CH02 Conduction

Embed Size (px)

Citation preview

  • MEC551

    THERMAL ENGINEERING

    Mohd Hafiz Mohd Noh

    T1-A18-6C 1

    2.0 Conduction

  • Conduction Analysis

    Main Objective of Conduction Analysis

    To determine the temperature distribution in a medium

    2

  • Steady versus Transient Heat Transfer

    Steady implies no change with time at any point within the medium

    Transient implies variation with time or time dependence

    3

  • multidimensional heat transfer,

    Three prime coordinate systems:

    rectangular (T(x, y, z, t)) ,

    cylindrical (T(r, f, z, t)),

    spherical (T(r, f, q, t)).

    4

  • Heat Conduction Equation (Rectangular Coordinates)

    Cartesian Coordinates:

    5

    dQy dQ(y+dy)

    dQz

    dQ(z+dz)

    dQ(x+dx)

    dQx

    dx

    dz

    dy

    X

    Z

    Y

  • Heat Conduction Equation (Rectangular Coordinates)

    Differential volume:

    Heat conduction rate in x-direction (into element):

    dzdydxdV

    dx

    dTdzdyk

    dx

    dTAkdQ

    A

    x

    6

    dQx dy

    dz

  • Heat Conduction Equation (Rectangular Coordinates)

    Taylor Series Expansion:

    Substitute our equation:

    HOTxfhxfhxf )()()(

    HOTdxx

    Qd

    QddxxQdx

    x

    )(

    7 7

    small

    0

    2

    2

    )(

    )(

    x

    Tdzdyk

    x

    Qd

    xf

    dxh

    x

    TdzdykQdxf

    x

    X

  • Heat Conduction Equation (Rectangular Coordinates)

    Therefore the net rate of flow in the x-direction is:

    2

    2

    2

    2

    x

    Tdzdydxk

    x

    Tdydzdxk

    x

    Tdydzk

    x

    TdydzkQdQd dxxx

    dxx

    QdQd xx

    x

    Tdxdzdyk

    x

    TdzdykdxxQd

    2

    2

    )(

    8

  • Heat Conduction Equation (Rectangular Coordinates)

    Likewise:

    2

    2

    2

    2

    z

    TdzdydxkQdQd

    y

    TdzdydxkQdQd

    dzzz

    dyyy

    9

  • Heat Conduction Equation (Rectangular Coordinates)

    In addition to the heat flow into and out of the element, there is also the possibilities of:

    - Heat being generated within the element (e.g. due to the flow of electricity).

    - Heat being stored within the element, as in the case of an unsteady-state condition.

    10

  • Heat Conduction Equation (Rectangular Coordinates)

    The rate of heat generated is:

    The rate of heat storage is:

    dzdydxqdVq

    volumepergenerated

    heatofrate

    11

    changeetemperatur

    ofrateheatspecific

    p

    density

    pt

    TdzdydxC

    t

    TdVC

  • Heat Conduction Equation (Rectangular Coordinates)

    Assuming the element may expand or contract freely at constant pressure, the energy balance is given by:

    12

    Rate of

    Heat Storage

    Net rate of

    Heat into

    Element

    Rate of

    Heat

    Generation

    = +

  • Heat Conduction Equation (Rectangular Coordinates)

    In equation form this is:

    Set:

    Generation

    HeatofRate

    elementoHeatofRateNetStorageHeatofRate

    P qz

    T

    y

    T

    x

    Tk

    t

    TC

    int

    2

    2

    2

    2

    2

    2

    13

    PC

    k

    Thermal diffusivity (i.e. the ratio of heat conduction to heat

    storage).

    It represents how fast heat propagates through a material.

    ~

  • Heat Conduction Equation (Rectangular Coordinates)

    Substituting in, this equation becomes the general differential conduction equation for rectangular coordinates:

    Generation

    HeatofRateelementoHeatofRateNet

    StorageHeatofRate

    k

    q

    z

    T

    y

    T

    x

    T

    t

    T

    int

    2

    2

    2

    2

    2

    21

    14

  • Heat Conduction Equation (Rectangular Coordinates)

    Special cases: 1) Fourier Equation (no heat generation, q =0):

    2) Poisson Equation (steady state, T/t =0):

    3) Laplace Equation (steady state with no heat generation):

    2

    2

    2

    2

    2

    21

    z

    T

    y

    T

    x

    T

    t

    T

    02

    2

    2

    2

    2

    2

    z

    T

    y

    T

    x

    T

    15

    02

    2

    2

    2

    2

    2

    k

    q

    z

    T

    y

    T

    x

    T

  • Heat Conduction Equation (Spherical Coordinates)

    Now calculate the general conduction equation in spherical coordinates

    16

    y x

    z z

    y x

    r

    q

    T(r,,q)

  • Heat Conduction Equation (Spherical Coordinates)

    Now calculate the general conduction equation in spherical coordinates

    17

    rq q

    z

    rdq

    q(q)

    q(q+dq)

    y x

    r

    q

    d

    rsinqd

    rdq dq

    dr

    q(r+dr)

    q(r)

    q(+d)

    q()

  • Heat Conduction Equation (Spherical Coordinates)

    Differential volume:

    Heat conduction rate in r-direction (in to element):

    qqf

    fqq

    sin

    sin

    2

    drddr

    drrddrdV

    18

    r

    Tddkr

    r

    TrddrkQd

    A

    r

    qqf

    qfq

    sin

    sin

    2

    q(r)

    rdq

  • Heat Conduction Equation (Spherical Coordinates)

    Heat conduction rate in r-direction (out of element):

    19

    2

    22

    2

    )(

    sinsin2

    sin

    r

    Tddkr

    r

    Tddkrdr

    r

    Tddkr

    r

    Qd

    drQQdr

    rdrr

    qqfqqf

    qqf

    q(r+dr)

    rdq

  • Heat Conduction Equation (Spherical Coordinates)

    Total heat conduction rate in r-direction:

    2

    22

    )(2sin

    r

    Tr

    r

    TrdrddkQdQd

    drrrqqf

    20

    2

    22

    22

    )(

    sinsin2

    sinsin

    r

    Tddkr

    r

    Tddkrdr

    r

    Tddkr

    r

    TddkrQdQd

    drrr

    qqfqqf

    qqfqqf

  • Heat Conduction Equation (Spherical Coordinates)

    Heat conduction rate in q-direction (in to element):

    qfq

    qfqq

    Tddrk

    dr

    TdrdrkQd

    A

    sin

    sin

    21

    q(q)

    dr

    rsinqd

  • Heat Conduction Equation (Spherical Coordinates)

    Heat conduction rate in q-direction (out of element):

    qq

    qq

    qfq

    fq

    qq

    q

    qqq

    dTT

    ddrkT

    ddrk

    Qd

    dQdQdd

    2

    2

    sincossin

    22

    q(q+dq) dr

    rsinqd

  • Heat Conduction Equation (Spherical Coordinates)

    Total heat conduction rate in q-direction:

    2

    2

    sincosq

    qq

    qqfqqqTT

    dddrkQdQdd

    qq

    qq

    qf

    qfq

    qfqqqq

    dTT

    ddrk

    Tddrk

    TddrkQdQd

    d

    2

    2

    sincos

    sinsin

    23

  • Heat Conduction Equation (Spherical Coordinates)

    Heat conduction rate in -direction (in to element):

    fq

    q

    fqqf

    Tdrdk

    r

    TdrdrkQd

    sin

    sin

    24

    rdq q()

  • Heat Conduction Equation (Spherical Coordinates)

    Heat conduction rate in -direction (out of element):

    2

    2

    sinsin fq

    fq

    fq

    q

    ff

    f

    fff

    TddrdkTdrdk

    Qd

    dQdQdd

    25

    rdq

    q(+d)

  • Heat Conduction Equation (Spherical Coordinates)

    Total heat conduction rate in -direction:

    2

    2

    sin

    sinsin

    fq

    fq

    fq

    q

    fq

    qfff

    Tddrdk

    TdrdkTdrdkdQQd d

    2

    2

    sin fq

    fqfff

    TddrdkQdQd

    d

    26

  • Heat Conduction Equation (Spherical Coordinates)

    Rate of Heat Generation:

    Rate of Heat Storage:

    qqf sin2

    dddrrqdVq

    t

    TdddrrC

    t

    TdVC PP

    qqf sin2

    27

  • Heat Conduction Equation (Spherical Coordinates)

    The energy balance is given by:

    28

    Rate of

    Heat Storage

    Net rate of

    Heat into

    Element

    Rate of

    Heat

    Generation

    = +

  • Heat Conduction Equation (Spherical Coordinates)

    qqf

    fq

    qq

    qq

    qq

    qf

    qqf

    sin

    sin

    1

    sincos

    sinsin2

    sin

    2

    2

    2

    2

    2

    2

    22

    2

    dddrrq

    T

    TT

    r

    Tr

    r

    Tr

    dddrk

    t

    TdddrrCP

    29

  • Heat Conduction Equation (Spherical Coordinates)

    k

    qT

    r

    T

    r

    T

    rr

    T

    r

    T

    r

    t

    T

    k

    CP

    2

    2

    222

    2

    222

    2

    sin

    111

    sin

    cos2

    1

    fqqqq

    q

    PC

    k

    30

    Now by r2, sin(q), and k:

    Recall: ~ thermal diffusivity

  • Heat Conduction Equation (Spherical Coordinates)

    k

    qT

    r

    T

    r

    T

    rr

    T

    r

    T

    rt

    T

    T

    rr

    Tr

    rr

    2

    2

    22

    sinsin

    1

    2

    2

    22

    1

    2

    2

    sin

    1

    11

    sin

    cos21

    2

    2

    2

    fq

    qqq

    q

    qq

    qq

    31

    Now simplify:

  • Heat Conduction Equation (Spherical Coordinates)

    k

    qT

    r

    T

    rr

    Tr

    rr

    t

    T

    2

    2

    222

    2

    2 sin

    1sin

    sin

    11

    1

    fqqq

    qq

    32

    Therefore the conduction equation in spherical coordinates is:

  • Heat Conduction Equation (Cylindrical Coordinates)

    Homework #2 Derive the equations for cylindrical coordinates

    33

  • Heat Conduction Equation (Cylindrical Coordinates)

    Equations for cylindrical coordinates:

    k

    q

    z

    TT

    rr

    Tr

    rrt

    T

    k

    q

    z

    TT

    rr

    T

    rr

    T

    t

    T

    r

    Tr

    rr

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    1

    2

    2

    111

    111

    q

    q

    34

  • Boundary and Initial Conditions

    Temperature distribution in a medium can be determined from the solution of appropriate heat conduction equation. But the solution depends on the boundaries of the medium.

    For cases in which the medium is time dependent, conditions at an initial time are also essential.

    35

  • Boundary and Initial Conditions

    The 4 most common boundary conditions are:

    1) Constant Surface Temperature:

    T(0,t) = Ts

    36

    x

    T

    Ts

    T(x,t)

  • Boundary and Initial Conditions

    The 4 most common boundary conditions are:

    2) Constant and finite heat flux (heat transfer rate per unit area, W/m2):

    s

    x

    qx

    Tk

    0

    37

    x

    T

    T(0,t)

    qs

    qs

  • Boundary and Initial Conditions

    The 4 most common boundary conditions are:

    3) Adiabatic or insulated surface:

    00

    xx

    T

    38

    x

    T

    T(0,t)

    T(x,t)

  • Boundary and Initial Conditions

    The 4 most common boundary conditions are:

    4) Convection surface condition:

    tTThx

    Tk

    x

    ,00

    39

    x

    T

    T(x,t)

    q

    T, h

  • 1-D Steady State Conduction (Example 2.1)

    Example 2.1 - One-dimensional steady-state heat conduction (no heat generation):

    Develop the expressions: 1) Temperature distribution T(x) within the slab.

    2) Heat flow (Q), through the area (A) of the slab. 40

    X

    T

    X=0 X=L

    T1

    T2

    A, k

    A slab (of thickness L)

    with no energy

    generation (q=0) has the

    following boundary

    conditions:

    X= 0 ; T(0)= T1

    X= L ; T(L)= T2

  • 1-D Steady State Conduction (Example 2.1)

    (I): Integrate and apply b.cs and solve constants C1 & C2 to find the temperature distribution T(x).

    21)( CxCxT

    02

    2

    x

    T

    41

    X

    T

    X=0 X=L

    T1

    T2

    A, k ~ 1-D Laplace Equation

    (rectangular coordinates

    112)( Tx

    L

    TTxT

    L

    TTC

    TLCTLx

    CTx

    121

    112

    210

  • 1-D Steady State Conduction (Example 2.1)

    (II): Solve for Q

    Ak

    LRwhere

    R

    TT

    L

    TTkA

    dx

    dTkAQ

    :

    1212

    L

    TT

    TxL

    TT

    dx

    d

    dx

    dT

    12

    112

    42

    X

    T

    X=0 X=L

    T1

    T2

    A, k

  • 1-D Steady State Conduction (Analysis Procedure)

    Slab (Plane Wall)

    Consider a slab of isotropic (invariable) thermal conductivity material (k) with an heat generation rate of q(x) [W/m3].

    Isotropic means: having properties that are identical in all directions.

    43

    T

    X

    1

    2

    T1

    T2

    dx

    dT k, A

    q(x) q(x)

    T2

  • 1-D Steady State Conduction (Analysis Procedure)

    The general equation for conduction with heat generation is (assuming constant energy generation):

    k

    q

    x

    T

    2

    2

    0

    44

    k

    q

    z

    T

    y

    T

    x

    T

    t

    T

    2

    2

    2

    2

    2

    21

    0, steady state 0, 1D 0, 1D

    For: 0 X L

  • 1-D Steady State Conduction (Analysis Procedure)

    Solving differential equations:

    212

    1

    2

    2

    2CxCx

    k

    qxT

    Cxk

    q

    x

    T

    k

    q

    x

    T

    45

  • 1-D Steady State Conduction (Analysis Procedure)

    Solve C1 and C2 by using the boundary conditions:

    (i) x=0, T(x)= T1 (ii) x=L, T(x)= T2

    L

    k

    q

    L

    TTC

    TLCLk

    qTii

    TCi

    2

    2)

    )

    121

    11

    2

    2

    12

    212

    2CxCx

    k

    qxT

    46

    T

    X

    1

    2

    T1

    T2

    dx

    dT k, A

    T2

  • 1-D Steady State Conduction (Analysis Procedure)

    Substituting in the constants gives:

    The temperature distribution T(x) in the slab can now be found for a known heat generation rate q(x), thickness (L), and thermal conductivity coefficient (k) of the material.

    12

    22TxL

    k

    q

    L

    Tx

    k

    qxT

    47

  • 1-D Steady State Conduction (Analysis Procedure)

    Once the temperature distribution T(x) in the slab is established from the solution to this equation, the heat flux q(x) anywhere in the slab can be determined from the Fouriers equation.

    dx

    dTk

    A

    Qq

    48

  • Thermal conductivity

    In a gas, conduction is due to the collisions and diffusion of the molecules due to their random motion.

    In solids, it is due to the combination of vibrations of the molecules in their lattice and the energy transport of free electrons.

    49 Gas Liquid Solid

  • Thermal conductivity

    50

    Thermal conductivity (k) of a material is the measure of the ability of the material to conduct heat.

  • Thermal conductivity

    Thermal conductivity is temperature dependent

    51

  • Thermal conductivity

    52

  • 1-D Steady State Conduction

    One-dimensional (1D) heat conduction

    Implies that the temperature gradient exists in only one direction.

    Steady state systems (SS)

    The temperature within the solid is assumed not to be time dependent.

    53

  • Thermal Resistance Method

    1D/SS analysis can be applied to problems to determine the temperature distribution and heat flow in a solid, slab, cylinder, or sphere.

    The thermal resistance approach (similar to Ohms Law) is a technique that simplifies complicated problems which involve multi-layered mediums when there is no heat generation (q=0).

    54

  • Thermal Resistance Method (Analysis Procedure)

    If q(x)=0 (no heat generation) then the rate of flow of heat energy normal to the area (A) is given by:

    L Thickness of the slab

    A Area normal to the direction of heat flow

    K Thermal conductivity coefficient

    T Temperature difference (gradient)

    R Thermal resistance against heat conduction or conduction resistance of the wall.

    kA

    LRwhere

    R

    T

    L

    TkA

    x

    TkAQ

    :

    55

  • Thermal Resistance Method (Analysis Procedure)

    This is like Ohms Law:

    Therefore, circuit representations can provide a useful tool for both conceptualizing and calculating heat transfer problems.

    )(tanRe

    )()(

    Rcesis

    VDifferencePotentialICurrent

    56

  • Analogy to Electrical Current Flow

    Eq. 3-5 is analogous to the relation for electric current flow I, expressed as

    Heat Transfer Electrical current flow

    Rate of heat transfer Electric current

    Thermal resistance Electrical resistance

    Temperature difference Voltage difference

    57

    (3-6) 1 2

    eR

    V VI

  • Thermal Resistance Method (Analysis Procedure)

    Ak

    LR

    58

    T

    X

    1

    2

    T1

    T2

    dx

    dT k, A

    q(x) q(x)

    T2

    Q Q T1 T2

  • Thermal Resistance Method (Example 2.2)

    AAAA CBA

    59

    Example 2.2 - Multi-Layer Wall: Determine Q.

    Q(x)

    T

    X

    A

    T1

    T3

    kC, AC

    T2

    T4

    kB, AB kA, AA

    C

    B

    Q Q T2 T3 T1 T4 RA RB RC

  • Thermal Resistance Method (Example 2.2)

    C

    C

    B

    B

    A

    Ax

    TTAk

    x

    TTAk

    x

    TTAkQ

    342312

    Ak

    xR

    Ak

    xR

    Ak

    xR

    C

    CC

    B

    BB

    A

    AA

    ;;

    60

    Q Q T2 T3 T1 T4 RA RB RC

  • Thermal Resistance Method (Example 2.2)

    ceresisthermal

    differencepotentialthermal

    R

    T

    Ak

    x

    Ak

    x

    Ak

    x

    TTQ

    overall

    C

    C

    B

    B

    A

    A

    tan

    41

    61

    Q Q T2 T3 T1 T4 RA RB RC

  • Generalized Thermal Resistance Network

    The thermal resistance concept can be used to solve steady heat transfer problems that involve parallel layers or combined series-parallel arrangements.

    The total heat transfer of two parallel layers

    1 2 1 21 2 1 21 2 1 2

    1 1T T T TQ Q Q T T

    R R R R

    62

    (3-29) 1

    totalR

    1 2

    1 2 1 2

    1 1 1 = total

    total

    R RR

    R R R R R

    (3-31)

  • Combined Series-Parallel Arrangement

    The total rate of heat transfer through

    the composite system

    where

    31 21 2 3

    1 1 2 2 3 3 3

    1 ; ; ; conv

    LL LR R R R

    k A k A k A hA

    63

    (3-32) 1

    total

    T TQ

    R

    1 212 3 3

    1 2

    total conv convR R

    R R R R R RR R

    (3-33)

    (3-34)

  • Thermal Resistance Concept- Conduction Resistance

    Equation 33 for heat conduction through a plane wall can be rearranged as

    Where Rwall is the conduction resistance expressed as

    64

    (3-4) 1 2

    , (W)cond wallwall

    T TQ

    R

    (3-5) ( C/W)wallL

    RkA

  • Thermal Resistance Concept- Convection Resistance

    Thermal resistance can also be applied to convection processes.

    Newtons law of cooling for convection heat transfer rate ( ) can be rearranged as

    Rconv is the convection resistance-

    It is the thermal resistance of the

    surface Against heat convection

    conv s sQ hA T T

    65

    (W)sconvconv

    T TQ

    R

    1 ( C/W)conv

    s

    RhA

  • Thermal Resistance Concept- Radiation Resistance

    The rate of radiation heat transfer between a surface and the surrounding

    2 2 2 (W/m K)( )

    radrad s surr s surr

    s s surr

    Qh T T T T

    A T T

    66

    4 4 ( ) (W)s surrrad s s surr rad s s surrrad

    T TQ A T T h A T T

    R

    1 ( /W)rad

    rad s

    R Kh A

    Radiation Resistance- It is the thermal resistance Of a surface against radiation

  • Thermal Resistance Concept- Radiation and Convection Resistance

    A surface exposed to the surrounding might involves convection and radiation simultaneously.

    The convection and radiation resistances are parallel to each other.

    When TsurrT, the radiation

    effect can properly be

    accounted for by replacing h

    in the convection resistance

    relation by

    hcombined = hconv+hrad (W/m2K)

    67

  • Thermal Resistance Network

    consider steady one-dimensional heat transfer through a plane wall that is exposed to convection on both sides.

    Under steady conditions we have

    or

    68

    Rate of

    heat convection

    into the wall

    Rate of

    heat conduction

    through the wall

    Rate of

    heat convection

    from the wall = =

    1 ,1 1

    1 22 2 ,2

    Q h A T T

    T TkA h A T T

    L

  • Thermal Contact Resistance

    In reality surfaces have some roughness.

    When two surfaces are pressed against each other, the peaks form good material contact but the valleys form voids filled with air.

    As a result, an interface contains

    numerous air gaps of varying sizes

    that act as insulation because of the

    low thermal conductivity of air.

    Thus, an interface offers some

    resistance to heat transfer, which

    is termed the thermal contact

    resistance, Rc.

    69

  • Multilayer Plane Walls

    In practice we often encounter plane walls that consist of several layers of different materials.

    The rate of steady heat transfer through this two-layer composite wall can be expressed through where the total thermal resistance is

    ,1 ,1 ,2 ,2

    1 2

    1 1 2 2

    1 1

    total conv wall wall convR R R R R

    L L

    h A k A k A h A

    70

  • Thermal Resistance Method (Example 2.3)

    AAAA CBA

    71

    T

    X

    A

    T1

    T3

    k3

    T2

    T4

    k2

    C B

    k1

    L1 L2 L3

    Tf1

    Tf4

    Hot

    Fluid

    Tf1, h1

    Cold

    Fluid

    Tf4, h4

    T2 T3 T1 RA RB RC Tf1 Tf4 T4 Rf1 Rf4

    Example 2.3 - Composite Wall with convection

    surface conditions. Determine Q.

  • Thermal Resistance Method (Example 2.3)

    43211

    4

    44

    3

    3

    43

    2

    2

    32

    1

    1

    21

    1

    11

    11

    ff R

    f

    RRRR

    f

    x

    Ah

    TT

    Ak

    L

    TT

    Ak

    L

    TT

    Ak

    L

    TT

    Ah

    TTQ

    R

    TT

    AhAk

    L

    Ak

    L

    Ak

    L

    Ah

    TTQ

    ffff

    x

    41

    43

    3

    2

    2

    1

    1

    1

    41

    11

    72

    T2 T3 T1 RA RB RC Tf1 Tf4 T4 Rf1 Rf4

  • Thermal Resistance Method (Example 2.3)

    However, with composite systems it is often convenient to express the rate of heat transfer in terms of overall heat transfer coefficient (U).

    This is defined by an expression similar to Newtons Law of Cooling:

    43

    3

    2

    2

    1

    1

    1

    11

    11

    hk

    L

    k

    L

    k

    L

    h

    ARU

    73

    TAUQ x

  • Thermal Resistance Method (Example 2.4)

    74

    Example 2.4 Combined Heat Transfer: conduction,

    convection, and radiation

    take place simultaneously

    on boiler tubes.

    The hot gases of combustion products create

    a thin film of gas on the

    outer wall of the boiler tube

    and water film within it.

    Determine the total resistance (R):

  • Thermal Resistance Method (Example 2.4)

    75

    There are parallel circuits in the gas film section due to both convection and radiation acting there.

    T

    X

    T1

    T3

    T2

    T4

    L

    Hot gas Water inside tube

    Ra

    dia

    tio

    n

    Gas Film Water Film

    Tube wall

    T3 T4 T2 R2 R3, conv

    R1,conv

    T1

    R1,rad

  • Thermal Resistance Method (Example 2.4)

    3

    43

    2

    32

    1

    21

    R

    TT

    R

    TT

    R

    TT

    A

    Qq

    76

    T3 T4 T2 R2 R3

    R1,conv

    T1

    R1,rad

  • Thermal Resistance Method (Example 2.4)

    21

    4

    2

    4

    121

    ,1

    4

    2

    4

    121

    ,1

    21

    1

    TT

    TTF

    R

    TTFR

    TT

    rad

    FactorShaperad

    77

    T3 T4 T2 R2 R3

    R1,conv

    T1

    R1,rad

    The radiation thermal resistance in the gas R1,rad is given by:

  • Thermal Resistance Method (Example 2.4)

    AhR conv

    1

    ,1

    1

    kA

    LR 2

    78

    The convection thermal resistance in the hot gas R1,conv is given by:

    The conduction thermal resistance in the wall R2 is given by:

    T3 T4 T2 R2 R3

    R1,conv

    T1

    R1,rad

  • Thermal Resistance Method (Example 2.4)

    AhR

    4

    3

    1

    79

    The convection thermal resistance in the water (boiler) or ambient air (furnace) R3 is given by:

    T3 T4 T2 R2 R3

    R1,conv

    T1

    R1,rad

  • Thermal Resistance Method (Example 2.4)

    AhkA

    LAh

    TT

    TTF

    RRRR

    RRRR

    convrad

    4

    1

    1

    21

    4

    2

    4

    121

    32

    1

    ,1,1

    321

    1

    11

    80

    The total resistance is:

    T3 T4 T2 R2 R3

    R1,conv

    T1

    R1,rad

  • Radial Systems

    Cylindrical and spherical systems often experience temperature gradients in the radial direction only and in the case can be treated as one-dimensional.

    81

    r

    r

  • 1-D, SS Heat Conduction (Cylindrical Coordinates)

    Steady State Condition:

    1-D Conduction:

    Therefore:

    0

    t

    T

    0,02

    2

    2

    2

    z

    TT

    q

    82

    k

    q

    z

    TT

    rr

    Tr

    rrt

    T

    2

    2

    2

    2

    2

    111

    q

  • 1-D, SS Heat Conduction (Cylindrical Coordinates)

    The equation for 1-D, steady state heat conduction then becomes:

    83

    rk

    q

    dr

    dTr

    dr

    d

    k

    q

    r

    Tr

    rr

    0

    1

  • 1-D, SS Heat Conduction (Cylindrical Coordinates)

    For constant heat generation:

    Solve for T(r), by integrating twice.

    0gq

    2120

    10

    ln4

    2

    CrCrk

    gT

    r

    Cr

    k

    g

    dr

    dT

    84

  • 1-D, SS Heat Conduction (Cylindrical Coordinates)

    Clearly, two boundary conditions are required to determine C1 and C2. Typically one of these will be the boundary condition at the outer surface.

    The other boundary condition will be at the center (r=0) where the temperature is symmetric, such that:

    22)( rratTrT

    00)0(

    ratdr

    dT

    85

  • 1-D, SS Heat Conduction (Cylindrical Coordinates)

    An alternative boundary condition at the center (r=0) can be obtained if the temperature is finite.

    0)0( 0 ratTT

    86

  • 1-D, SS Heat Conduction (Example 2.5)

    Example 2.5: Hollow Cylinder (Tube) (with convective surface conditions): Find all of the thermal resistances.

    87

    No heat generation

    Cold Fluid, Tf2, h2

    r2

    r1

    L

    T1

    T2

    Hot fluid

    Tf1, h1

    Hot fluid

    Tf1, h1

    0q

  • 1-D, SS Heat Conduction (Example 2.5)

    Solve using the thermal resistance method:

    The resistances Rf1 and

    Rf2 can be found from

    Newtons Law of

    Cooling:

    22

    2

    11

    1

    2

    1

    2

    1

    hLrR

    hLrR

    CylinderofAreaSurfaceOuter

    f

    CylinderofAreaSurfaceInterior

    f

    88

    r2

    r1

    L

    T1

    T2

    Hot fluid

    Tf1, h1

    Hot fluid

    Tf1, h1

    Cold Fluid, Tf2, h2

    T2 Tf2 T1 RA Rf2 Tf1 Rf1

  • 1-D, SS Heat Conduction (Example 2.5)

    1

    2

    21

    2

    ln

    2

    1

    2

    1

    2

    2

    1

    2

    1

    2

    1

    rr

    TTkLQ

    dTkdrrL

    Q

    dTkdrA

    Q

    dr

    dTkAQ

    cond

    T

    T

    r

    r

    cond

    T

    T

    r

    rrL

    cond

    cond

    89

    The resistance RA can be found from Fouriers Law:

  • 1-D, SS Heat Conduction (Example 2.5)

    A

    condR

    TTQ 21

    1

    1

    2

    2

    ln

    kL

    rr

    RA

    90

    If the heat transfer rate is constant, this can be further simplified:

    Thermal

    Resistance

  • 1-D, SS Heat Conduction (Example 2.6)

    Example 2.6: Composite Cylindrical Wall. Solve Q in terms of the overall thermal resistance (Rtot) and overall heat transfer coefficient (U).

    91

    Cold Fluid, Tf2, h2

    L

    Hot fluid

    Tf1, h1

    Hot fluid

    Tf1, h1

    0qNo heat generation

  • 1-D, SS Heat Conduction (Example 2.6)

    Composite layers

    92 rD

    rC

    rB

    rA

    TA

    TB

    TC

    TD

    C B A

  • 1-D, SS Heat Conduction (Example 2.6)

    Use the thermal resistance method:

    21

    21

    2

    1

    2

    ln

    2

    ln

    2

    ln

    2

    1

    LhrLk

    rr

    Lk

    rr

    Lk

    rr

    Lhr

    TTQ

    DC

    C

    D

    B

    B

    C

    A

    A

    B

    A

    ff

    r

    93

    rD

    rC

    rB

    rA TA TB TC TD

    TB TC TA RA RB RC Tf1 Tf4 TD Rf1 Rf4

    T

    r

    TA TB

    TC TD

    Tf1

    Tf4

  • 1-D, SS Heat Conduction (Example 2.6)

    Now express this in terms of U and Rtot

    Where:

    )( 21421121

    ffDffA

    tot

    ff

    r TTAUTTAUR

    TTQ

    11 2

    1

    2

    ln

    2

    ln

    2

    ln

    2

    1

    LhrLkLkLkLhrR

    DC

    r

    r

    B

    r

    r

    A

    r

    r

    A

    totC

    D

    B

    C

    A

    B

    94

  • 1-D, SS Heat Conduction (Example 2.6)

    The overall heat transfer coefficient (based on the inner surface) where AA= 2rAL, is given by:

    Or we could calculate U4 (based on the outer surface) where AD= 2rDL:

    1

    21

    4

    1lnlnln

    1

    hk

    r

    k

    r

    k

    r

    hr

    rU

    C

    D

    B

    C

    A

    B

    r

    r

    C

    D

    r

    r

    B

    D

    r

    r

    A

    D

    A

    D

    1

    21

    1

    1lnlnln

    1

    hr

    r

    k

    r

    k

    r

    k

    r

    hU

    D

    A

    r

    r

    C

    A

    r

    r

    B

    A

    r

    r

    A

    A

    C

    D

    B

    C

    A

    B

    95

  • 1-D, SS Heat Conduction (Example 2.6)

    The definition is arbitrary, the overall heat transfer coefficient may also be defined on any of the intermediate areas:

    14321

    totDCBA RAUAUAUAU

    214

    211

    ffDr

    ffAr

    TTAUQ

    TTAUQ

    96

  • 1-D, SS Heat Conduction (Example 2.6)

    Check

    21

    111

    1lnlnln

    1

    2

    hr

    r

    k

    r

    k

    r

    k

    r

    h

    LrAU

    D

    Ar

    r

    C

    Ar

    r

    B

    Ar

    r

    A

    A

    C

    D

    B

    c

    A

    B

    21

    1lnlnln

    1

    2

    1

    1

    hr

    r

    k

    r

    k

    r

    k

    r

    hLr D

    Ar

    r

    C

    Ar

    r

    B

    Ar

    r

    A

    A

    AC

    D

    B

    c

    A

    B

    97

  • 1-D, SS Heat Conduction (Example 2.6)

    98

    tot

    DC

    r

    r

    B

    r

    r

    A

    r

    r

    A

    A

    R

    LhrLkLkLkhLr

    AU

    C

    D

    B

    c

    A

    B

    1

    2

    1

    2

    ln

    2

    ln

    2

    ln

    2

    1

    1

    21

    1

    Correct !

  • 1-D, SS Heat Conduction (Example 2.7)

    Example 2.7: Solid Cylinder Develop an expression for a 1-D, radial, steady state temperature

    distribution T(r) and the flux q(r) for a solid cylinder of radius (r2) with an energy generation at a constant rate of q (W/m3) and temperature on the outer surface maintained at T2. Calculate the temperature at the center and the flux at the outer surface for r2= 1 cm, q= 2108 W/m3, k= 20 W/(mC), and T2= 100 C.

    99

    r2

    T2= 100 C

  • 1-D, SS Heat Conduction (Example 2.7)

    Boundary Conditions

    The general conduction equation for a cylinder is:

    k

    q

    z

    TT

    rr

    Tr

    rrt

    T

    2

    2

    2

    2

    2

    111

    q

    22;

    0;0

    TTrrat

    dr

    dTrat

    100

    r2

    T2= 100 C

    , steady state , 1-D , 1-D

  • 1-D, SS Heat Conduction (Example 2.7)

    21

    2

    1

    )ln(4

    )(

    2

    CrCk

    rqrT

    r

    C

    k

    rq

    r

    T

    drrk

    q

    r

    Tr

    01

    k

    q

    r

    Tr

    rr

    101

    Integrating twice:

  • 1-D, SS Heat Conduction (Example 2.7)

    102

    Applying boundary conditions at r= 0 gives:

    Applying boundary conditions at r= r2 gives:

    0

    02

    0,0

    1

    1

    C

    r

    Cr

    k

    q

    dr

    dT

    dr

    dTrat

    0

    2

    222

    21

    2

    222

    4

    )ln(4

    ;

    rk

    qTC

    CrCrk

    qTTrrat

    0

  • 1-D, SS Heat Conduction (Example 2.7)

    2

    2

    2

    2

    2

    2

    22

    2

    21

    2

    14

    44

    ln4

    Tr

    r

    k

    rq

    k

    rqTr

    k

    q

    CrCrk

    qT

    103

    The temperature distribution in the solid cylinder is:

  • 1-D, SS Heat Conduction (Example 2.7)

    22

    rq

    k

    rqk

    dr

    dTkq

    CC

    m

    Tr

    r

    k

    rqT

    Cm

    W

    m

    W

    350100204

    01.0102

    14

    0

    3

    8

    2

    2

    2

    2

    2

    104

    The heat flux in the cylinder is thus:

    The temperature T(0) at r= 0 is:

  • 1-D, SS Heat Conduction (Example 2.7)

    2

    3 6

    8

    22 10

    2

    01.0102

    2)(

    m

    Wm

    W mrqrq

    105

    The heat flux at the outer surface of the cylinder is:

  • 1-D, SS Heat Conduction (Example 2.8)

    Example 2.8: Hollow Cylinder A hollow cylinder is heated at the inner side at the rate of q0

    (105W/m2) and dissipates heat from the outer surface into a fluid at Tf2. There is no energy generation and the conductivity (k) of the solid is assumed to be constant. Develop an expression for the temperature T1 and T2 at (the inner and outer surface) and calculate them for the following parameters.

    106

    Tf2= 100 C

    h= 400 W/(m2C)

    r2 =5 cm

    r1 =3 cm

    k= 15 W/(mC)

  • 1-D, SS Heat Conduction (Example 2.8)

    Since there is no heat generated in the cylinder, it is more convenient to solve the problem using the thermal resistance method.

    Lk

    rr

    2

    ln1

    2

    107

    T2 Tf2 T1

    Tf2= 100 C

    h= 400 W/(m2C)

    r2 =5 cm

    r1 =3 cm

    k= 15 W/(mC)

    Lhr22

    1

  • 1-D, SS Heat Conduction (Example 2.8)

    221

    2

    21

    21

    21

    1000ln

    2Lhrr

    r

    kL

    fTTLrqAqQ

    221

    2

    21

    22

    21

    2110

    ln2

    hLr

    f

    r

    r

    LkA

    TTTTLrq

    108

    T2 Tf2 T1

    Lk

    rr

    2

    ln1

    2

    Lhr22

    1

    Also:

  • 1-D, SS Heat Conduction (Example 2.8)

    Taking the first equality and solving for T1:

    Taking the second equality and solving for T2:

    201

    1

    2110

    1

    21

    1

    2

    ln

    ln

    TqT

    TTrq

    r

    r

    k

    r

    r

    r

    k

    2

    22

    102

    22

    22

    10

    f

    f

    Thr

    rqT

    hr

    TTrq

    109

  • 1-D, SS Heat Conduction (Example 2.8)

    Solving:

    201 121 ln TqT rr

    k

    r

    2

    22

    102 fT

    hr

    rqT

    110

    CCm

    mm

    Cm

    Wm

    W

    2.35225003.0

    05.0ln

    15

    03.010 2

    5

    CCm

    m

    Cm

    Wm

    W

    25010040005.0

    03.010

    2

    2

    5

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    Conduction in a spherical shell Consider heat conduction in a hollow sphere. In a steady state, one

    dimensional system (without heat generation), the energy entering the differential control volume is equal to the energy leaving the differential control volume.

    111

    y x

    z

    dr

    dTrk

    dr

    dTkAQ

    QQ

    A

    r

    drrr

    24

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    Separating variables:

    Assuming constant k and integrating

    2

    1

    2

    1

    )(

    2)(

    4

    T

    T

    TfToffunction

    r

    r

    r dTTkr

    drQ

    12211

    4TTk

    r

    Q rr

    r

    112

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    21

    11

    4

    1

    rrkR

    2112

    21

    11

    12 44

    21

    TTrr

    rrk

    TTkQ

    rr

    r

    R

    TTQr

    12

    113

    where:

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    The equation for the rate of heat transfer can also be done by simplifying the heat equation for spherical coordinates, which is recalling:

    k

    qT

    r

    T

    rr

    Tr

    rrt

    T

    2

    2

    2222

    2

    2 sin

    1sin

    sin

    111

    fqqq

    qq

    114

    0, steady

    state 0, 1D 0, 1D

    0, no heat

    generation

    02

    r

    Tr

    r

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    Integrate twice:

    21

    2

    1

    Cr

    CT

    drr

    CdT

    115

    1

    2

    2

    0

    0

    Cdrr

    Tr

    r

    Tr

    r

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    Apply boundary conditions:

    At r = r1 T = T1 At r = r2 T = T2

    1211

    2

    1

    111 :

    TCrC

    Cr

    CTrrat

    1212

    211

    12

    11222

    2

    221212

    2

    122

    ;

    :

    TTrr

    rrC

    rr

    TrTrC

    r

    rCrCTC

    r

    CTrrat

    116

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    212

    121

    12

    21

    12

    2122

    12

    1211

    12

    1122

    12

    22

    12

    21

    12

    112221

    12

    12

    21

    Trrr

    rrrT

    rrr

    rrr

    rrr

    rrrrT

    rrr

    rrrrT

    rr

    TrTr

    rrr

    rrT

    rrr

    rrT

    rr

    TrTrTT

    rrr

    rr

    Cr

    CT

    117

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    1212

    12

    12

    12

    12

    2

    2

    2

    12

    2

    4

    4

    4

    4

    TTrr

    rrk

    TTrr

    rr

    r

    kr

    r

    Ckr

    dr

    dTkrqAQ rr

    118

  • 1-D, SS Heat Conduction (Spherical Coordinates)

    Spherical composites may be treated in much the same way as composite walls and cylinders, where appropriate forms of the total resistance (R) and overall heat transfer coefficient (U) may be determined.

    119

    y x

    z

  • 120

    Critical Thickness of Insulation

    Consider a tube, cable, or wire dissipating heat from the outer surface into the surrounding air by convection.

    It is covered by a layer of insulation to minimize heat loss. In

    many cases, the thermal resistance offered by a metal tube or wire is negligibly small in comparison to the insulation.

  • Critical Thickness of Insulation

    Consider a tube, cable, or wire dissipating heat from the outer surface into the surrounding air by convection.

    It is covered by a layer of insulation to minimize heat loss. In

    many cases, the thermal resistance offered by a metal tube or wire is negligibly small in comparison to the insulation.

    121

  • 122 122

    Critical Thickness of Insulation

    The tube wall temperature (To) is nearly the same as the fluid.

    insulation

    insulation

    ri

    ro

    ri

    ro

    (a) Rod or Wire (b) Pipe

    To, ho

    Ti Ti

  • 123 123

    Critical Thickness of Insulation

    critoo

    critoo

    o

    crito

    rr

    rrif

    h

    kr

    ,

    ,

    ,

    Critical radius of insulation

    Will decrease the rate of heat loss

    expected. Good !

    Will increase the heat loss

    continuously. Maximum at the critical

    thickness. Avoid !

  • Finite Differences (Numerical Methods)

    m x increment

    n y increment

    124

    x

    y

    b

    x

    y

    Node

  • Finite Differences (Numerical Methods)

    In the absence of a heat source or sink in the system, the rate of heat flow toward the nodal point must be equal to the rate of heat flow from it in steady state.

    125

    m, n

    m,n+1

    m,n-1

    m+1,n m-1,n

    Qm,n+1

    Qm,n-1

    Qm-1,n Qm+1,n

  • Finite Differences (Numerical Methods)

    In the finite difference method the derivatives are replaced by differences.

    Instead of taking the limit, the following approximation for the derivative can be used.

    x

    xfxxf

    dx

    xdf

    x 0lim

    x

    xfxxf

    dx

    xdf

    126

    f(x+Dx) f(x)

    x x+dx

    Dx

    Df

  • Finite Differences (Numerical Methods)

    If the grid is subdivided into M sections of equal length.

    directionxthein

    M

    Lx

    127

    Tm+1 Tm

    Tm-1

    m-1 m m+1

    m- m+

  • Finite Differences (Numerical Methods)

    x

    TT

    dx

    dT

    x

    TT

    dx

    dT

    mm

    m

    mm

    m

    1

    2

    1

    1

    2

    1

    128

    Tm-1 Tm

    m-1/2

    Tm Tm+1

    m+1/2

  • Finite Differences (Numerical Methods)

    The 2nd derivative is simply:

    2

    11

    2

    2

    2

    11

    21

    21

    x

    TTT

    x

    xdx

    Td

    mmm

    x

    TT

    x

    TT

    mdxdT

    mdxdT

    mmmm

    129

  • Finite Differences (Numerical Methods)

    Likewise:

    2

    11

    2

    2 2

    y

    TTT

    dy

    Td nnn

    130

  • Finite Differences

    Finite Differences of Plane Wall: The 1-D heat transfer through a plane wall is given by the following equation. Find the finite difference expression for:

    This can be expressed in differential form as:

    Where qm is the rate of heat generation per unit volume at node m.

    02

    2

    k

    q

    dx

    Td

    131

    3,2,102

    2

    11

    mfork

    q

    x

    TTT mmmm

  • Finite Differences (Example 2.12)

    For 2-dimensions:

    The finite difference formulation

    is:

    13,2,1

    13,2,1

    22 ,2

    1,,1,

    2

    ,1,,1

    Nnfor

    Mmfor

    k

    q

    y

    TTT

    x

    TTT nmnmnmnmnmnmnm

    02

    2

    2

    2

    k

    q

    y

    T

    x

    T

    132

    (m, n+1)

    (m, n-1)

    (m+1, n) (m, n) (m-1, n)

    Dy Dx

  • Finite Differences (Example 2.12)

    If x = y then:

    Or since we are considering that k= constant, the heat flows may all be expressed in terms of temperature differentials and this same equation can be derived.

    k

    xqTTTTT

    nm

    nmnmnmnmnm

    2

    ,

    ,1,1,,1,1 4

    133

    1

    1

    xAwheredy

    dTkAQ

    yAwheredx

    dTkAQ

    yyy

    xxx

  • Finite Differences (Example 2.12)

    Therefore the finite difference expressions for Q are:

    y

    TTxkQQ

    y

    TTxkQQ

    x

    TTykQQ

    x

    TTykQQ

    nmnm

    nmdowncond

    nmnm

    nmupcond

    nmnm

    nmrightcond

    nmnm

    nmleftcond

    ,1,

    1,,

    ,1,

    1,,

    ,,1

    ,1,

    ,,1

    ,1,

    134

  • Finite Differences (Example 2.12)

    Therefore the total heat transfer is:

    Therefore if x = y:

    0,1,1,,1,1

    yx

    nmnmnmnmnm AqQQQQ

    135

    yxq

    y

    TTx

    y

    TTx

    x

    TTy

    x

    TTy

    k nmnmnmnmnm

    nmnmnmnm

    ,

    ,1,,1,

    ,,1,,1

  • Finite Differences (Example 2.12)

    Then:

    k

    xqTTTTT

    nm

    nmnmnmnmnm

    2

    ,

    ,1,1,,1,1 4

    136

  • Finite Differences

    To use this numerical method, these equations must be written for each node within the material and the resultant system of equations solved for the temperature at the various nodes.

    137

  • Finite Differences (Example 2.13)

    Example 2.13: Finite Difference Modeling of a square plate. A small plate (1x1 m) and with a k= 10 W/(mC) has one face maintained at 500C and the rest at 100C.

    Compute: (i) Temperature at various nodes.

    (ii) Heat flow at the boundaries.

    138

    1 m

    1 m

    500C

    100C

    k

    100C

    100C

  • Finite Differences (Example 2.13)

    my3

    1

    mx3

    1

    139

    1

    3

    2

    4

    T=500C

    T=100C

    T=100C T=100C

    Four

    node

    problem

  • Finite Differences (Example 2.13)

    (i) The solution for finding the temperatures is (for

    an interior node):

    04100100:4

    04100100:3

    04500100:2

    04500100:1

    423

    314

    241

    132

    TCTTCNode

    TCTCTNode

    TTCTCNode

    TTCCTNode

    04 ,1,1,.1,1 nmnmnmnmnm TTTTT

    140

    1

    3

    2

    4

  • Finite Differences (Example 2.13)

    Rearranging equations:

    04200

    04200

    04600

    04600

    432

    431

    421

    321

    TTT

    TTT

    TTT

    TTT

    141

  • Finite Differences (Example 2.13)

    142

    -4 1 1 0 T1 -600

    1 -4 0 1 T2 -600

    1 0 -4 1 T3 -200

    0 1 1 -4 T4 -200

    =

  • Finite Differences (Example 2.13)

    Solve by Gaussian Elimination:

    143

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    1 -4 0 1 -600

    1 0 -4 1 -200

    0 1 1 -4 -200

  • Finite Differences (Example 2.13)

    144

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    4x1= -4x4= 4x0= 4x1= -600x4=

    4 -16 0 4 -2400

    1 0 -4 1 -200

    0 1 1 -4 -200

    X4

  • Finite Differences (Example 2.13)

    145

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -16 0 4 -2,400

    1 0 -4 1 -200

    0 1 1 -4 -200

    -4+(4)=0

  • Finite Differences (Example 2.13)

    146

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 0 4 -2,400

    1 0 -4 1 -200

    0 1 1 -4 -200

    1+(-16)=-15

  • Finite Differences (Example 2.13)

    147

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -2,400

    1 0 -4 1 -200

    0 1 1 -4 -200

    1+(0)=1

  • Finite Differences (Example 2.13)

    148

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -2,400

    1 0 -4 1 -200

    0 1 1 -4 -200

    0+(4)=4

  • Finite Differences (Example 2.13)

    149

    -600+(-2400)=-3000

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -3,000

    1 0 -4 1 -200

    0 1 1 -4 -200

  • Finite Differences (Example 2.13)

    150

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -3,000

    0 1 -15 4 -1,400

    0 1 1 -4 -200

    X4

  • Finite Differences (Example 2.13)

    151

    X15

    -15+(1x15)=0 T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -3,000

    0 0 -224 64 -24,000

    0 1 1 -4 -200

  • Finite Differences (Example 2.13)

    152

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -3,000

    0 0 -224 64 -24,000

    0 0 16 -56 -6,000 X15

  • Finite Differences (Example 2.13)

    153

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -3,000

    0 0 -224 64 -24,000

    0 0 0 -720 -108,000 X =14 224

    16

    -224+(14x16)=0

  • Finite Differences (Example 2.13)

    154

    T1 T2 T3 T4 C

    -4 1 1 0 -600

    0 -15 1 4 -3,000

    0 0 -224 64 -24,000

    0 0 0 -720 -108,000

  • Finite Differences (Example 2.13)

    000,108720

    000,2464224

    000,3415

    6004

    4

    43

    432

    321

    T

    TT

    TTT

    TTT

    155

    CT 150720

    000,1084

    Solving for the unknowns

  • Finite Differences (Example 2.13)

    CT

    CT

    CT

    2504

    150250600

    25015

    000,34150150

    150224

    64150000,24

    1

    2

    3

    156

  • Finite Differences (Example 2.13)

    (ii) The heat rate is thus:

    mW

    x TTx

    ykQ

    000,4

    1005002

    110015010025010

    1001002

    1100500

    2

    1100100 310

    157

    1

    3

    2

    4

    -Qx=0

    y

    TxkQ

    x

    TykQ

    y

    x

  • Finite Differences (Example 2.13)

    (ii) The heat rate is thus:

    mW

    x TTx

    ykQ

    000,4

    1005002

    110015010025010

    1001002

    1100500

    2

    1100100 421

    158

    1

    3

    2

    4

    -Qx=1

  • Finite Differences (Example 2.13)

    (ii) The heat rate is thus:

    mW

    y TTy

    xkQ

    000,1

    10015010015010

    1001002

    1100100

    2

    1100100 430

    159

    1

    3

    2

    4

    -Qy=0

  • Finite Differences (Example 2.13)

    (ii) The heat rate is thus:

    mW

    y TTy

    xkQ

    000,9

    20020050025050025010

    5001002

    1500100

    2

    1500500 211

    160

    1

    3

    2

    4

    +Qy=1

  • Finite Differences (Example 2.13)

    Therefore:

    Heat flowing into the plate = +9,000 W/m

    Heat flow leaving the plate = -4000-4000-1000=-9,000 W/m 161

    1

    3

    2

    4

    +9,000 W/m

    -4,000 W/m -4,000 W/m

    -1,000 W/m

  • Finite Differences (Example 2.14)

    Example 2.14: Derive the heat equation for node 3 of the plate shown below.

    162

    1

    3

    5

    2

    4

    6

    ins

    ula

    tio

    n

    Given:

    k= constant

    b= thickness

    x= y

    Steady state

  • Finite Differences (Example 2.14)

    Also note the half areas:

    y

    163

    1

    3

    5

    4

    2

    y

    2

    x

  • Finite Differences (Example 2.14)

    Since the heat transfer is steady state then Q=0 and the equation at node 3 is:

    Note: because of the insulation

    1,

    21

    1,

    21

    ,1

    353134

    220

    nm

    x

    nm

    x

    nm

    y

    Q

    A

    Q

    AQ

    Ay

    TTbxk

    y

    TTbxk

    x

    TTbyk

    164

    0,1 nmQ

  • Finite Differences (Example 2.15)

    Example 2.15: Steady 2-D Heat Conduction in an L-bar. Given: k = 15 W/(mC) h= 80 W/(m2C) T= 25C q= gn= 2x10

    6 W/m3

    165

    ins

    ula

    tio

    n

    T= 90 C

    Convection

    h, T= 25C

    qr= 5000 W/m2

    1 2 3

    4 5 6 7 8 9

    10 11 12 13 14 15

    x= y= L = 0.012m

    Dx Dy

  • Finite Differences (Example 2.15)

    Assumptions:

    Heat transfer is steady and 2-D

    Thermal conductivity (k) is constant

    Heat generation q is constant

    Radiation heat transfer is neglible

    Form the volume elements by partitioning the region between nodes. Node 5 is the only completely interior node. Consider the volume element represented by Node 5 to be full size (e.g. x=y=1).

    166

  • Finite Differences (Example 2.15)

    Then the elements represented by a regular boundary node (i.e. Node 2) becomes half size (e.g. x=y/2=1) and a corner node (i.e. Node 1) is quarter size (e.g. x/2=y/2=1) .

    167

    ins

    ula

    tio

    n

    T= 90 C

    Convection

    h, T= 25C

    qr= 5000 W/m2

    1 2 3

    4 5 6 7 8 9

    10 11 12 13 14 15

    x y

  • Finite Differences (Example 2.15)

    Since the bottom surface is at a constant temperature of 90 C, then:

    CTTTTTT 90151413121110 168

    insu

    lati

    on

    T= 90 C

    Convection

    h, T= 25C

    qr= 5000 W/m2

    1 2 3

    4 5 6 7 8 9

    10 11 12 13 14 15

    x= y= L

    x y

  • Finite Differences (Example 2.15)

    Node 1 (Energy balance): Insulated on the left

    Convection on top

    Conduction on right and bottom

    Cm

    W

    Cm

    W

    Cm

    W

    Cm

    W

    Cm

    WmC

    TTTm

    152

    012.0102

    15

    2580

    15

    012.0802

    26

    421

    22

    169

    1 2

    4 5

    ins

    ula

    tio

    n

    Convection

    h, T= 25C

    Dy ______

    2

    Dx/2

    2.11064.2 421 TTT

    Lyx

    222220 1

    14121

    yxg

    y

    TTxk

    x

    TTykTT

    xh

  • Finite Differences (Example 2.15)

    Node 2 (Energy balance): Convection on top

    Conduction right, left, bottom

    170

    2 3

    5 6

    Dy

    Dx

    1

    4

    Convection

    h, T= 25C

    22

    20

    22125

    232

    yxg

    x

    TTyk

    y

    TTxk

    x

    TTykTTxh

    225321

    22

    24 L

    k

    gT

    k

    hLTTT

    k

    hLT

    4.222128.4 5321 TTTT

  • Finite Differences (Example 2.15)

    Node 3 (Energy balance): Convection on top and right

    Conduction at bottom and left

    0

    222

    222

    332

    363

    yxg

    x

    TTyk

    y

    TTxkTT

    yxh

    171

    2 3

    5 6

    Dy

    Dx

    Convection

    h, T= 25C

    k

    LgT

    k

    hLTT

    k

    hLT

    2

    222 3632

    8.12128.2 632 TTT

  • Finite Differences (Example 2.15)

    Node 4 (Energy balance): Insulated on left

    Conduction at the top, right, bottom This node is on the insulated boundary and can

    be treated as an interior node by replacing the insulation with a mirror. This puts a reflected image of node 5 to the left of node 4.

    042

    4410515

    k

    LgTTTTT

    Interior

    172

    4 5

    10 insu

    lati

    on

    T= 90 C

    11

    1 2

    Dy

    Dx

    2.1099024

    2

    4541

    10

    k

    LgTTT

    T

    5

  • Finite Differences (Example 2.15)

    Node 5 (Energy balance): Interior node

    Conduction all sides

    Can use the equation for an interior node

    2.109904

    04

    2

    55624

    2

    5511624

    11

    k

    LgTTTT

    k

    LgTTTTT

    T

    173

    ins

    ula

    tio

    n

    1 2 3

    4 5 6

    10 11 12

    Dy

    T= 90 C

  • Finite Differences (Example 2.15)

    Node 6 (Energy balance): Convection upward right corner

    Conduction everywhere else

    174 T= 90 C

    2 3

    5 6 7

    11 12 13

    Dx

    Dy

    Convection

    h, T= 25C

    6 Qcond

    Qcond

    Qcond

    Qconv

    Qconv

    Qcond

  • Finite Differences (Example 2.15)

    04

    3

    2

    222

    663

    65

    612676

    yxgy

    TTxkTT

    x

    yk

    y

    TTxk

    x

    TTykTT

    yxh

    175 T= 90 C

    2 3

    5 6 7

    11 12 13

    Dx

    Dy

    Convection

    h, T= 25C

    of the internal

    energy generation,

    since only the

    volume

    0.212128.62 7653 TTTT

  • Finite Differences (Example 2.15)

    Node 7 (Energy balance): Convection on top

    Conduction right, left, and bottom

    176

    T= 90 C

    6 7 8

    12 13 14

    x

    y

    Convection

    h, T= 25C

    0

    2

    2

    776713

    787

    yxg

    x

    TTyk

    y

    TTxk

    x

    TTykTTxh

    4.202128.4

    2180

    24

    876

    2

    7876

    TTT

    k

    LgT

    k

    hLTT

    k

    hLT

  • Finite Differences (Example 2.15)

    Node 8 (Energy balance): Identical to Node 7

    k

    LgT

    k

    hLTT

    k

    hLT

    2

    8987

    2180

    24

    177

    T= 90 C

    7 8 9

    13 14 15

    Dy

    Convection

    h, T= 25C

    4.202128.4 987 TTT

    Dx

  • Finite Differences (Example 2.15)

    Node 9 (Energy balance): qr heat flow on right

    Convection on top

    Conduction on bottom and left

    0222

    222

    998

    9159

    yxg

    x

    TTyk

    y

    TTxk

    yqTT

    xh R

    178

    qr= 5000

    W/m2 8 9

    14 15

    Dx

    Dy

    Convection

    h, T= 25C

    T= 90 C

    2.105064.2

    2902

    98

    2

    998

    TT

    k

    LgT

    k

    hLL

    k

    qT

    k

    hLT R

  • Finite Differences (Example 2.15)

    We now have 9 equations and 9 unknowns, so we can solve:

    179

    2.11064.2 421 TTT

    4.222128.4 5321 TTTT

    8.12128.2 632 TTT

    2.10924 541 TTT

    2.1094 5624 TTTT

    0.212128.62 7653 TTTT

    4.202128.4 876 TTT

    4.202128.4 987 TTT

    2.105064.2 98 TT

    Node 1:

    Node 2:

    Node 3:

    Node 4:

    Node 5:

    Node 6:

    Node 7:

    Node 8:

    Node 9:

  • Finite Differences (Example 2.15)

    Solving:

    T1= 112.1 C

    T2= 110.8 C

    T3= 106.6 C

    T4= 109.4 C

    T5= 108.1 C

    T6= 103.2 C

    T7= 97.3 C

    T8= 96.3 C

    T9= 97.6 C

    180

  • Finite Differences (Example 2.15)

    181

    insu

    lati

    on

    T= 90 C

    Convection

    h, T= 25C

    qr= 5000 W/m2

    1 2 3

    4 5 6 7 8 9

    10 11 12 13 14 15

    Temperature

    (C)

    Hi

    Low

  • END OF CONDUCTION SECTION

    182