.,A438(1992),519-529

    2. Zheng Q.S., Hwang K.C., Proc. Roy.

    Soc.London.,A452(1996), 2493-2503

    3. Yang W., Ma C-C., Proc. Roy. Soc.

    London,A454(1998), 1843-1855

  • 8/13/2019 Chap5 Elasticity

    12/98

    Planar Anisotropic Case

    Airy Stress Func t ion

    Equilibrium equation

    21

    2

    122

    1

    2

    222

    2

    2

    11 ,,xxxx

    0, 21,xx

    Chapter 5.2

    10

  • 8/13/2019 Chap5 Elasticity

    13/98

    Planar Anisotropic Case

    J-Tensor

    Cherkaev, Lurie and Milton (1992 )

    I11J

    ,J

    0, ggJ

    1is the unit tensor of rank two.

    Iis the unit tensor of rank four.

    1

    I :Chapter 5.2

    11

  • 8/13/2019 Chap5 Elasticity

    14/98

    Planar Anisotropy

    Planar Anisotropic Case

    Two dimensional linear

    elastic constitutive law:

    S

    4222

    11D1DD1JIS v

    E

    222 Re ZD C 444 Re ZD C

    n

    zzzn eeeZ 21 eee iz

    Chapter 5.2

    12

  • 8/13/2019 Chap5 Elasticity

    15/98

    Planar Anisotropy

    Stretch a fiber along

    a direction

    Planar Anisotropic Case

    1X

    2X

    q

    )(qE

    qq

    q

    ii eCeCE

    E 44

    2

    2Re1

    2C 4Ctwo-fold symmetry four-fold symmetry

    Chapter 5.2

    13

  • 8/13/2019 Chap5 Elasticity

    16/98

    Planar Anisotropy

    Planar Anisotropic Case

    planar tetragonal 02C 04 C

    planar orthotropic0ImIm

    42

    CC

    isotropic 042 CC EE q

    qq

    q4cos2cos 42 aa

    EE

    Chapter 5.2

    14

  • 8/13/2019 Chap5 Elasticity

    17/98

    Governing Equations

    Planar Anisotropic Case

    0,

    S

    422

    21Re1:: D1DD1JIJSJS v

    E

    can be regarded as a rank four rotation tensor.

    the consequence of Srotated by 90 degrees.

    J

    S

    Chapter 5.2

    15

  • 8/13/2019 Chap5 Elasticity

    18/98

    Governing Equations

    Planar Anisotropic Case

    Governing equation can be expressed in a

    much simpler form (Yang and Ma, 1998)

    0Re2

    2

    2

    2

    4

    2

    22

    2

    zzC

    zzC

    z

    Chapter 5.2

    16

  • 8/13/2019 Chap5 Elasticity

    19/98

    Planar Anisotropic Case

    CLM Shift

    For an isotropic material, the governing

    equation will be reduced to :

    0Re2

    2

    2

    2

    zz

    NoMaterial

    constants!!!

    TJ , TractionBCs

    C

    L

    M

    One may change the Youngs modulus

    Eand the Poissons ratiov arbitrarily

    without any influence on the stress state.

    Chapter 5.2

    17

  • 8/13/2019 Chap5 Elasticity

    20/98

    Planar Isotropic CaseBiharmonic EquationBasic Equation for Planar Isotropic Materials

    Chapter 5.3

    18

    ,,

    ,

    2

    1

    2,0

    uu

    f kk

    Plane strain kk

    Plane stress 022 333333 kk

    233

    2

    22

    kk

  • 8/13/2019 Chap5 Elasticity

    21/98

    A unified planar constitutive relation

    2

    1

    3

    Planar Isotropic CaseBiharmonic EquationBasic Equation for Planar Isotropic Materials

    4

    3

    2

    1a

    43

    1

    3

    Plane strain

    Plane stress

    Chapter 5.3

    19

  • 8/13/2019 Chap5 Elasticity

    22/98

    Biharmonic Equation

    ,2 V

    ,Vf 04

    3

    2

    1

    4

    1 2,

    2

    0, f

    StressPlaneStrainPlane

    11

    21

    1

    12

    2222

    VV

    V22

    4

    1

    0,,

    4

    3

    2

    1a

    V22

    Chapter 5.3

    20

  • 8/13/2019 Chap5 Elasticity

    23/98

    Solution in CartesianCoordinatesRectangular Regions

    Chapter 5.4

    21

    X

    Y

    a a

    b

    b

    Astrong boundarycondition has to be prescribedpoint-wise.

    Aweak boundarycondition can be relaxed toan integral form.

    The errorinduced

    by the weak BCsis

    characterized by theSaint-Venant

    corrective solution.

  • 8/13/2019 Chap5 Elasticity

    24/98

    Polynomial Solution

    Solution in CartesianCoordinates

    022

    ,2

    0

    ,

    N

    N yxP

    N

    i

    iiN

    iN

    yxAP0

    P0andP1induce no stress.

    SUGGEST :

    Chapter 5.4

    22

  • 8/13/2019 Chap5 Elasticity

    25/98

    Polynomial Solution

    Solution in CartesianCoordinates

    04

    0

    44

    N

    i

    iiN

    iN yxBP 4,,0,0 NiBi

    Solution familyNP~

    NPP~

    ,,~

    3

    32

    ~,

    ~PP

    4 independent coefficients

    3 independent coefficients

    Chapter 5.4

    23

  • 8/13/2019 Chap5 Elasticity

    26/98

    Examples of Lower Degree Polynomials

    Solution in CartesianCoordinates

    Polynomial of degree 2 Y

    X

    -A1

    2A0

    2A2

    2

    21

    2

    0 yAxyAxA

    22Axx 02Ayy

    1Axy

    Chapter 5.4

    24

  • 8/13/2019 Chap5 Elasticity

    27/98

    Examples of Lower Degree Polynomials

    Solution in CartesianCoordinates

    Polynomial of degree 3

    X

    Y

    Pure bending

    3

    3

    2

    2

    2

    1

    3

    0 yAxyAyxAxA

    yAxAyy 10 26 yAxAxy 21 22 yAxAxx 32 62

    0,0 3210 AAAA

    Pure bending

    yAxx 36

    0 yyxy

    Chapter 5.4

    24

  • 8/13/2019 Chap5 Elasticity

    28/98

    Lateral Bending of a Slender Rectangle

    Solution in CartesianCoordinates

    X

    Y

    b

    b

    a

    F

    BCs :

    0xxFdy

    b

    b

    xy

    :0x

    by

    0yy 0xy

    Chapter 5.4

    26

  • 8/13/2019 Chap5 Elasticity

    29/98

    Lateral Bending of a Slender Rectangle

    Solution in CartesianCoordinates

    2

    2

    y

    xx

    main stress, proportional toxy

    TRY :3

    1xyC xyCxx 16 yCxy 130yy

    byxy at0NOTsatisfy the BC :

    CORRECT : xyCxyC 23

    1

    Chapter 5.4

    27

  • 8/13/2019 Chap5 Elasticity

    30/98

    Lateral Bending of a Slender Rectangle

    Solution in CartesianCoordinates

    The final stress

    function :

    3

    22

    4

    3

    b

    byFyx

    Stresses :2

    2

    3

    b

    Fxyxx

    322

    43

    bybFxy

    0yy

    Chapter 5.4

    28

  • 8/13/2019 Chap5 Elasticity

    31/98

    Lateral Bending of a Slender Rectangle

    Solution in CartesianCoordinates

    QUESTION:

    Does the global equilibrium maintain?

    BCs at the right end:

    b

    b

    xx y 0d Fy

    b

    b

    xy

    d Fayy

    b

    b

    xy

    d

    REASON: Local equilibrium plus suitable boundaryconditions along three side naturally leads to the global

    balance for the boundary traction over the remaining side.

    Chapter 5.4

    29

  • 8/13/2019 Chap5 Elasticity

    32/98

    Higher Degree PolynomialsReduction by

    Symmetry

    Solution in CartesianCoordinates

    B

    C

    Symmetricpart to x (or) y

    Stress function contains only the

    evendegree terms ofx (or)y

    Anti-symmetricpart to x(or) yStress function contains only the

    odddegree terms ofx (or)y.

    Chapter 5.4

    30

  • 8/13/2019 Chap5 Elasticity

    33/98

    Reduction by Symmetry

    Bending of a slender

    rectangle by uniformly

    distributed pressure:

    Solution in CartesianCoordinates

    X

    Y

    a a

    b

    b

    yxxx2

    Without more complications, the Airy stress functionwould involve polynomials of degree 5 and below.

    Undetermined constantants : 6 + 5 + 4 + 3 = 18

    Chapter 5.4

    31

  • 8/13/2019 Chap5 Elasticity

    34/98

    Higher Degree Polynomials

    Bending of a slender rectangle by uniformly

    distributed pressure:

    Solution in CartesianCoordinates

    X

    Y

    a a

    b

    b

    PaPa

    2Pyy

    2Pyy 2Pyy

    2Pyy

    Chapter 5.4

    32

  • 8/13/2019 Chap5 Elasticity

    35/98

    Higher Degree Polynomials

    Solution in CartesianCoordinatesPaPa

    2Pyy

    2Pyy

    Stress function :

    3

    5

    2

    4

    5

    3

    32

    2

    4

    1 yCyxCyCyxCyxC

    Strong BCs : byp

    yyxy at2

    ,0

    Weak BCs : axyyyb

    b

    xx

    b

    b

    xx

    at0d,0d

    Chapter 5.4

    33

  • 8/13/2019 Chap5 Elasticity

    36/98

    Higher Degree Polynomials

    Solution in CartesianCoordinatesX

    Y

    a a

    b

    b

    Airy stress function :

    233232225323

    10251554

    xbybyayxbyyxabp

    Stresses :

    ybyayyxbp

    xx

    2232

    3 615101520

    2234

    3yb

    b

    pxxy 3233 234

    bybyb

    pyy

    Chapter 5.4

    34

  • 8/13/2019 Chap5 Elasticity

    37/98

    Solution in CartesianCoordinatesSolut io n by Fourier Series

    q1(x)

    q(x)

    Y

    X

    Symmetric

    1

    cosk

    kk xyf

    Anti-symmetric

    1

    sink

    kk xyf

    Chapter 5.4

    35

  • 8/13/2019 Chap5 Elasticity

    38/98

    Solution by Fourier Series

    Solution in CartesianCoordinates

    1

    cos

    k

    kk xyf

    1

    sink

    kk xyf

    022

    yyDCyyBAyf

    kkk

    kkkk

    sinh

    cosh

    Chapter 5.4

    36

  • 8/13/2019 Chap5 Elasticity

    39/98

    Solution by Fourier Series

    Solution in CartesianCoordinates

    For an infinite or a semi-infinite beam

    0

    dcos,, xyfyx

    yyDCyyBAyf sinhcosh,

    Chapter 5.4

    37

  • 8/13/2019 Chap5 Elasticity

    40/98

    Polar Coordinates

    Solution in PolarCoordinates

    Chapter 5.5

    38

    q

    r

    X

    Y

    qcosrx qsinry

    22 yxr x

    y1tanq

    q

    qq

    q

    q

    rrxrx

    r

    x

    sincos

    q

    qq

    q

    q

    rryry

    r

    y

    cossin

  • 8/13/2019 Chap5 Elasticity

    41/98

    Polar Coordinates

    Solution in PolarCoordinates

    Chapter 5.5

    39

    q

    r

    X

    Y

    qqqq

    qqq

    rrrrrrrx

    2

    22

    2

    2

    2

    2

    22

    2

    2 11cossin2

    11sincos

    qqqq

    qqq

    rrrrrrry

    2

    22

    2

    2

    2

    2

    22

    2

    2 11cossin2

    11cossin

    qqqq

    qqq

    rrrrrrryx

    2

    2

    22

    2

    2

    22

    22 11sincos

    11cossin

  • 8/13/2019 Chap5 Elasticity

    42/98

    Basic Equations in Polar Coordinates

    Solution in PolarCoordinates

    Chapter 5.5

    40

    Stresses

    2

    2

    2

    11

    q

    rrrrr 2

    2

    rqq

    qq

    rrr

    1

    Laplace operators 2

    2

    22

    2

    2

    2

    2

    22 11

    q

    rrrryx

    2

    2

    2

    22

    24 11

    qrrrr

    Biharmonic

    operators

  • 8/13/2019 Chap5 Elasticity

    43/98

    Basic Equations in Polar Coordinates

    Solution in PolarCoordinates

    Chapter 5.5

    41

    Displacementsqq qsincos uuu rx

    qq qcossin uuu ry

    Strains

    qq

    qqq

    q qqq 22 sin1cossin1cos

    u

    rruu

    rru

    ru

    ru rrrxx

    qq

    qqq

    q qqq 22 cos1

    cossin1

    sin

    u

    rr

    uu

    rr

    u

    r

    u

    r

    u rrryy

    qqq

    qqq

    qqq 22 sincos1

    2

    1cossin

    1

    rrrxy

    u

    rr

    u

    r

    uu

    rr

    u

    r

    u

  • 8/13/2019 Chap5 Elasticity

    44/98

    Basic Equations in Polar Coordinates

    Solution in PolarCoordinates

    Chapter 5.5

    42

    Transformation

    rur

    xyyyxxrr qqqq cossin2sincos 22

    r

    u

    r

    uu

    r

    rr

    qqq

    q

    1

    2

    1

    r

    uu

    r

    r

    q qqq

    1

  • 8/13/2019 Chap5 Elasticity

    45/98

    Plane Problems with Axi-symmetry

    Solution in PolarCoordinates

    Chapter 5.5

    43

    A plane geometry with axi-symmetry

    (1) Assumption of plane strain or plane stress holds ;

    (2) Geometry does not depend on the polar angle.

    bq

    r

    aX

    Y

    Single-valued-ness

    qq uu ,,2,,

  • 8/13/2019 Chap5 Elasticity

    46/98

    Plane Problems with Axi-symmetry

    Solution in PolarCoordinates

    Chapter 5.5

    44

    Stress function

    00

    sincosn

    n

    n

    n nrgnrf qq

    0d

    d1

    d

    d2

    2

    2

    2

    2

    rg

    rf

    r

    n

    rrr n

    nBiharmonic equation

    1,0n The solution has the form of rk.

    Characteristic

    equation

    02 2222 nknk

    nnk 2,

  • 8/13/2019 Chap5 Elasticity

    47/98

    Plane Problems with Axi-symmetry

    Solution in PolarCoordinates

    Chapter 5.5

    45

    Solutions to Eulers function :

    1n3,1kSimple roots 1kDuplex root

    11413123

    111 ln rArArrArArf

    0n2,0kDuplex roots

    rAArArArf lnln 0403022

    010

    n

    n

    n

    n

    n

    n

    n

    nn

    rArArArArf 43

    2

    2

    2

    11n

  • 8/13/2019 Chap5 Elasticity

    48/98

    Plane Problems with Axi-symmetry

    Solution in PolarCoordinates

    Chapter 5.5

    46

    BCs :

    ar q1

    Frr

    qq 3

    Fr

    br q 2Frr qq 4Fr

    1,2,3,4,sincos00

    jnbnaFn

    nj

    n

    njj qqq

    For each trignomic terms, one can always finds 4

    equations to solve for the 4 coefficients 431 ,,, nnn2n AAAA

  • 8/13/2019 Chap5 Elasticity

    49/98

    Plane Problems with Axi-symmetry

    Solution in PolarCoordinates

    Chapter 5.5

    47

    Axi-symmetry

    rAArArArf lnln 0403022

    010

    Stresses 2

    040201 ln212

    r

    ArAArr

    2040201 ln232 rArAA qq

    0qr

  • 8/13/2019 Chap5 Elasticity

    50/98

    Example : A Hole under Remote Shear

    Solution in PolarCoordinates

    Chapter 5.5

    48

    a

    a

    rq

    BCs :

    arrrr at0q

    r

    yyxx

    xyat

    0

  • 8/13/2019 Chap5 Elasticity

    51/98

    Example : A Hole under Remote Shear

    Solution in PolarCoordinates

    Chapter 5.5

    49

    q

    2sin2

    2rxy Uniform

    solution

    Perturbation

    solution qq 2sin2sin 224222* rAArg

    q

    2sin

    2

    2

    2422

    2*

    rAAr

    q 2sin64

    4

    24

    2

    22

    r

    A

    r

    Arrqq 2cos

    624

    24

    2

    22

    r

    A

    r

    Ar qqq 2sin

    64

    24

    r

    A

  • 8/13/2019 Chap5 Elasticity

    52/98

    Example : A Hole under Remote Shear

    Solution in PolarCoordinates

    Chapter 5.5

    50

    a

    Stresses

    q 2sin3414

    4

    2

    2

    ra

    ra

    rr

    qq 2cos32

    14

    4

    2

    2

    r

    a

    r

    arqqq 2sin

    31

    4

    4

    r

    a

    Along the rim of the hole qqq 2sin4ar

    The maximum hoop stress4

    3,

    4

    q

  • 8/13/2019 Chap5 Elasticity

    53/98

    Degeneracy (Solution)

    Solution in PolarCoordinates

    Chapter 5.5

    51

    Terms that do not induce a stress :

    qq sincos CrBrACyBxA

    1303 and AA can be neglected.

    1n2

    2

    nn rA

    n

    nrA 3

    111111 rrD

    rrCBrArrf1n

    rDrCrrf ln2,lim0

  • 8/13/2019 Chap5 Elasticity

    54/98

    Degeneracy

    Solution in PolarCoordinates

    Chapter 5.5

    52

    0n 2nr 2nr

    rrrn

    n

    nln

    d

    dlim

    22

    0

    nr nr

    rrn

    n

    nln

    d

    dlim

    0

    Other qq sincos BrAr

    qlnln BrA

    0 qqrr

    2r

    Br q

    1n qqqq cossin CrBr

    0 qqq r

    r

    C

    r

    Brr

    qq

    sin2cos2

  • 8/13/2019 Chap5 Elasticity

    55/98

    Michells Solution

    Solution in PolarCoordinates

    Chapter 5.5

    53

    J. H. Michell, Proc. London. Math. Soc. Vol.31

    (1899), 100-124

    2

    43

    2

    2

    2

    1

    243

    2

    2

    2

    1

    13

    1

    1412

    3

    11

    13

    1

    1412

    3

    11

    0403

    2

    02

    2

    01

    sin

    cos

    sinsinln

    sincosln

    lnln

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    nrBrBrBrB

    nrArArArA

    rBrBrrBrB

    rArArrArA

    ArArrArA

    q

    q

    qqq

    qqq

    q

  • 8/13/2019 Chap5 Elasticity

    56/98

    A Circular Hole under Tension

    Solution in PolarCoordinates

    Chapter 5.5

    54

    BCs :

    arrrr at0q

    r

    yyxy

    xxat

    0

    Uniformsolution

    q 2cos142

    22 ry

  • 8/13/2019 Chap5 Elasticity

    57/98

    A Circular Hole under Tension(Details)

    Solution in PolarCoordinates

    Chapter 5.5

    55

    From Michellssolution, the

    terms that might match the

    uniform solution:

    rrrrrrrr

    ln,ln,2cos

    ln,ln,22

    22

    q

    Terms that lead to decaying stresses :

    q2cos,1,ln 2rr

    Stress function

    qqq 2cos2cosln2cos14

    22 CrBrAr

    http://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension.pdf
  • 8/13/2019 Chap5 Elasticity

    58/98

    A Circular Hole under Tension

    Solution in PolarCoordinates

    Chapter 5.5

    56

    143

    22cos1

    22

    2

    4

    4

    2

    2

    ra

    ra

    ra

    rrq

    1

    3

    2

    2cos1

    2 4

    4

    2

    2

    r

    a

    r

    a qqq

    1

    23

    2

    2sin2

    2

    4

    4

    r

    a

    r

    ar

    qq

    Stresses

  • 8/13/2019 Chap5 Elasticity

    59/98

    Displacements for Circular Hole under Shear

    Solution in PolarCoordinates

    Chapter 5.5

    57

    Stresses

    q 2sin34

    14

    4

    2

    2

    r

    a

    r

    arr

    qq 2cos32

    14

    4

    2

    2

    r

    a

    r

    ar

    qqq 2sin3

    14

    4

    r

    a

  • 8/13/2019 Chap5 Elasticity

    60/98

    Displacements for Circular Hole under Shear

    Solution in PolarCoordinates

    Chapter 5.5

    58

    Strain q

    2sin

    1341

    4

    4

    2

    2

    r

    a

    r

    av

    Er

    urrr

    qqq 2sin134

    14

    4

    2

    2

    r

    a

    r

    a

    E

    q

    q 2cos

    !3121

    4

    4

    2

    2

    r

    a

    r

    a

    Er

    )(2sin14

    14

    42

    qq

    fr

    av

    r

    ar

    Eur

    r

    urrr

  • 8/13/2019 Chap5 Elasticity

    61/98

    Displacements for Circular Hole under Shear

    Solution in PolarCoordinates

    Chapter 5.5

    59

    ruru

    qq

    q q

    rgFr

    a

    r

    ar

    Eu

    qq

    q 2cos1

    121

    3

    42

    qqq dfF

    r

    u

    r

    uu

    r

    rr

    qqq

    q

    1

    2

    1 0 CrgrrgFF qq

    qqq sincos BAF Crrg

  • 8/13/2019 Chap5 Elasticity

    62/98

    Displacements for Circular Hole under Shear

    Solution in PolarCoordinates

    Chapter 5.5

    60

    Displacement fields

    qqq

    sincos2sin

    14

    1 3

    42

    BAr

    a

    r

    a

    rEur

    CrBAr

    a

    r

    ar

    Eu

    qqq

    q cossin2cos1

    121

    3

    42

    Translation : A=B= 0

    Rotation : C= 0

  • 8/13/2019 Chap5 Elasticity

    63/98

    Displacements for Circular Hole under Shear

    Solution in PolarCoordinates

    Chapter 5.5

    61

    Radial displacement

    along the hole :

    E

    au

    arr

    q 2sin4

    4

    5,

    4

    q

    4

    7,

    4

    3 q

    MAX :

    MIN :

  • 8/13/2019 Chap5 Elasticity

    64/98

    Axi-symmetric Problems(Details)

    Solution in PolarCoordinates

    Chapter 5.5

    62

    pi

    po

    Displacement fields:

    ruu rr 0qu

    0d

    d1

    d

    d22

    2

    r

    u

    r

    u

    rr

    u rrr

    r

    CrCur

    21

    Solution in Polar

    http://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/Axi-symmetric%20Problems.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/Axi-symmetric%20Problems.pdf
  • 8/13/2019 Chap5 Elasticity

    65/98

    Displacements of Michells Solution

    Coordinates

    Chapter 5.5

    63

    BCs :

    ar q 1Frr qq 3Fr

    br q 2Frr qq 4Fr

    Zero resultant forces and zero resultant torque:

    qqqqqqqqqq

    2

    0

    42

    2

    0

    31 dsincosdsincos FFbFFa

    qqqqqqqqqq2

    0

    42

    2

    0

    31 dcossindcossin FFbFFa

    qqqq

    2

    0

    4

    2

    2

    0

    3

    2 dd FbFa

    Solution in Polar

  • 8/13/2019 Chap5 Elasticity

    66/98

    Displacements of Michells Solution

    Coordinates

    Chapter 5.5

    64

    Orthogonality of Fourier series dictates that the

    above conditions only bears influence on the

    terms of 1,0

    n

    QUESTION: Three independent equationsWHILE four sets of coefficients?

    141114110401 ,, BBAAAA

    ANSWER: Single-valued-ness requirement of thedisplacement fields, and that imposes restrictions on the

    multi-valued terms in uru that are linear in .

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    67/98

    MethodComplex Variables

    Chapter 5.6

    65

    Recall: in-plane elasticity formulation of an

    isotropic solid without body forces :

    02 2

    022

    In-plane stress trace is harmonic

    The Airy stress function is biharmonic

    Analogy to the anti-plane problems

    iyxz iyxz

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    68/98

    Complex Variables

    Method

    Chapter 5.6

    66

    Derivatives

    yi

    xyzy

    xzx

    z 21

    yi

    xyz

    y

    xz

    x

    z 2

    1

    zzyi

    xyi

    x

    22 4

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    69/98

    Kolosov-Muskhelishivilli Potentials

    Method

    Chapter 5.6

    67

    zz

    2

    zzzzgz

    Re42

    2

    zzzz

    24

    22

    zzzzz

    2

    1

    zzzz dRe

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    70/98

    Fields by Complex Potentials

    Method

    Chapter 5.6

    68

    Kolosov and Muskhelishivilli potentials : ,

    Stress zyyxxm Re22

    zzz

    i xyxxyy

    d

    2

    Strain zmyyxx

    m

    Re

    2

    1

    4

    1

    2

    zzzi dxyxxyy

    d

    2

    1

    2

    1

    2

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    71/98

    Fields by Complex Potentials

    Method

    Chapter 5.6

    69

    Displacement zzzzfiuuu yx

    2

    1c

    xy

    xxyy

    d i

    2

    x

    u

    y

    ui

    x

    u

    y

    u yxxy

    2

    1

    yx iuu

    yi

    x

    2

    1 yx iuu

    z

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    72/98

    Fields by Complex Potentials

    Method

    Chapter 5.6

    70

    yyxxm 2

    zuz

    iuuy

    ixy

    u

    x

    u

    c

    yx

    yx

    Re1

    2Re

    Re

    01Re zzzf 0Re zzf

    izizzf 2

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    73/98

    Fields by Complex Potentials

    Method

    Chapter 5.6

    71

    Rigid translation

    Rigid body rotation

    Complex displacement

    Strain energy density

    zzzzuc 2

    22Re122

    1

    2

    1

    zzW ddmm

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    74/98

    Coordinate Transform

    Method

    Chapter 5.6

    72

    q

    Y

    XY

    zeiyxeiyxz ii ***

    c

    i

    c ueu *

    mm *

    d

    i

    d e 2*

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    75/98

    Coordinate Transform

    Method

    Chapter 5.6

    73

    yx

    i

    r iuueiuu q

    q

    yyxxrr qq

    xy

    xxyyi

    r

    rr

    iei

    qq

    qq

    22

    2

    q X

    Y

    XY

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    76/98

    Coordinate Transform

    Method

    Chapter 5.6

    74

    q X*

    Y*

    z0

    z

    z*

    Y

    X

    *

    0 zzz

    yyxxyyxx ~~~~

    0~Re zz

    zz ~

    yx

    xxyy

    xy

    xxyyii ~~

    ~~~~

    22

    zzzzzz ~~~

    zzzz 0~

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    77/98

    Disks

    Method

    Chapter 5.6

    75

    Uc=U

    0(q)

    aBy Taylor series:

    0n

    n

    nzz

    0n

    n

    nzz

    Complex displacement:

    0

    22n

    in

    n

    ni

    n

    in

    n

    n

    c eenerzzzzu qqq

    0

    2

    0 )(2n

    in

    n

    ni

    n

    in

    n

    n eeneau qqq qBCs:

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    78/98

    Holes

    Method

    Chapter 5.6

    76

    0d

    0 d zzz

    0 z 0 z

    0 m 0 zz

    iAz 2 iz 2ln 0ln zAz

    zSzAz ln

    0 z

    Ais REAL.

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    79/98

    Holes

    Method

    Chapter 5.6

    77

    Single-valued analytical function can be expressed

    by Laurent series.

    nnzzBzAzz lnln

    nnzzCz ln

    Ais REAL,B, Cand are COMPLEX.nn ,

    LINKS TO

    the Michells solutions for holes

    qirz lnln

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    80/98

    Increments of Complex Displacement by

    Circling the Hole

    Method

    Chapter 5.6

    78

    Kolosov-Muskhelishvilli functions

    zzBzAzz *lnln zzCz *ln

    are single-valued analytic functions ofz. zz ** ,

    CBAziuc

    1

    Increment of the

    complex displacement

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    81/98

    Inserted Wedge

    Method

    Chapter 5.6

    79

    A

    qq

    iuueAz

    iu r

    i

    c 1

    0 ru Ar

    Gu

    1 q

    Be interpreted as inserting

    a wedge of an angle :

    A

    1

    zzln

    1

    0

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    82/98

    Method

    Chapter 5.6

    80

    CB

    yx ibb

    iCB

    xx ub yy ub

    yx ibb

    iBC

    Burgers vector

    i

    yx beibb

    22

    yx bbb

    x

    y

    b

    b1tan

    Dislocat ions

    Kolosov Muskhelishvilli

    http://uet.edu.pk/dmems/EdgeDislocation.gif
  • 8/13/2019 Chap5 Elasticity

    83/98

    Solutions of Single-valued Displacements

    Method

    Chapter 5.6

    81

    For a problem free of inserted wedge or dislocations,

    The Kolosov-Muskhelishvilli solutionis reduced to

    zzBz *ln

    zzBz *ln

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    84/98

    MethodConcentrated Forces

    Chapter 5.6

    82

    Following the derivation in the textbook

    by Lu and Luo, Section 8.1

    zzzziRRi yx For the single-valued-ness of , and

    the relation

    zz ** ,

    iz 2ln

    )1(2 iBiRRi yx

    zziRR

    z yx *ln

    12

    zziRRz yx *ln12

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    85/98

    Solutions without Wedges, Dislocations and

    Concentrated Forces

    Method

    Chapter 5.6

    83

    Kolosov-Muskhelishvilli functions

    1

    0

    *

    k

    k

    kzazazz

    1

    0

    *

    k

    k

    kzbzbzz

    Stresses at infinity :

    0Re am 0bd

    Kolosov Muskhelishvilli

  • 8/13/2019 Chap5 Elasticity

    86/98

    Stresses along the Hole (Details)

    Method

    Chapter 5.6

    84

    Tractiondistribution along a circle:

    zzzezzi irrr qq 2

    BCscan be expanded by Fourier series

    in complex form:

    m

    im

    mrrr eCi q

    q~~

    Kolosov Muskhelishvilli

    http://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/Stresses%20along%20hole.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/Stresses%20along%20hole.pdf
  • 8/13/2019 Chap5 Elasticity

    87/98

    A Circular Hole under Tension(Details)

    Method

    Chapter 5.6

    85

    Remote tension

    2

    m

    2

    d

    Kolosov-Muskhelishvilli stress functions

    1224

    zazz

    2412222

    zazazz

    Kolosov Muskhelishvilli

    http://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension1.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension1.pdf
  • 8/13/2019 Chap5 Elasticity

    88/98

    A Circular Hole under Tension(Details)

    Method

    Chapter 5.6

    86

    Stresses

    q 2cos21

    2 2

    2

    ra

    m

    qq

    q

    qqq

    ii

    i

    rrr

    er

    a

    r

    ae

    r

    a

    z

    a

    z

    a

    z

    azei

    2

    4

    4

    2

    22

    2

    2

    4

    4

    2

    2

    3

    22

    32

    322

    Compare with

    Michells Solution

    Kolosov Muskhelishvilli

    http://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension1.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension1.pdf
  • 8/13/2019 Chap5 Elasticity

    89/98

    A Circular Hole under Tension(Details)

    Method

    Chapter 5.6

    87

    Great benefitsof the complex variable approach lie

    in the evaluation of displacement field.

    zzzzeGu ic q 2

    q 2cos112

    1

    44

    4

    2

    2

    2

    2

    r

    a

    r

    a

    r

    a

    G

    rur

    qq 2sin114

    4

    4

    2

    2

    r

    a

    r

    a

    G

    ru

    Solution in Polar

    http://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension1.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension1.pdf
  • 8/13/2019 Chap5 Elasticity

    90/98

    Plane Problems with Axi-symmetry

    Coordinates

    Chapter 5.5

    36

    Solutions to Eulers function :

    nnn

    n

    n

    n

    n

    nn rArArArArf 43

    2

    2

    2

    1

    0n2,0kDuplex roots

    1n3,1kSimple roots 1kDuplex root

    11413123

    111 ln rArArrArArf

    rAArArArf lnln 0403022

    010

    1n

    back

    Degen

    Michell solution

  • 8/13/2019 Chap5 Elasticity

    91/98

    qcos3r qcos2r qsin2r qcos6r

    qqsinr r/cos2 q 0 0

    qcoslnrr r/cos2 q r/sinq r/cosq

    r/cosq 3/cos2 rq 3/sin2 rq 3/cos2 rq

    qsin3

    r qsin2r qcos2r qsin6r

    qqcosr rr /sin2 q 0 0

    qsinln rr r/sinq r/cosq r/sinq

    r/sinq 3/sin2 rq 3/cos2 rq 3/sin2 rq

    Michell solution

    rr qr qq

    2r 2 0 2

    rr ln2 1ln2 r 0 3ln2 r

    rln 2/1 r 0 2/1 r

    q 0 2/1 r 0

    STRESS

    back

    Disp

    Circular

    Michel l

    1

    Appendix

    Michell solution

  • 8/13/2019 Chap5 Elasticity

    92/98

    Michell solution

    STRESS

    qnrn cos2 qnrnn n cos21 qnrnn n sin1 qnrnn n cos21

    qnr n cos2 qnrnn n cos12 qnrnn n sin1 qnrnn n cos21

    qnrn cos qnrnn n cos1 2 qnrnn n sin1 2 qnrnn n cos1 2

    qnr n cos qnrnn n cos1 2 qnrnn n sin1 2 qnrnn n cos1 2

    qnrn sin2 qnrnn n sin21 qnrnn n cos1 qnrnn n sin21

    qnr n sin2 qnrnn n sin12 qnrnn n cos1 qnrnn n sin21

    qnrn sin qnrnn n sin1 2 qnrnn n cos1 2 qnrnn n sin1 2

    qnr n sin qnrnn n sin1 2 qnrnn n cos1 2 qnrnn n sin1 2

    2

    Appendix

    back

    Disp

    Circular

    Michel l

    Michell solution

  • 8/13/2019 Chap5 Elasticity

    93/98

    Michell solution

    DISPLACEMENT

    ru2 qu2

    2r r1 0

    rr ln2 rrr ln1 q r1

    rln r/1 0

    q 0 r/1

    3

    Appendix

    back

    Disp

    Circular

    Michel l

    Michell solution

  • 8/13/2019 Chap5 Elasticity

    94/98

    Michell solution

    DISPLACEMENT

    qcos3r q cos2 2r q sin2 2r

    qqsinr

    ]cosln1

    cossin1[2

    1

    q

    qqq

    r

    ]sinln1

    sincos1[2

    1

    q

    qqq

    r

    qcoslnrr

    ]cosln1

    cossin1[2

    1

    q

    qqq

    r

    ]sinln1

    sincos1[2

    1

    q

    qqq

    r

    r/cosq 2/cos rq 2/sin rq

    qsin3r q sin2 2r q cos2 2r

    qqcosr

    ]sinln1

    sincos1[2

    1

    q

    qqq

    r

    ]cosln1

    cossin1[2

    1

    q

    qqq

    r

    qsinln rr

    ]sinln1

    sincos1[2

    1

    q

    qqq

    r

    ]cosln1

    cossin1[2

    1

    q

    qqq

    r

    r/sinq 2/sin rq 2/cos rq 4

    Appendix

    back

    Disp

    Circular

    Michel l

    Michell solution

  • 8/13/2019 Chap5 Elasticity

    95/98

    Michell solution

    DISPLACEMENT

    qnrn cos2 q nrn n cos1 1 q nrn n sin1 1

    qnr n cos2 q nrn n cos1 1 q nrn n sin1 1

    qnrn cos qnnrn cos1 qnnrn sin1

    qnr n cos qnnr n cos1 qnnr n sin1

    qnrn sin2 q nrn n sin1 1 q nrn n cos1 1

    qnr n sin2 q nrn n sin1 1 q nrn n cos1 1

    qnrn sin qnnrn sin1 qnnrn cos1

    qnr n sin qnnr n sin1 qnnr n cos1

    5

    Appendix

    back

    Disp

    Circular

    Michel l

    Solution in Polar

  • 8/13/2019 Chap5 Elasticity

    96/98

    Michells Solution

    Coordinates

    Chapter 5.5

    51

    J. H. Michell, Proc. London. Math. Soc. Vol.31

    (1899), 100-124

    2

    43

    2

    2

    2

    1

    2

    43

    2

    2

    2

    1

    13

    1

    1412

    3

    11

    13

    1

    1412

    3

    11

    0403

    2

    02

    2

    01

    sin

    cos

    sinsinln

    sincosln

    lnln

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    nrBrBrBrB

    nrArArArA

    rBrBrrBrB

    rArArrArA

    ArArrArA

    q

    q

    qqq

    qqq

    q

    back

    HOLES

    Solution in Polar

  • 8/13/2019 Chap5 Elasticity

    97/98

    A Circular Hole under Tension(Details)

    Coordinates

    Chapter 5.5

    53

    From Michells solution, the

    terms that might match the

    uniform solution: rrrr

    rrrr

    ln,ln,2cos

    ln,ln,22

    22

    q

    Terms that lead to decaying stresses :

    q2cos,1,ln 2rr

    Stress function

    qqq 2cos2cosln2cos14

    22 CrBrAr

    back

    HOLES

    Solution in Polar

    http://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_6/Chap5/A%20Circular%20Hole%20under%20Tension.pdf
  • 8/13/2019 Chap5 Elasticity

    98/98

    A Circular Hole under Tension

    Coordinates

    1432 2cos12 2

    2

    4

    4

    2

    2

    ra

    ra

    rarr q

    1

    3

    2

    2cos1

    2 4

    4

    2

    2

    r

    a

    r

    a qqq

    1

    23

    2

    2sin2

    2

    4

    4

    r

    a

    r

    ar

    qq

    Stresses

    back

    HOLES