40
Chapter ROD AND BALL MILLS By: Chester A. Rowland, Jr. and David M. ~jos, Mgr. Sr. Process - Project Engineer Grinding Nil 1 Process Development Engineering & Special Eqpt. Appl ication Mining Systems Division Mining Systems Division A1 1is-Chalmers Corporation A1 1 i s-Chalmers Corporation INTRODUCTION Mineral ore comninution i s generally a feed preparation step for sub- sequent processing stages. Grinding, the fine product phase of com- minution, requires a large capital investment and frequently is the area of maximum usage of power and wear.resis,tant materials. Grinding i s most frequently done in rotating drums utilizing loose grinding media, 1ifted by the rotation of the drum, to break the ores . i n various combinations of impact, attrition and abrasion to produce the specified product. Grinding media can be the ore itself (auto- genous grinding - primary and secondary), natural or manufactured non- metal 1i c media (pebble mil 1ing) or manufactured metal 1i c media - steel rods, steel or iron balls. This chapter covers rod and ball mills which utilize manufactured metallic grinding media. Fig. 1 shows the cross section of an overflow rod mill, Fig. 2 an overflow ball mill, and Fig. 3 a diaphragm (grate) discharge ball mill. MILL DESIGN . , . The interior 'surface of rod and ball mill s exposed to pulp and/or grinding media are protected from wear and corrosion by rubber, metal- l i c or a combination of rubber and metallic wear resistant ma'terials. Rod and ball mills essentially draw constant power, thus are well suited for use of synchronous motors with power factor correction capabilities 'as drive motors. A net of approximately 120 to 130 percent of running torque i s required to cascade the charge i n these mills. The pull-in torque is about 130 to 140 percent with the pull- out torque to keep the motor in-step (in-phase) generally in excess of 150 percent. When rod and ball mill are started across-the-line the starting and pull-in torques result in inrush currents exceeding 600

Ch 12 Rod & Ball Mills

Embed Size (px)

DESCRIPTION

diseño de plantas

Citation preview

  • Chapter

    ROD AND BALL MILLS

    By: Chester A. Rowland, J r . and David M. ~ j o s , Mgr. Sr. Process - P r o j e c t Engineer Gr inding N i l 1 Process Development Engineering & Special Eqpt. Appl i c a t i o n Mining Systems D i v i s i o n Mining Systems D i v i s i o n A1 1 is-Chalmers Corporat ion A1 1 i s-Chalmers Corporat ion

    INTRODUCTION

    Minera l o re comninution i s gene ra l l y a feed prepara t ion s tep f o r sub- sequent processing stages. Gr inding, the f i n e product phase o f com- minut ion, requ i res a l a r g e c a p i t a l investment and f requent ly i s the area o f maximum usage of power and wear . res is , tan t mater ia ls .

    Gr ind ing i s most f r equen t l y done i n r o t a t i n g drums u t i l i z i n g loose g r i n d i n g media, 1 i f t e d by t h e r o t a t i o n o f t h e drum, t o break t h e ores . i n var ious combinations o f impact, a t t r i t i o n and abrasion t o produce the spec i f i ed product. Gr ind ing media can be the ore i t s e l f (auto- genous g r i nd ing - pr imary and secondary), na tu ra l o r manufactured non- metal 1 i c media (pebble m i l 1 i ng ) o r manufactured metal 1 i c media - s tee l rods, s tee l o r i r o n b a l l s . Th is chapter covers rod and b a l l m i l l s which u t i l i z e manufactured m e t a l l i c g r i nd ing media. Fig. 1 shows the cross sec t i on o f an over f low r o d m i l l , F i g . 2 an over f low b a l l m i l l , and F ig . 3 a diaphragm (g ra te ) d ischarge b a l l m i l l .

    MILL DESIGN . , .

    The i n t e r i o r ' su r face o f rod and b a l l m i l l s exposed t o pu lp and/or g r i nd ing media a r e pro tec ted f rom wear and cor ros ion by rubber, metal- l i c o r a combination o f rubber and m e t a l l i c wear r e s i s t a n t ma'terials.

    Rod and b a l l m i l l s e s s e n t i a l l y draw constant power, thus a re w e l l s u i t e d f o r use o f synchronous motors w i t h power f a c t o r c o r r e c t i o n c a p a b i l i t i e s 'as d r i v e motors. A n e t o f approximately 120 t o 130 percent o f running torque i s requ i red t o cascade the charge i n these m i l l s . The p u l l - i n torque i s about 130 t o 140 percent w i t h t he p u l l - o u t torque t o keep the motor i n - s tep ( in-phase) gene ra l l y i n excess o f 150 percent. When rod and b a l l m i l l a r e s ta r ted across-the- l ine the s t a r t i n g and p u l l - i n torques r e s u l t i n in rush cur rents exceeding 600

  • 240 MINERAL PROCESSING PLANT DESIGN

  • . . F i g . 2 - Over f low B a l l M i l l

    F ig . 3 - Diaphragm B a l l M i l l

  • MINERAL PROCESSING PLANT DESIGN

    percent which r e s u l t i n poss ib l y h igh vo l tage drops. To d e l i v e r 130 percent s t a r t i n g torque t o the m i l l t he motor design must take i n t o account t he maximum a n t i c i p a t e d vo l tage drop. Motor torque decreases as the decimal f r a c t i o n o f t he vo l tage a v a i l a b l e squared. E.g., a motor r a t e d 160% ~ t a r t i n g ~ t o r q u e w i t h a 10% system vo l tage drop w i l l d e l i v e r 160% x (100%-10%) o r 129.6% torque t o i t s ou tput sha f t .

    100

    when, i t i s n o t poss ib le o r p r a c t i c a l t o s t a r t a f u l l y loaded synchro- nous motor across- the- l ine i t i s poss ib le t o u t i l i z e the motor,'^ p u l l - o u t torque t o s t a r t the m i l l . By us ing a c lu t ch , normal ly an a i r c l u t ch , between the motor and the m i l 1, the motor i s brought up t o synchronous speed before the c l u t c h i s energized. I f the motor has an adequate amount (175 o r g reater ) o f p u l l - o u t torque the p u l l - o u t torque s t a r t s the m i l l w i t hou t major d i s rup t i ons on the e l e c t r i c a l system.

    Since the energy re lease a t i n i t i a l cascade o f the m i l l ' charge is . an i nve rse func t ion of acce le ra t i on time, a minimum acce le ra t i on t ime o f 6 t o 10 seconds o r more i s recommended t o prevent damage t o t he m i l l o r t he m i l l foundat ion.

    Economics a t t he t ime o f p l a n t design and m i l l purchase determine the d r i v e t o be used. The s i m p l i e s t d r i v e i s the low speed synchronous motor w i t h speeds i n the range o f 150 t o 250 RPM connected t o the m i l l p i n i o n s h a f t by e i t h e r an a i r c l u t c h o r f l e x i b l e coupl ing. Using a speed reducer between the motor and p in ionsha f t permits us ing motors having speeds i n t he range o f 600 t o 1000 RPM. I n t h i s speed range, i f power f a c t o r c o r r e c t i o n i s n o t requ i red i nduc t i on motors can be used; s q u i r r e l cage where the re i s no r e s t r i c t i o n on in rush cur rent ; s l i p r i n g where a slow s t a r t and low in rush cu r ren t i s requ i red . A i r c lu tches can a l so be used t o ease s t a r t i n g problems w i t h s q u i r r e l cage motors. I n some areas o f t he wor ld i nduc t i on motors and s t a r t e r s a re l e s s expensive than synchronous motors a t a s a c r i f i c e o f motor e f f i - c iency and power f a c t o r co r rec t i on .

    Dual d r ives , t h a t i s two p in ions d r i v i n g one gear mounted on the m i l l , become economical f o r ba.11 m i l 1 s drawing more than 3500 t o 4000 horse- power (2600 t o 3000 k i 1 owatts) . Fur ther developments o f the 1 ow frequency , low speed synchronous motors w i t h the r o t o r mounted on the m i l 1 she1 1 o r an extension o f one o f t he m i l l t runn ions cou ld improve the cos t p i c t u r e f o r these "gear less d r i ves " , making them p r a c t i c a l f o r l a r g e b a l l m i l l s .

    The percent o f c r i t i c a l speed, which i s the speed a t which the c e n t r i - fuga l f o r ce i s s u f f i c i e n t l y l a r g e t o cause a small p a r t i c l e t o adhere t o t he s h e l l l i n e r s f o r the f u l l r e v o l u t i o n of. the m i l l i s g iven i n m i l 1 spec i f i ca t i ons . C r i t i c a l speed i s determined ' f rom the fo l l ow ing :

  • ROD AND BALL MILLS

    Where D i s mill diameter inside l iners .specified in meters. Cs i s c r i t i c a l speed in RPM.

    When D i s specified in fee t :

    m -

    Peripheral speed, which doesn't influence mill power but i s a factor in 1 iner wear and t o an extent media wear, has to be considered in mill design. I t can be determined by the following e i ther as meters per minute or as f ee t per minute.

    where

    Mp = Peripheral speed. D = Diameter inside l iners . N = Mill speed in rpm.

    To obtain some balance of c r i t i c a l speed and peripheral speed as mill diameters increase, the average recomnended speed as percent of c r i t i - cal speed reduces as shown in Table I . These are guide l ines for in i - t i a l plant design. Actual speeds may d i f f e r from these to su i te speci- f i c ore and economic conditions tha t apply t o the, specif ic plant.

    ROD 'MILLS

    To prevent most kondi t ions leading t o rod charge tang1 ing, the general- ly recommended relationship of rod length t o mill diameter inside l i - ners i s 1.4 t o 1.6. When th i s ra t io becomes less than 1.25 the r i sk of tangling increases rapidly. For rod mills larger than 3.8 meters (12.5 f ee t ) in diameter rod ava i lab i l i ty and quality have t o be con- sidered. Table I1 gives rod length to mill diameter ra t ios for the larger diameter rod mil ls .

    6.8 meters (20 f e e t ) i s a practical l imit on the length of good qual- i t y rods ( t ha t i s rods that will stay s t raight in the mill and will . break into pieces tha t will discharge from the mill when worn). This length i s a function of rod quality and production l imi t s imposed by the suppliers. The mill length inside end l iners measured along the surface of the she1 1 l iners should be 0.1 t o 0.15 meters (4" to 6") longer than the rods, so that the rods will f i t in the length of the grinding chamber without tipping or laying across the charge. A slope as steep as possible should be used for rod mil 1 head (end) 1 iners to Prevent unsupported ends of rods from protruding from the charge and being broken under impact from other rods.

  • MINERAL PROCESSING PLANT.DESIGN

    TABLE I

    AVERAGE % OF CRITICAL SPEED . -

    MILL DIAMETER % OF CRITICAL SPEED INSIDE LINERS

    METERS FEET --- ROD MILLS BALL MILLS

    0.91-1.83 3-6 76-73 80-78 1.83-2.74 6-9 . 73-70 78-75 2.74-3.66 9-12 70-67 75-72 . 3.66-4.57 12-15 67-64 72-69 4.57-5.49 15-18 69-66

    TABLE I1 . . . .

    ROD MILL DIAMETER - ROD LENGTH

    MILL DIAMETER INSIDE LINERS

    METERS FEET - -

    3.81 12.5 3.96 13 4.11 13.5 4.27 14 4.42 14.5 4.57 15 4.72 15.5 4.88 ' 16 5.03 16.5

    ROD LENGTH , L = 1.25 D L = 1 . 4 D -

    I

    - -

    I METERS FEET METE'RS .FEET

  • ROD AND BALL MILLS , . I 245

    The r o d s p e c i f i c a t i o n s given i n Table I 1 1 can be considered as a m in i - mum s p e c i f i c a t i o n . B e t t e r rod q u a l i t y , which reduces breakage, a l lows wearing the rods t o a smal ler s i z e and which can reduce rod opera t ing cos ts are ava i l ab le . The b e t t e r q u a l i t y rods are gene ra l l y recommen- ded when us ing 100 mm ( 4 " ) diameter. rods and/or the l a r g e r .d iameter r o d m i l l s .

    The feed end o f rods wear i n t o a long tapered "spear-shaped" p r o f i l e , w h i l e t he discharge ends wear i n t o more o f a con ica l shape. Approxi- mately the middle two t h i r d s o f the rod l eng th even tua l l y wears i n t o an e l i p t i c a l shaped sect ion. Small pieces o f broken rods can accumu- l a t e i n t he m i l l be fore being discharged. The tapered wear and accum- u l a t i o n o f broken rods reduces the bu lk dens i t y o f the m i l l charge, and thus m i l l power. The rod charge bu lk dens i t y g iven i n Table I V can be used t o determine the power a r o d m i l l w i t h a worn-in charge should draw. Bulk dens i t y i s a v a r i a b l e sub jec t t o care given a rod charge, and experience i nd i ca tes m i l l diameter a l so has an e f f e c t on b u l k dens i t y o f t he worn- in charge. The l a r g e r t h e diameter o f t he rod m i l l the l e s s p r a c t i c a l " c u l l i n g " o f the charge becomes.

    Rod m i l 1 s normal ly c a r r y from a 35 t o 40% by m i 11 volume rod charge, they can c a r r y up t o a 45% charge. The l i m i t s on charge l e v e l are: keeping the feed end t runn ion open so feed w i l l go i n t o m i l l , and keeping the rod 'charge low enough so rods w i l l n o t work i n t o d ischarge end t runn ion opening, where they can t i p and cause rod tang l ing .

    Rod m i l l s a re normal ly fed by spout feeders as shown i n Fig. 4. A minimum head o f 1.5 meters (5 f e e t ) above the m i l l center l i n e t o the bottom o f t he feed hopper t o which the feeder i s at tached i s requ i red t o g e t t h e proper f l o w o f feed i n t o the m i l l .

    Heavy du ty s i n g l e wave she1 1 1 i n e r s cas t o f ' e i t h e r 'a1 l o y s tee l (mang- anese s tee l i s n o t recommended). o r . wear r e s i s t a n t a1 loyed cas t i r o n . are most f requent ly u s e d ' i n rod m i l 1s. The number o f l i f t e r s t o the c i r c l e i s u s u a l l y equal t o approximately 6.6 D - i n meters ( f o r D i n f e e t d i v i d e 6.6 D by 3.3). These l i n e r s have 65 (2.5") t o 90 nnn (3.5") h igh waves above 65 mm t o 75 mm ('3") l i n e r s . Rubber backing can be used between the l i n e r s and s h e l l ' . t o p r o t e c t the s h e l l from washing and cor ros ion . However, w i t h rubber backing care must be taken w i t h the l i n e r b o l t spec i f i ca t i ons , and sea ler assembly t o assure the l i n e r s w i l l s tay t i g h t and n o t move on. t he s h e l l . Th is creates leaky l i n e r b o l t s and causes the b o l t ho les i n t he s h e l l t o wear i n t o an elongated shape. There are modi f i ca t ions such as the two piece 1 i n e r - l i f t e r design t h a t can be used ins tead o f the s i n g l e wave l i n e r . Rubber s h e l l l i n e r s have been successful ly app l i ed i n the smal le r diameter rod m i l l s running a t slow speeds. When us ing rubber l i n e r s care must be given t o us ing good q u a l i t y rods and c u l l i n g bro- ken and t h i n rods f rom the charge. Rubber l i n e r s can he lp reduce the no i se l e v e l emanating f rom a rod m i l l .

  • MINERAL PROCESSING PLANT DESIGN

    TABLE I1 I

    MINIMUM ROD SPECIFICATIONS

    Grinding ~ n i l l rods should be hard enough t o remain s t r a igh t throughout t h e i r e n t i r e l i f e , ye t they cannot be so b r i t t l e a s - t o break up a t coaise s i ze s .

    When rods a r e too s o f t , they a r e subject to bending in the mi l l . Bending causes premature breakage and tanglement of rods. Tangled rods make mil 1 cleaning d i f f i c u l t and hazardous, and cause cos t ly downtime.

    Material of the following chemical analysis i s recommended :

    CHEMICAL ANALYSIS

    Carbon 0.85 t o 1.03%

    Manganese 0.60 t o 0.90%

    Si l icon 0.15 t o 0.30%

    Sulphur 0.05% Max.

    Phosphorous 0.04% Max.

    PHYSICAL REQUIREMENTS Rods should a l so have the following physical requirements:

    . Rods a re t o be special commercial straightened.

    . Rods a re t o be hot sawed to length where mill ( s t e e l ) f a c i l i t i e s permit. If hot sawing i s not possible, use amabrasive cut t ing wheel o r machine cu t both ends t o proper length.

    . All grinding mill rods should be 152 mn (6 inches) shor ter in length than the working length of t he rod mill .

  • ROD AND BALL MTLLS 247

    TABLE I V

    BULK DENSITY WORN-IN ROD CHARGES

    BULK DENSITY KG PER CUBIC METER LBS PER CUBIC FOOT

    NEW RODS 6 2 4 7 3 9 0

    WORN-IN CHARGE

    M I L L DIAMETER

    METER FEET

    F i g . 4 - Spout Feeder

  • 248 MINERAL PROCESSING PLANT DESIGN

    End l i n e r s a re gene ra l l y a t h i ck , smooth l i n e r cas t o f a l l o y s tee l . Impact ing f rom the r o d charge, which has a l a t e r a l movement i n t h e m i l l , r equ i res g rea t cau t i on i n us ing wear r e s i s t a n t cas t i r o n end li- ners. Rubber l i n e r s can be used w i t h caut ion as they can be sub jec t t o damage from the sharp ends on worn rods. Except when us ing rubber l i n e r s t he re should be a rubber backing between the head l i n e r s and the heads. End l i n e r s should be smooth w i t h no waves o r . l i f t e r s as these can d i s r u p t rod a c t i o n and cause rod tang l i ng .

    Rod m i l l s can be equipped w i t h trommels t o remove bioken pieces of rods and tramp overs ize from the rod m i l 1 discharge. The discharge end o f a r o d m i l l can be enclosed i n a housing which w i l l he lp con- t a i n t he no ise and splash coming from the m i l l . A door should be pro- v ided a t the end o f the housing which can be opened f o r charging rods. S u f f i c i e n t c l e a r space a t the discharge end o f the m i l l should be a l - lowed f o r charging rods. See F ig . 5.

    The f o l l o w i n g equat ion i s used t o determine the power t h a t a .rod m i l l should draw.

    where

    K W ~ = K i l owa t t s per m e t r i c tonne o f rods (1000 kg). D = M i l l diameter i n s i d e l i n e r s i n meters. V = F r a c t i o n 'of m i l l volume loaded w i t h rods. fbs = F rac t i on o f c r i t i c a l speed.

    I n terms o f m i l l diameter i n fee t and rod charge i n sho r t tons (2000 pounds) t h e equat ion becomes:

    Table V l i s t s many o f t he common s i z e rod m i l l s g i v i n g speed, l oad ing and power data. The power i s i n horsepower a t the m i l l p i n ionsha f t . For d i f f e r e n t l eng th rod m i l l s power va r i es d i r e c t l y as rod length . For d i f f e r e n c e between new and worn l i n e r s increase power draw by 6%, and a d j u s t f o r bu l k dens i t y per Table I V . Wet g r i n d i n g rod m i l 1s a r e normal ly used. i 'n minerals processing p lan ts . Experience w i t h d r y g r i n d i n g genera l ly i nd i ca tes many d i f f i c u l t prob- lems and should be avoided except where abso lu te l y necessary; i n which case the problem should be re fe r red t o the m i l l manufacturers f o r r e - comnendations.

    The var ious rod m i l l manufacturers have d i f f e r e n t equat ions f o r de te r - min ing t h e power rod mi 11 s draw, bu t a1 1 come c lose t o the same ca lcu- l a t e d power draw.

  • ROD AND BALL MILLS

    249

  • TABLE V

    ROO M I L L POWER AT M I L L PINIONSHAFT (HORSEPOWER)

    ROO 'ROO MILL M I L L DIAMETER LENGTH

    -.

  • ' ROD AND BALL MILLS . 251

    BALL MILLS

    Being f ree o f t he 1 i m i t s imposed on rod m i l 1s by the rods, b a l l m i l 1 s have more v a r i a t i o n s i n l eng th t o diameter r a t i o s , ranging from LID r a t i o s o f s l i g h t l y l e s s than 1 :1 t o some greater than 2: l . There are no f i x e d r u l e s on the proper LID r a t i o s t o use as these vary w i t h the c i r c u i t used, o re type, feed s i z e and o v e r a l l g r i nd ing requirements.

    . Table V I g ives some rough guide 1 ines showing, based upon past exper i - ence, the general C /D r a t i o s used i n the a p p l i c a t i o n o f b a l l m i l l s .

    Gr ind ing b a l l s can be made o f fo rged o r cas t s tee l o r cas t i r on . The q u a l i t y depends upon the source o f supply. While n o t always t rue , f r equen t l y the b e t t e r qua1 i t y b a l l s a re forged s tee l . General 1 y b a l l s a r e spher ica l shaped, b u t they can be i n var ious c y l i n d r i c a l , con ica l o r o the r i r r e g u l a r shapes. B a l l s vary considerably i n hardness w i t h s o f t b a l l s having B r i n n e l l hardnesses i n the range o f 350 t o 450, and t h e hard b a l l s having hardnesses i n excess o f 700. A r u l e o f thumb sub jec t t o arguments i s : " t he harder t he b a l l the b e t t e r i t s l i f e " (provided i t i s n o t too b r i t t l e and breaks 'or becomes too h i g h l y po l - ished and too smooth t o n i p the ma te r i a l being ground). .Local econo- mics and the s p e c i f i c g r i nd ing a p p l i c a t i o n genera l ly a re the dec id ing f a c t o r s i n s e l e c t i n g the b a l l s t o use. The b a l l s g i v i n g the lowest opera t ing cos t and best performance are genera l ly selected. This need n o t be the lowest p r i c e d b a l l s a v a i l a b l e nor the ones g i v i n g the 1 owest wear ra te , b u t can 'be a compromise between the two extremes.

    B a l l s should -be s o l i d w i t h a reasonably un i fo rm hardness t h r u the en- t i r e b a l l . They should wear i n a r e l a t i v e l y un i fo rm pat te rn . An i n - d i c a t o r o f good b a l l wear i s when the worn b a l l s d ischarg ing from the m i l l a re around 16 m i l l i m e t e r ( 518 " ) o r smal ler i n s i z e and a re po ly - gon shaped having as many as 8 t o 12 surfaces, which can be s l i g h t l y concave. Evidence o f broken b a l l s i s found when pieces o f b a l l s a re being discharged, some as c i r c u l a r d iscs, some as h a l f rounds, some ' crescent shaped. Pieces o f worn o r broken b a l l s w i t h holes i n them ' i n d i c a t e poor q u a l i t y b a l l s w i t h sand i nc lus ions and/or blow holes and/or ho l low centers.

    For c a l c u l a t i n g the power t h a t a b a l l m i l l w i l l draw, forged s tee l and cas t s tee l b a l l s a re assumed t o weigh 4646 ki lograms per cubic meter (290 pounds e r cub ic f o o t ) w i t h cas t i r o n b a l l s weighing 4165 kg per m3 (260 p c f r . B a l l mi 11 s normal ly c a r r y a b a l l charge 'occupying from 40 t o 45% o f t he m i l l volume, b u t can c a r r y up t o a 50% o r s l i g h t l y h igher charge. F ig . 6 shows the r e l a t i o n s h i p o f m i l l power and vo lumet r ic loading. For p l a n t capac i ty and design purposes, b a l l m i l l s a re f requen t l y se- l e c t e d based upon ca r r y ing 40% b a l l charges w i t h the m i l l s and d r i ves designed t o c a r r y h igher charges i f required.

  • 252 MINERAL PROCESSING PLANT DESIGN TABLE V I

    B A L L M I L L L / D R A T I O - APPLICAT.ION' GENERAL GUIDEL INES

    ,, . . . . .

    . ,

    FEED 8 0 % PASSING S I Z E . . . TOP. BALL S I Z E LID ,RATIO ' :: , . .

    - . MICROMETERS ' MILLIMETER INCHES . . .

    , ,

    2 % OF MlLL VOLUME OCCUPIED BY BALL OR PEBBLE CHARGE GRINDING MlLL POWER VS LOADING Fig . 6

  • . . ROD. AND -BALL. *MILLS . 253

    When a 45 t o 50% b a l l charge i s t o be ca r r i ed , gene ra l l y a double scoop feeder as shown i n Fig. 7 i s used. Th is i s a more expensive feeder than a spout feeder. as shown i n F ig . 4 , which can a l s o be used t o feed b a l l m i l l s . P l a n t design, c a p i t a l cos t and opera t ing cos ts a l l i n f l uence b a l l m i l l feeder se lec t ion . When a b a l l m i l l i s c losed c i r c u i t e d w i t h a rake o r s p i r a l c l a s s i f i e r , a scoop feeder i s requ i red t o feed the c i r c u l a t i n g l oad i n t o the m i l l . With cyclone c l a s s i f i e r s spout feeders can be used. Spout feeders a l l ow arrangement where the c l a s s i f i e r underf low f lows by g r a v i t y i n t o t he spout feeder hopper. Therefore, the cyclone c l a s s i f i e r s must be i n s t a l l e d h igh enough t o o b t a i n t he head requ i red f o r t h i s f l o w i n t o the hopper. This can r e - s u l t i n h igh pumping heads and pump power t o pump the m i l l discharge t o t he cyclone c l a s s i f i e r s . F ig . 8 shows a s i n g l e stage b a l l m i l l i n - s t a l l a t i o n us ing double scoop feeders w i t h cyclone c l a s s i f i e r s i n s t a l - l e d a t about t h e ho r i zon ta l c e n t e r l i n e o f the m i l l . Depending upon t h e rad ius and w id th o f t he scoops and the c a p a ~ i ~ t y ( i n c l u d i n g c i r c u - l a t i n g load) double scoop feeders consume from 25 t o 30 k i l o w a t t s (20 t o 40 horsepower). Th is arrangement reduces considerably pumping head and power and must be balanced aga ins t h igher maintenance cos t f o r the scoop feeder.

    Make-up g r i nd ing b a l l s a re fed t o the m i l l as requ i red t h r u the m i l l feeder w i t h the m i l l i n operat ion. B a l l s may feed d i r e c t l y through a spout, b u t should not be fed i n t o a scoop box because o f poss ib le jamming and ser ious mi 11 damage. Scoops usual 1 y have a. cen t ra l b a l l feed p ipe o r a small charging drum t o accomplish t h i s .

    . :

    There a re many d i f f e r e n t designs and s t y l e s o f b a l l m i l l l i n e r s . As w i t h ' g r i n d i n g b a l l s l o c a l economics and u l t i m a t e l y opera t ing costs determine. the. best ' design and ma te r i a l t o use. The i n i t i a l s e t o f 1 i n e r s ' is , r a re l y t h e f i n a l design, selected. Based upon i n d i v i d u a l experience-, mil.1 superintendents develop perferences f o r l i n e r de- s igns. 'The:following i s g iven as a guide l i n e f o r the i n i t i a l s e t o f 1 i ne r i ' ;

    4 . . . 7 . ' . .. ' .

    A. - ~ d r 60 mm ' ( 2 . 5 " ) and smal.ler t i p - i i z e . b a l l s f o r cas t metal ; 1.i'ners use double wave 1 iners.:wi t h the number o f l i f t e r s t o " t he c i r c l e approximately 13.1 D i n meters ( f o r D i s i n f e e t

    . d i v i d e 13; 1 D by 3:3). Wave he ight above the 1 i n e r s from 1.5 t o 2 'times the l i n e r th ickness. Rubber l i n e r s o f t he i n t e g r a l .molded design f o l l o w the cas t metal design. I f us ing the' replaceable l i f t e r bar design i n e i t h e r metal o r rubber t he number o f l i f t e r s should be about 3 . 3 T D i n

    , meters ( f o r D i s i n f e e t d i v i d e 3.3-fD by 3,3) w i t h the '

    . . l i f t e r he igh t above the l i n e r s about tw ice the l i n e r t h i c k - ness. ...' . . . . .

    . . . .

    . The use o f double wave. 1 iners , p a r t i c u l a r l y 'when using 5 6 inm (2 " ) . o r l a r g e r bal.ls, may show a l oss of 5% o r so i n the

    - - ' m i l 1 power draw u n t i l the waves wear i n 'and' the b a l l s can

  • MINERAL PROCESSING PLANT DESIGN

    F i g . 7 - S i n g l e o r Double Scoop Feeder

    F i g . 8 - Duval S i e r r i t a P l a n t

  • ROD AND BALL MILLS

    nes t between the l i f t e r s . When l i n e r s , and double wave li- ners i n particu1ar;wear w i t h c i r cumfe ren t i a l grooves, s l i p - p ing o f t he charge i s indicated, and t h i s warns o f accele- r a t e d wear. When the top s i ze b a l l i s smal ler than 60 mm (2.5") and m i l l speed i s l ess than 72% o f c r i t i c a l wear re- s i s t a n t cas t i r ons can be used. For o ther cond i t ions a l - loyed cas t s tee l i s recommended.

    Rubber 1 i n e r s are we l l su i ted t o t h i s same area and no t on l y reduce operat ing costs b u t can reduce no ise l e v e l s .

    B. S ing le wave l i n e r s are recommended f o r l a r g e r s i z e b a l l s (60 mm/2.5" and l a rge r ) . The number o f the 1 i f t e r s t o the c i r - c l e equals approximately 6.6 D i n meters ( f o r D i s i n f e e t d i v i d e 6 . 6 D b y 3.3). T h e l i n e r s a r e f r o m 5 0 t o 6 5 m m t h i c k (2" t o 2.5") w i t h the waves from 60 t o 75 mm (2.5" t o 3") above the 1 iners . The replaceable l i f t e r bar design made o f e i t h e r metal o r rubber i n about t he same design propor- t i o n s can be used. There could be a l oss i n power w i t h rubber p a r t i c u l a r l y i f the m i l l speed i s f a s t e r than about 72% o f c r i t i c a l speed and the b a l l s i ze i s l a r g e r than 75 mm .

    Because o f the impacting from the l a rge ba l l s , s i ng le wave 1 i n e r s f o r b a l l m i l l s are usua l l y made from a1 loyed s tee l s o r special wear-resistant a l l oyed cas t i rons. Because o f t he d i f f i c u l t y o f , balancing growth and wear w i t h work hard- ening manganese s tee l i s used in f requen t l y and then w i t h ex- treme care t o a l l ow f o r growth.

    C. End l i n e r s f o r b a l l m i l l s c o n f o r m t o t h e s l o p e o f t h e m i l l head and can be made o f rubber, a l loyed cas t s tee l o r wear resistant . , cas t i r on . To prevent rac ing and excessive wear

    . end 1 i n e r s . f o r ' b a l l m i l l s are furn ished w i t h i n t e g r a l r a d i a l r i b s o r w i t h replaceable l i f t e r s o r w i t h both.

    D. When a g ra te discharge i s used the grates and wear p la tes are normal ly perpendicular t o the m i l l ax i s wh i l e the d i s - charge pans conform t o the slope o f the m i l l head. The gra tes and wear p la tes are normal ly made from a l loyed wear r e s i s t a n t cas t s tee l o r rubber. They are r ibbed t o pre- vent r a c i n g and excessive wear. The dischargers and pans a re genera l l y made from e i t h e r wear r e s i s t a n t cas t i r o n o r rubber, o r wear r e s i s t a n t f ab r i ca ted s tee l .

    S l o t p lugg ing can be a problem i n gra te discharge m i l l s . Whether the grates are made o f metal o r rubber the s l o t s should have ample r e l i e f tapered toward t h e discharge side. Tota l angles 7 t o 10 degrees (3.5 t o 5 degrees per s ide) are commonly used. Metal grates o f t e n have

  • 256 MINERAL PROCESSING PLANT DESIGN

    ' ' ' . a small lead-i.n 'po,cket o r reces's whi'ih 'can f i 1.1 i n w i t h -. peened meta1"rather than have the * s l o t peen: shut.' With

    the proper combinati.on o f metal, i - n t h a l s and r l jbber sur- faces,' rubber gra tes ' .have" f lex ' ib i l i ty t h a t tend' to make them se l f c leaning and y e t no t f a i l due t o f l e x i n g .

    . ..

    E. Except when using rubber l i n e r s , the m i l l surfaces are covered w i t h a p r o t e c t i v e rubber o r p l a s t i c ma te r ia l t o p r o t e c t the surfaces from pu lp rac ing and corrosion. Th is i s done i n wet g r i nd ing m i l l s : Since d ry g r i nd ing m i l l s ge t ho t due t o heat from g r ind ing genera l ly rubber l i n e r s and rubber ma te r ia l s cannot be used.

    \ >

    The follow in^ equation.'i's used t o determine the power t h a t wet g r i nd - i n g overf low ba1.l m i l 1 s- should draw.

    . .

    = 1.879 (3.2-3 vp) .+ :

    . . . .

    where . -. . . .

    K W ~ = K i l owa t t s per me t r i c tonne o f b a l l s (1000 kg) . D = M i l l diameter i n s i d e l i n e r s i n meters. V = F rac t i on o f m i l l volume loaded w i t h b a l l s . fFs = F rac t i on o f c r i t i c a l speed.

    I : Ss = B a l l s i ze factor.. . .

    I n terms o f m i l l diameter i n fee t ' and power'per sho r t t on a t (2000 pounds) o f b a l l charge Equation 4 becomes:

    For m i l l s l a r g e r than'. 3.3 meters. (10 f e e t ) d iameter" inside' l i n e r s the top s i z e o f t he b a l l s used a f f e c t s the power,drawn by. the niill. This

    . . . . i s c a l l e d the b a l l s i ze f a c t o r S,. . . .-.L i . '

    where

    B = B a l l s i z e i n m i l l i m e t e r s . * ,- D '= M i l l diameter i n s i d e l i n e r s i n meters: ' - 1 Ss = K i l owa t t s per me t r i c tonne o f ba l l s .

    I n terms o f b a l l s i ze i n inches and m i l l diameter i n f e e t and power per sho r t t on of b a l l charge equation 5 becomes: ;

  • - ROD AND' BALL MILLS . , 257

    To determine the power t h a t a wet gr inding, low l e v e l g ra te discharge m i l l should draw m u l t i p l y Kwb by 1'.16 +and f o r a d ry gr ind ing, f u l l g ra te discharge m i l l m u l t i p l y by 1.08. .

    For spec ia l app l i ca t i ons :such as cement raw.mater ia ls, baux i te i n cau- s t i c so lu t i ons and 'other. ,c lay- l i ke mater ia ls consu l t the m i l l manufac- t u re rs , s ince . these, mat,erial s a f f e c t the power drawn by b a l l mi 11 s.

    . . . . ' , : , :; - . .

    Table V I I 1 ists,' e i s e n t i a l l y "square" b a l l m i l l s g i v i n g h i 1 1 speed as percent o f cri-t.ica.1, 'weight o f a '40% b a l l charge, t o p b a l l s i ze and ca l cu la ted power .draw. B a l l m i l l power chan'ges i n d i r e c t propor t ion t o m i l l length:.' The power is horsepower a t ' the m i l 1 p i ,n ionshaft i n - s ide new s h e l l . l i 'ners. Increase power f o r worn.-shell. l i n e r s by 6%. There are i nd i ca t i ons ' t h a t ,rubber 1 i ne rs ' may cause: from a 5 t o 10%

    . . . . - -

    . . l o s s i n m i l 1 power. : . .

    . .

    7 :_ : . , , , . - . . . . . . . . 2 .

    . .

    . .

    The var ious. bd-l:l'-.mi'll man"facturers have : d i f f e r e n t equtitions f o r deter - mining the power ,ba.ll m i l l s draw, ,but a l l come close t o the same calcu-

    . . . l a t e d power'draw. - . .

    . . , .

    . , .

    , , . 1.;. O R E TESTING FOR MILL-SELECTION ~.

    A f t e r the g r i nd requirements are establ ished, t e s t i n g f o r the selec- t i o n o f comminution c i r c u i t s and m i l l s i ze can-be i n i t i a t e d and can inc lude the fo l lowing:

    - Primary ~ u t o ~ e n o u s Media Competency - Primary Autogenous and Semi-Autogenous P i l o t P lant - Secondary Autogenous (Pebble) Test ing - Impact Crushing - Bond Work Index - Rod M i l 1 Grindabi li t y - Bond Work Index - B a l l M i l l G r i n d a b i l i t y - Bond Work Index - Abrasion Index . - Crushing, Gr inding and Concentration P i l o t P lant

    Th is discussion w i l l be 1 im i ted t o t e s t i n g f o r se lec t i on o f rod and b a l l m i l l s . Rod and b a l l mil l . ing, using g r i nd ing media o f known qual- i t y , a re we l l es tab l ished and requ i re much s imp l i e r g r i nd ing t e s t programs than requ i red f o r t he se lec t i on o f autogenous g r ind ing mi 11s and c i r c u i t s . - . .

    Samples f o r g r i n d a b i l i t y tes ts -shou ld be crushed. t o ab&t minus 1". The samples can',be taken from ad i ts , p i t s , etc., ' i n the ore body o r they can be crushed d r i q l cores.. . While i t i s he lp fu l i n a n t i c i p a t i n g va r ia t i ons i n - feed. ra tes . t o know the g r i ndab i l i t y o f t he var ious ore types i n a deposit, f o r m i l l se lec t i on g r i n d a b i l i t y t e s t s should be run on composite samples representa t ive -o f t he blended m i l 1 feed. It i s in f requent t h a t the. g r i n d a b i l i t y o f the. composite or , b lend i s the same as t h a t obta'iried by mathenia+jcal l y maki ng'.a propor t iona l blend based on gr indab' i l . . . . . i t y t e s t s performed bn each: component. D i f f e r e n t i a l

  • TABLE VII

    BALL M I L L POWER AT M I L L PINIONSHAFT (HORSEPOWCR)

    M I L L

  • ROD AND BALL MILLS 259

    g r i n d i n g occurs so t h a t each component can be ground t o a d i f f e r e n t s i z e c o n s i s t than the composite which has been ground t o t he requ i red s ize .

    Depending upon the s i z e o f the deposi t , capac i ty o f the concentrator , l i f e o f the operat ion, complexi ty o f the ore deposi t , complexi ty o f t he e x t r a c t i o n o r subsequent processes, etc., t e s t i n g can range from one se r i es o f g r i n d a b i l i t y t e s t s t o a l a r g e number o f g r i n d a b i l i t y t e s t s and even poss ib l y p i l o t p l a n t t e s t i n g . Often p i l o t p l a n t t e s t - i n g i s done p r i m a r i l y f o r m e t a l l u r i g i c a l t e s t i n g w i t h g r i nd ing used f o r feed preparat ion.

    Frequent ly p i l o t p l a n t s a re b u i l t us ing ava i l ab le o r used equipment w i t h t he g r i n d i n g c i r c u i t overs ize f o r the concent ra t ion sec t i on and as such the two are n o t balanced operat ions. Caution, there fore , should be used i n s e l e c t i n g the t e s t data t o be used t o s e l e c t m i l l s and c i r c u i t s f o r t he p lan t . The data should be selected from t e s t s run s p e c i f i c a l l y t o ob ta in g r i nd ing data. This data should inc lude:

    M i l l S ize % vo lumet r ic load ing i n m i l l occupied by media. Type o f c i r c u i t (open o r c losed) and f lowsheet diagram. Any concent ra t ion steps i n the g r i nd ing c i r c u i t . S ize and type o f c l a s s i f i e r s . I f cyclone c l a s s i f i e r s : s ize, ra ted capacity, power

    draw and speed o f cyclone feed pump. S ize ana l ys i s c i r c u i t feed. , % mois ture i n m i l l feed. Feed r a t e t o the c i r c u i t , d r y basis. S ize ana l ys i s and pu lp dens i t y of:

    1.) C i r c u i t product. 2.) Discharge f rom each m i l l . 3 . ) Feed t o each c l a s s i f i c a t i o n stage. 4.) Oversize from each c l a s s i f i c a t i o n stage. 5.) Fines from each c l a s s i f i c a t i o n stage.

    Power drawn by each m i l l (motor i n p u t ) . Motor and d r i v e e f f i c i e n c y o f each m i l l . S ize o f and type o f g r i n d i n g media used i n

    each mi 11. Speed i n rpm f o r each m i 11 . L i n e r design and c o n d i t i o n i n each m i l l .

    .Media wear ra te . L i n e r wear r a t e i f tes ted l ong enough t o

    obta in . % c i r c u l a t i n g l oad f o r each stage t h a t

    i s c lose c i r c u i t e d .

    During g r i q d i n g t e s t s obtain"samp1es o f m i l l feed f o r g r i n d a b i l i t y t e s t s so t h a t work i nd i ces ' ca l cu la ted f rom the p i l o t p l a n t data can be compared t o gr indab i 1 i t y t e s t r e s u l t s . Operating work ind ices

  • 260 MINERAL PROCESSING PLANT DESIGN

    can be o b t a i n e d u s i n g p i l o t p l a n t d a t a i n t h e f o l l o w i n g equa t ion :

    where.

    wio = Opera t ing Work Index. W = Kwh p e r t o n (can be m e t r i c , s tandard o r l o n g ) . P = Produc t s i z e which 80% passes i n micrometers. F = Feed s i z e which 80% passes i n micrometers.

    The a p p l i c a t i o n o f g r i n d i n g c i r c u i t and equ ipment - re la ted f a c t o r s d i s - cussed l a t e r i n t h i s c h a p t e r a r e a p p l i e d t o Wio t o p u t i t on t h e same b a s i s a s g r i n d a b i l i t y t e s t r e s u l t s . T h i s a l l o w s a d i r e c t compar ison o f p i l o t p l a n t t e s t r e s u l t s and g r i n d a b i l i t y t e s t r e s u l t s . I n a d d i - t i o n t o these, a1 so, be s u r e t o a p p l y motor and ' d r i v e e f f i c i e n c y f a c - t o r s so t h a t t h e p i l o t p l a n t m i l l power d a t a i s r e f e r e d t o t h e m i l l p i n i o n s h a f t o r t o t h e m i l l s h e l l (measured power d a t a . i s g e n e r a l l y e l e c t r i c a l energy i n t o t h e moto r ) . F o r comparison w i t h g r i n d a b i l i t y t e s t r e s u l t s Wio has t o be p laced on t h e b a s i s o f s tandard t o n s (907.4 kg) - W i t h t h e d i f f i c u l t y i n o b t a i n i n g a c c u r a t e p i l o t p l a n t da ta , p a r t i c u - 1 a r l y power data, Bond c l o s e d c i r c u i t g r i n d a b i li t y t e s t r e s u l t s o f t e n g i v e t h e more a c c u r a t e d a t a f o r s e l e c t i n g r o d and b a l l m i l l s . Gr ind - a b i l i t y t e s t work shou ld span t h e f e e d and p r o d u c t s i z e s of t h e p ro - posed g r i n d i n g c i r c u i t . The g r i n d a b i l i t y t e s t work g e n e r a l l y recom- mended f o r p r i m a r y m i l 1 i n g c i r c u i t s . i nc ludes :

    A. Bond r o d m i l l g r i n d a b i l i t y t e s t s a t 10 o r 14 mesh f o r Work Index .

    B; F o r each b a l l m i l l g r i n d i n g s tep, a Bond b a l l m i l l g r i n d - a b i l i t y t e s t f o r Work Index a t one mesh s i z e c o a r s e r t h a n t h e d e s i r e d 80% pass ing s i z e and a t t h e mesh s i z e o f o r j u s t f i n e r t h a n the. 80% pass ing s i z e .

    C. I f 50 mm x 75 mm (2" x 3 " ) o r e .lumps a r e a v a i l a b l e an im- p a c t c r u s h i n g Work Index, t e s t . ' , ' .

    D. I f 30 mm x 20 mm (1-114" x .314") o r e i s a v a i l a b l e an abra- s i o n index test . '

    F o r r e g r i n d b a l l ' m i l 1 i n g o r b a l l m i l l i n g o f rougher concen t ra tes p ro - duced i n t h e g r i n d i n g c i r c u i t r u n b a l l m i l l g r i n d a b i l i t y t e s t s as o u t - 1 i n e d i n B above. S ince t h e Bond g r i n d a b i l i t y t e s t r e q u i r e s a r a t i o o f r e d u c t i o n of abou t 6 : l t o o b t a i n a c c u r a t e r e s u l t s i t may be neces- s a r y t o r u n t h e t e s t a t a f i n e r s i z e t h a n r e q u i r e d by t h e s p e c i f i e d

  • ROD AND BALL MILLS 261

    g r i n d o r even a spec ia l ' t e s t w i l l have t o be run. . ..

    Th is w i l l g i v e a good cross sec t i on o f the g r i n d a b i l i t y o f t he o re and w i l l a l l o w f o r accurate ca l cu la t i ons o f the g r i nd ing power required.

    The balance' o f the d iscuss ion i n the chapter w i l l be an example demon- s t r a t i n g the s e l e c t i o n o f a pr imary g r i nd ing c i r c u i t and a r e g r i n d c i r c u i t where a l l o f t he o re i s ground t o the requ i red product s i z e i n t he pr imary c i r c u i t . For g r i nd ing c i r c u i t s where concent ra t ion i s i n - c luded i n t he c i r c u i t the bas ic approach i s the same as given i n the example, cons ider ing each s t a e as a separate e n t i t y and ad jus t i ng f o r new feed r a t e s and feed s i r e ?which. could be d i f f e r e n t than the r a t e and product s i z e from the preceding stage).

    PROBLEM .

    Se lec t r o d m i l l s , b a l l m i l l s and pebble mi 11s as requ i red f o r the f o l - lowing c i r c u i t s .

    - Rod M i l l - B a l l M i l l - S ing le Stage B a l l M i l l - Rod M i l l - Pebble (Secondary Autogenous) M i l l - Primary Autogenous o r Semi-Autogenous M i l 1 -' B a l l M i l 1. - Regrind B a l l M i 11

    Feed r a t e t o the pr imary m i l l , c i r c u i t i s 500 me t r i c tonnes per hour i n c l u d i n g f a c t o r f o r a v a i l a b i l i t y . Feed r a t e t o r e g r i n d m i l l i s 40 me t r i c ' tonnes per hour.

    Rod m i l l feed and feed f o r s i n g l e stage b a l l m i 11 w i l l be prepared w i t h c losed c i r c u i t crushing. The feed s izes f o r the var ious m i l l s -, w i l l be: . ,

    - Rod M i l l i n g : minus 25 mm 80% passing 18 mm. S ing le stage B a l l M i l l : minus 12 mm 80% passing 9.4 mm.

    - B a l l M i l l and Pebble M i l l f o l l o w i n g Rod M i l l and B a l l Mi 11 f o l l o w i n g Primary Autogenous o r Semi-Autogenous M i l l : minus 2 mm 80% passing 1.2 m.

    - Regrind B a l l M i l l : 80% passing 210 micrometers.

    The c i r c u i t s are a l l wet g r i n d i n g type. A l l b a l l o r pebble m i l l s are c losed c i r c u i t w i t h t he except ion o f the reg r i nd m i l l which w i l l be open c i r c u i t f o r t h i s example.

    Pebble s i z e f o r pebble m i i l i n g p lus 30 mm minus 70 mm w i t h a pebble consumption o f 30 m e t r i c tonnes per hour which i s 6% o f the c i r c u i t p roduct ion r a t e .

    , . ,

    The spec i f i ed g r i nds are: pr imary g r i nd ing c i r c u i t 80% passing 175 micrometers, r e g r i n d c i r c u i t 80% passing .45 micrometers.

    . .

  • 262 MINERAL PROCESSING PLANT DESIGN

    Bench sca le g r i n d a b i l i t y t e s t r e s u l t s t o be used f o r g r i nd jng power ca l cu la t i ons . The t e s t r e s u l t s t o be used i n the example are:

    Impact Crushing Work Index 11.5 Rod M i l l G r i n d a b i l i t y Test a t 10 mesh 13.2 ,(Mi) B a l l M i l l G r i n d a b i l i t y Test a t 65 mesh 11.7 .'(wi) B a l l M i l l G r i n d a b i l i t y Test a t 100 mesh 12.1 (Wi), B a l l M i l l G r i n d a b i l i t y Test a t 325 mesh

    on r e g r i n d m i l l feed 14.0. (Mi) . Abrasion Index 0.215 ( A * ) ? :.

    EQUATIONS USED TO DETERMINE GRINDING POWER.

    Th is f i r s t s tep i n se lec t i ng g r i n d i n g m i l l s i s t o determine the power needed t o produce the des i red g r i nd . The bas ic equation used f o r t h i s i s the Bond Equation.

    where

    W = kwh per s h o r t ton. Wi = Work Index. P = Product s i z e i n microns which 80% passes. F = Feed s i z e i n microns'which 80% passes. , , .

    I . . . . -

    The power determined from equat ion 7 i s f o r the f o l l o w i n g spec i . f i c cond i t ions .

    A. Rod M i l l i n g - wet, open c i r c u i t g r i nd ing i n a 2.44 meter ( 8 ' ) diameter i n s i d e l i n e r s rod m i l l .

    B. B a l l M i l l i n g - w e t , c l o s e d c i r c u i t g r i n d i n g i n a 2.44meter ( 8 ' ) diameter i n s i d e l i n e r s b a l l m i l l .

    C. Power ca l cu la ted i s t he power requ i red a t t he p i n i o n s h a f t o f the m i l l , which includes m i l l bearings and gear p i n i o n losses b u t does n o t i nc lude motor losses o r losses i n any o the r d r i v e component, such as reducers and c lu tches.

    The feed f o r Bond G r i n d a b i l i t y Tests i s :

    Rod m i l l i n g ore crushed t o minus 13,200 micrometers (0.530") o r f i n e r . B a l l m i l 1 i n g o re crushed t o minus 3,350 micrometers (6 mesh) o r f i n e r .

    which have been used t o e s t a b l i s h optimum rod and b a l l m i l l feed s izes.

  • , ' ' ROD AND BALL MILLS 263

    There a re e i g h t e f f i c iency fac tors t o be app l ied t o the ca l cu la ted g r i n d i n g power t o a l l ow f o r v a r i a t i o n s from the spec i f i ed cond i t ions and optimum feed s izes.

    EF1 Dry, Gr.indi,ng': . .

    EF2 Open C i r c u i t B a l l M i l l i n g .

    EF3 Diameter . E f f i c i e n c y Factor.

    EF4 Oversized Feed.

    EF5 F ine Gr ind ing i n b a l l m i l l s t o product s izes f i n e r than 80% passing 200 mesh (75 micrometers).

    EF6 High o r low r a t i o o f reduct ion rod m i l l i n g .

    EF7 Low Ra t i o of reduc t i on b a l l m i l l i n g .

    EF8 Rod M i l l i n g .

    The m u l t i p l i e r s f o r the e f f i c i e n c y f a c t o r s are determined by the f o l - 1 owing:

    EF1 - Dry Gr ind ing - f o r the same range o f 'work, d r y g r i nd ing r e - qu i res 1.3 t imes as much power as wet gr ind ing.

    EF2 - Open C i r c u i t Gr ind ing - when g r i nd ing i n open c i r c u i t b a l l m i l l s , the amount of ex t ra power required, compared t o c losed c i r c u i t b a l l m i l l i n g , i s a func t ion o f the degree

    . o f c o n t r o l r equ i red on the product produced. The i n e f f i - c iency f a c t o r s f o r open c i r c u i t g r i nd ing are given i n Table VIII.

    EF3 -.Diameter E f f i c i ency Factor - using the base m i l l diameter o f 2.44 meters ( 8 ' ) i n s i d e l i n e r s , the diameter e f f i c i e n c y fac to r can be ca l cu la ted from the fol lowing:.

    I '

    When D i s i n meters:

    When D i s

    EF3 =

    Table I X g ives a t abu la t i on ' o f the EF fac tors f o r some o f t he more common m i l l diameters i n bot; the imper ia l and m e t r i c measuring systems.

  • MINERAL PROCESSING PLANT DESIGN TABLE V I I I

    . ..

    OPEN CIRCUIT INEFFICIENCY MULTIPLIER

    PRODUCT SIZE CONTROL REFERENCE % PASSING

    INEFFICIENCY MULTIPLIER '

    DIAMETER EFFICIENCY MULTIPLIERS

    MILL DIAMETER MILL DIPJ~ETER DI'AMETER 'EFFICIENCY INSIDE SHELL. . INSIDE LINERS MULTIPLIER

    FEET METERS , FEET METERS

    3.0 0.914 2*.6 0.79 1.25 3.281 1.0 2.88 0.88 . 1.23 4.0 1.22 3.6 1.10 " . 1.17 5.0 1.52 4.6 1.40 ' 1.12 6.0 1.83 5.6 1.71 1.075 6.562 2.0 5.96 1.82

    . .

    1.06 7.0 2.13 6.5 1.98 1.042 8.0 2.44 7.5 2.29 1.014 8.5 2.59 8.0 2.44 . 1.000 Base 9.0 2.74 8 . 5 0

    It ' should be noted t h a t f o r m i l l s where the diameter i ns i de l i n e r s i s l a r g e r than 3.81 meters (12.5 ' ) t h a t the.diameter e f f i c i e n c y f a c t o r does n o t change and remains 0.914.

  • ROD AND BALL MILLS 265

    NOTE: I n s e l e c t i n g m i l l s f o r new operations, where t h i s f a c t o r i s , l ess than 1.0 i t i s sometimes neglected and i s used as a

    sa fe t y f a c t o r . I n the example i t w i l l be appl ied.

    EF4 -. Oversized Feed - when being fed a coarser than optimum feed, t h i s f a c t o r app l i es t o r o d . m i l l i n g and b a l l m i l l i n g . How- ever, the most f requent use i s found i n con junc t ion w i t h s i n g l e stage b a l l m i l l i n g . This i s the one e f f i c i e n c y fac - t o r t h a t i s r e l a t e d t o Work Index as i s seen . i n the f o l l o w - i n g equation:

    . .

    F . where Rr = Ra t i o o f reduc t i on = (10)

    Fo = Optimum feed s i ze R o d m i l l i n g : 16,000 (11

    When ava i l ab le , use the Work ~ndex ' f r om a g r i n d a b i l i t y t e s t a t the de- s i r e d g r i n d f o r Wi i n equat ion 9. For equat ion 11, use e i t h e r the Work Index from an impact t e s t o r a rod m i l l g r i n d a b i l i t y t es t , which- ever i s h igher. For equat ion 12, use the Work Index f rom a rod m i l l g r i n d a b i l i t y t e s t , s ince th is .more represents the coarse f r a c t i o n o f t he feed; i f n o t a v a i l a b l e then use the bal.1 m i l l g r i n d a b i l i t y t e s t r e s u l t s .

    EF5 - Fineness o f Gr ind Factor - t h i s app l ies t o f i n e g r i nd ing when the 80% passing s i z e of the product i s f i n e r than 75 micrometers (200 mesh) .- The equat ion t o determine t h i s i s :

    EF6 - High o r Low Ra t i o of Reduction Rod M i l 1 i n g - the equat ion t o be used, unless Rr i s between Rro = -2 and, Rro = +2 i s :

    5 L where Rro = 8 + - D (15)

  • MINERAL PROCESSING PLANT DESIGN

    L = Rod Length

    Th is f a c t o r always app l i es t o low r a t i o s o f reduct ion b u t i t s a p p l i c a t i o n t o h igh r a t i o s o f reduct ion i s n o t always needed, b u t should be used f o r m i l l s i ze s e l e c t i o n whenever Wi from the r o d m i l l and b a l l m i l l g r i n d a b i l i t y t e s t s ex- ceed 7.0.

    EF, - Low Rat io o f Reduction B a l l M i l l - the need t o use t h i s f a c t o r does n o t occur very o f t e n as i t on l y app l ies t o b a l l m i l l i n g when the Ra t i o o f Reduction i s l ess than 6. Th is shows up p a r t i c u l a r l y i n reg r i nd ing concentrates and t a i l - ings. The equat ion f o r t h i s i s :

    EF8 - Rod M i l l i n g - a study o f rod m i l l operat ions shows t h a t rod m i l l performance i s a f f e c t e d by the a t t e n t i o n given t o pre- pa ra t i on and feeding a un i fo rm top s i z e feed s i z e t o the m i l 1 and the care given t o main ta in ing the rod charge. Th is e f f i c i e n c y f a c t o r has no t been d e f i n i t e l y determined. I n s e l e c t i n g rod m i l l s based upon power ca l cu la ted from gr indab i 1 i t y tes t s , t he f o l l owing procedure has been recom- mended :

    1 ) When c a l c u l a t i n g rod m i l l power f o r a rod -m i l l i ng -on l y app l i ca t i on , use an i n e f f i c i e n c y f a c t o r o f 1.4 when the feed i s t o be prepared w i t h open c i r c u i t crushing, and use 1.2 when the feed i s t o be prepared w i t h c losed c i r - c u i t crushing. The m i l l diameter, low o r h igh r a t i o o f reduct ion , and overs ize feed f a c t o r s a l so must be ap- p l i e d t o the ca l cu la ted g r i n d i n g power.

    2) When c a l c u l a t i n g rod m i l l power f o r a rod m i l l - b a l l m i l l c i r c u i t , do no t a l l ow f o r improvement i n the b a l l m i l l performance due t o rece i v ing rod mi 11 feed. I f the rod m i l 1 feed i s produced w i t h open c i r c u i t crush- ing , apply a 1.2 i n e f f i c i e n c y f a c t o r t o the power c a l - cu la ted f o r t he rod m i l l i n g stage on ly . I f the r o d m i l l feed w i l l c o n s i s t e n t l y be the same size, such as produced w i t h c losed c i r c u i t crushing, do n o t apply a r o d m i l l i n e f f i c i e n c y f a c t o r . The m i l l diameter, low o r h igh r a t i o o f reduct ion , and overs ize feed f a c t o r s should be app l i ed t o the ca l cu la ted g r i n d i n g power.

    GRINDING POWER CALCULATIONS AND GRINDING MILL SELECTIONS

    The f o l l o w i n g demonstrates the use o f the Bond Work Index Method t o . determine the power requ i red t o produce the des i red gr ind . A f t e r the

  • ROD AND BALL MILLS 267

    g r ind ing . power has been determined by t h i s o r o ther methods, t he m i l l ( s ) t h a t w i l l draw the requ i red power can be selected. For f i n a l m i l 1 s i z e recommendations a1 1 the process design data and con t ro l 1 i n g economic and geologic fac tors should be given t o g r i nd ing m i l l manu- fac tu re rs and t h e i r recommendations obtained.

    With the growth o f m i l l s izes and changing economic s i t u a t i o n s new fac- t o r s in f luenc ing g r i nd ing power ca l cu la t i ons and mi 11 s i ze se lec t i on a re becoming known and more w i l l become known. The g r ind ing m i l l man- u f a c t u r e r ' s are a good source f o r t he app l i ca t i on of t h i s con t i nua l l y growing technology i nc lud ing the p r a c t i c a l appl i c a t i o n o f the newer approaches and math model i n g being developed t h r u academic research.

    A. . Rod M i l l s

    F = 18,000 micrometers. P = 1,200 micrometers. Wi = 13.2

    E f f i c j ency Factors: E F ~ does n o t apply.

    EF2 does no t apply.

    EF3 determine a f t e r power ca l cu la t i ons i s completed.

    EF4 Feed s i z e ' i s coarser than 16,000 micrometers.

    EF5 does n o t apply.

    EF6 w i l l no t apply as r a t i o o f reduct ion w i l l be w i t h i n Rro +2.

    Rro determined a f t e r m i l 1 s i ze se lec t ion .

    EF7 does no t apply.

  • 268 MINERAL PROCESSING PLANT.DESIGN

    The rod mi 11 feed w i l l be prepared by closed EF8', . . c i r c u i t crushing a i d the rod m i l l w i l l , b e i t i *. . a r o d m i l l - b a l l m i l l ( o r pebble m i l l ) c i r c u i t ' : .

    w i t h -no in termedia te concent ra t ion stage'-so -no , . EF fac to r need be-'applied.' I f ' i t were j u s t a' ..

    r og m i l 1 i n g c i r c u i t ' o r i f the re were -an i n t e r - mediate concent ra t ion stage between the r o d and. the m i l l . , a 1.2 f a c t o r would apply.

    . , . .

    , , . c * .

    conversion sho r t t0.n t o m e t r i c t o n n e 1.102 . . . . K i l owa t t s . t o horsepower 1.341 .

    . .

    2.83 x 1.06 x 1 . I02 x 1.341 = 4.43 ~ph/metr i 'c ' tonn.e 4.13. x 500 = 221 5 HP - * . - .

    Re fe r r i ng t o Table V two m i l 1 s w i 11 be required. The 'pre- l i m i n a r y r o d m i l l se lec t i on would be a 3.66 meter (12 f o o t ) i n s i d e s h e l l 3.46 meter (1.1.35 f o o t ) diameter i n s i d e new s h e l l 1 iners . Re fe r r i ng t o Table I X the EF3 (Diameter E f f i - c iency) f a c t o r i s 0.931.

    Re fe r r i ng t o Table V the 3.66 m x 4.88.111 rod m i l l w i t h 4.72 m (15.5 f t . ) l ong rods ca l cu la tes t o draw 972"HP. when ca r r y - i n g a 40 percent rod charge. w i t h a worn-in bu lk dens i t y o f 5606 kg per cub ic meter (350 pounds per cub ic f o o t ) . 1031 HP i s required. Therefore, increase m i l l l eng th by 0.3 meters (1 f o o t ) .

    Therefore, use two 3.66 meter .(.I2 f o o t ) diameter i n s i d e s h e l l 3.46 meter (11.35 f o o t ) diameter i n s i d e new,she l l li- mers by 5.18 meter (17.0 f o o t ) l ong over f low rod m i l l s w i t h a 40 percent by m i l l . volume rod charge,wi t h 5.02 meter (16.5 foo t ) long rods.

    The'refore, E F ~ assumption i s confirmed. . .

    These m i l 1 s a re requ i red t o prepare b a l l mi 11 feed.

    With pebble m i l l i n g the pebble p o r t i o n o f the product does n o t go t h r u the rod m i l l thus the r o d m i l l feed r a t e i s r e - duced by 30 'met r ic tonnes per hour (6% o f 500 m e t r i c tonnes pe r hour) .

  • ROD AND BALL MILLS: . '

    Therefore, use two 3.66 meter (12 f o o t ) diameter i n s i d e s h e l l 3.46 meter (11.35 f o o t ) i n s i d e new s h e l l l i n e r by 4.88 meter (16 f o o t ) l ong over f low rod m i l l s w i t h a 40 percent by m i l l volume rod charge w i t h 4.72 meter (15.5 f o o t ) l o n q r o d s .

    . . . . Rr.,= 15.0 . .

    ~ t i k r e f ~ r ~ , ' E F ~ a s i i m p t i ' a n i s a1 so . c 6 f i r . h e d .

  • MINERAL PROCESSING PLANT DESIGN

    f o o t ) over f low b a l l m i l l w i t h a 40 percent by m i l l volume b a l l charge, new she1 1 l i n e r s and 64. mm (2.5") diameter b a l l s draws 1266 HP.

    3.96 x.1.46 =.5:78 meters (18.96 f e e t ) Therefore, use two 4.12 meter (.13.5 f o o t ) diameter i n s i d e s h e l l 3.93 meter (12.9 f o o t ) diameter i n s i d e new l i n e r s by 5.79 meter (19.0 f o o t ) l ong over f low b a l l m i l l s w i t h a 40 percent by volume b a l l charge.

    For lower opera t ing costs, s l i g h t l y b e t t e r e f f i c i e n c y , and b e t t e r m i l 1 a v a i l ab i 1 i t y the cu r ren t p r a c t i c e favors over- f l o w b a l l m i l l s however, t he re are some operators t h a t pre- f e r g ra te d ischarge m i l l s . Re fe r r i ng t o Table V I I a 3.96 meter (13.0 f o o t ) diameter by 3.96 meter (13.0 f o o t ) d ia - phragm b a l l m i l l w i t h a 40 percent by m i l l volume b a l l charge, new s h e l l 1 i n e r s and 50 mm (2" ) diameter b a l l s draws 1311 HP.

    3.96 x 1.41 = 5.58 meters (18.3. f e e t ) , .,

    Therefore, use two 3.96 meter (13.0 f o o t ) diameter i n s i d e s h e l l 3.78 meter (12.4 f o o t ) diameter i n s i d e new l i n e r s by 5.79 meter (19.0 f o o t ) long diaphragm (g ra te ) d ischarge b a l l m i l l s w i t h a 40 percent by volume b a l l charge.

    C. B a l l M i l l s : S ing le Stage-

    The feed t o the standard Bond b a l l m i l l g r i n d a b i l i t y t e s t i s minus 6 mesh. Thus, the coarser f r a c t i o n o f a minus 112" s ing le-s tage b a l l m i l l feed i s n o t inc luded i n the feed t o t he g r i n d a b i l i t y b a l l m i l l . The minus 112" feed t o a stand- a r d Bond r o d m i 11 g r i ndabi 1 i t y t e s t , however, does i nc lude t h e coarse f r a c t i o n o f a s ingle-stage b a l l m i l l feed. To o b t a i n t he complete g r i n d a b i l i t y p r o f i l e (Wi vs s i z e ) o f an o r e when s e l e c t i n g a s ing le-s tage b a l l m i l l , i t i s adv is - ab le t o run both rod and b a l l mi 11 gr indab i 1 i t y t e s t s . If there i s a d i f f e r e n c e i n the work i n d i c e s obtained f rom the r o d m i l l and the b a l l m i l l g r i n d a b i l i t y t es t s , which f requent ly occurs, then, p a r t i c u l a r l y i f the rod m i l l t e s t work index i s h igher, a two-step c a l c u l a t i o n should be made t o determine the requ i red g r i nd ing power. . The rod m i l 1 work

  • ROD AND BALL MILLS 271

    index should be used t o c a l c u l a t e from the p l a n t b a l l m i l l feed s i z e t o 80% passing 2100 microns. The c a l c u l a t i o n from 2100 microns t o the des i red product s i z e i s made us ing the work index from the bal ' l m i l l g r i n d a b i l i t y t e s t . The sum o f these two gives the t o t a l uncorrected power per t on re - qu i red f o r g r ind ing. ,

    F .= 9,400 micrometers. . . P = 175 micrometers. Wi = Rod m i l l t e s t 13.2. Wi = B a l l m i l l t e s t 11.7.

    Step one: w = - 132 - 132 = 1.52'kwhIs. ton

    Q;roO Jm . , Step two: .

    w = - 177 - 117 = 6.'29 kwhls. ton m $ 2

    -

    . T o t a l , .. .

    7.81 kwhls. ton . .

    7:81 x 1.102 x 1.341 x 500 = 5766 HP, uncorrected.

    E f f i c i e n c y Factors:

    EF1 does n o t apply.

    EF2 ' does n o t apply.

    EF3 M i l l s w i l l b e . l a r g e r than 3.81 meter i n . diameter so use 0.914.

    EF4 Feed i s coarser than 4000 micrometers.

    Rr = 9,400 i 175 = 53.7

    Fo = 4,000 -2 = 3970

    . ,

    - EF5, EF i , EF7 and E F ~ do n o t apply.

    5766 x 1.12 x 0.914 = 5903 HP

  • 272 MINERAL PROCESSING PLANT DESIGN

    Use 2 m i l l s

    Per Table V I t he LID should be around 1.25. Re fe r r i ng t o Table V I I a 5.03 meter (16.5 f o o t ) diameter by 4.88 meter (16.0 f o o t ) over f low b a l l m i l l w i t h a 40 percent by m i l l volume b a l l charge, new s h e l l l i n e r s and 64 mm (2.5") d ia - meter b a l l s draws 2370 HP.

    ' . ' .

    4.88 x"1.25 = 8.1 meters ' (20.0 f e e t ) Therefore, use two 5.03 meter (16.5 foo t ) diameter i n s i d e s h e l l 4.85 meter (15.9 f o o t ) diameter i n s i d e new l i n e r s by 6.1 meter (20.0 f o o t ) l ong over f low b a l l m i l l s w i t h a 40 percent by volume b a l l charge.. . .

    Re fe r r i ng t o Table V I I . f o r s i z i n g a g ra te discharge m i l l a 4.72 meter (15.5 f o o t ) di'ameter by 4.57 meter (15.0 f o o t ) g ra te d ischarge b a l l m i l l w i t h a 40 percent by m i l l volume b a l l charge, new she1 1 1 i n e r s and 64 'inn '(2.5") diameter b a l l s draws 2269 HP. . . .

    . : . . . -

    4.57 x 1.3 = 5.94 meters (19.5 f e e t ) Therefore, use two 4.'72'.meter (15.5 foot,) diameter i n s i d e s h e l l 4.54 meter (14.9 f o o t ) , d iameter ' i n s i d e new 1 i n e r s by 6.1. meter (20.0 f o o t ) l ong diaphragm (g ra te ) d ischarge b a l l m i l l w i t h a 40 percen i by volume b a l l charge.

    D. B a l l M i 11 : ~ o l lowing ~ u t b ~ e n o " s br s e m i - ~ u t o ~ e n o u s pr imary M i l l . . . . ,

    . / . ..

    If the product s i z e from the pr imary autogenous o r semi-auto- genous m i l l i s the same' as from a rod m i l 1, the b a l l m i l 1 c a l c u l a t i o n and s i z e s e l e c t i o n i s the same as covered under sec t i on B above. I f the b a l l m i l l feed s i z e i s d i f f e r e n t f rom t h i s , t he same procedure as covered by e i t h e r sec t i on B o r C (whichever app l i es ) should be used t o determine g r i nd - i n g power, and b a l l m i l l s i z e .select ion.

  • ' ROD AND BALL MILLS

    E. - Pebble M i l l : Rod ~ i l l ' p e b b l e M i l l C i r c u i t

    The c a l c u l a t i o n for . .determining g r i nd ing power f o r Pebble m i l 1 i n g (secondary autogenous) can be the same as f o r b a l l m i l l i n g f rom r o d m i l l product s i z e t o the des i red spec i f i ed s ize, neg lec t i ng the diameter e f f i c i e n c y f a c t o r i f less than

    I . 1.0.

    5.47 x 1.102 x 1.341 x 500 = 4039 HP

    To t h i s add the power requ i red t o wear the pebbles down t o .rod .mi l 1 product s i z e (pebble m i l l feed ' s i ze ) .

    F = 70,000 micrometers. P = 1,200 micrometers. Wi = 13.2

    The i n e f f i c i e n c y f a c t o r t o a l l ow f o r the i n e f f i c i e n t use o f power i n wearing down from pebble s i z e t o rod m i l l product

    I s i z e i s 2.0.

    Se lec t two 2200 HP pebble m i l l s . For s p e c i f i c s i z i n g r e f e r t o m i l l 'manufacturers f o r recommendations as they have pro- p r i e t a r y equations fo r c a l c u l a t i n g mi 11 power draw tak ing i n t o account the var ious ore media and pu lp f a c t o r s involved.

    F. Regrind B a l l M i l l

    F = 210 micrometers. ' ' P = 45 micrometers. Wi = 14.0

    E f f i c i e n c y Factors:

    EF1 does n o t apply.

  • MINERAL PROCESSING PLANT DESIGN

    EF Many r e g r i n d operat ions a re c losed c i r c u i t , bu t assume t h i s one i s open c i r c u i t and 80. percent passing g r i n d w i l l be the c o n t r o l l i n g p o i n t . Re- f e r t o Table V I I I . The EF2 f a c t o r i s 1.2.

    EF3 Because b a l l s w i l l be smal ler than 40 mm (1.5") . and o the r minor f a c t o r s neg lec t EF unless m i l l

    diameter i s l e s s than 2.44 meter (3.0 ' ) diameter i n s i d e l i n e r s .

    EF4 does n o t apply.

    E F ~ Gr ind i s 80 percent passing 45 micrometers.

    EF6 does n o t apply.

    EF7 Rr = 210 + 45 .= 4.67 which i s l ess than 6;

    EF8 does n o t apply.

    Re fe r r i ng t o Table V I the L I D can be between 1.75 and 2.0 o r even greater . Re fe r r i ng t o Table V I I a 3.05 meter (10 f o o t ) by 3.05 meter (10 f o o t ) over f low b a l l m i l l w i t h a 40 percent by mi 11 volume b a l l charge, new 1 i n e r s and 50 mm (2 " ) b a l l s draws 491 HP. Using equat ion 5 there w i l l be a l oss o f 0.55 Kw (0.74 Hp) per me t r i c tonnes o f b a l l s .

    3.05 x 1.91 = 5.83 meters (19.1 f e e t ) Therefore, use one 3.05 meter (10.0 f o o t ) diameter i n s i d e s h e l l 2.89 meter (9.5 f o o t ) diameter i n s i d e new l i n e r s by 5.79 meter (19.0 foo t ) l ong overf low b a l l m i l l w i t h a 40 percent by volume b a l l charge. For rubber l i n e r s add 10% o r 0.58 meters (approximately 2 ' f ee t ) t o the length .

  • G. Motor Se lec t i on

    I n a l l cases the m i l l s should be d r i ven by a l a rge enough motor t o a l l ow the m i l l t o operate w i t h a 45 percent by mi 11 volume charge w i t h new l i n e r s and a t l e a s t a 36 percent charge w i t h worn l i n e r s . It may be des i red t o u t i l i z e more o f the a v a i l a b l e m i l l volume as the l i n e r s wear so a h igher charge can be spec i f i ed f o r worn l i n e r s . Spec i f i ca t i ons can a l so c a l l f o r the d r i v e and motor t o be ra ted t o a l l ow using p in ions w i t h one l ess and two more teeth, thus a l l ow ing f o r changing mi 11 speed if it i s found necessary t o balance c i r - c u i t , increase capaci ty, s u i t changing ore cha rac te r i s t i cs , e t c .

    SELECTION OF GRINDING MEDIA SIZES AND ESTIMATING STEEL CONSUMPTION

    The equat ion f o r se lec t i on o f the l a r g e s t diameter rod f o r the i n i t i a l charge and f o r t he make-up charge i s :

    R = Diameter o f rod i n m i l l ime te rs . F = Feed s i ze 80% passes i n microns. W . = Work Index. S' = S p e c i f i c Grav i ty . C: = C r i t i c a l Speed. D = Diameter i n s i d e she l l l i n e r s i n meters.

    With R i n inches and diameter (D) i n f e e t equation 17 becomes:

    Table X g ives t h e e q u i l i b r i u m s ta r t -up rod charge f o r t op rod s izes from 125 mm ( 5 " ) t o 65 mn (2.5") . The equation fo r s e l e c t i o n of the l a r g e s t diameter b a l l f o r the i n i - t i a l charge and f o r t he make-up charge i s :

    B = (18)

    - J B = Diameter o f b a l l i n m i l l ime te rs .

    NOTE: Except f o r K which i s g iven below a l l o ther terms the same as f o r equation 17.

  • 276 MINERAL. PROCESS.ING PLANT DESIGN

    TABLE X .

    START-UP EQUILIBRJA GRINDING ROO CHARGES, PERCENT WEIGHT . ,

    Make-Up Rods ~ e d Sizes , MM= R 125 . 115 100 90 75 65

    T,OTAL Pct 100 100 100 100 100 ' 100 . .

    TABLE X I

    Make-Up B a l l s Fed

    Sizes, MM= B

    115 (4.5") 100 (4.0") 90 (3.5") 75 (3.0") 65 (2.5") 50 (2.0") 40 (1.5") 25 (1.0")

    TOTAL PC. 100.0, 100.0 100.0 100 100. 100 100

  • " ROD AND BALL MILLS

    .Ba l l . Mi11 K Factor '

    M i l l Type and . .

    Steel o r Gr ind ing C i r c u i t . C.1: B a l l s

    K

    ' Wet-Overf 1 ow-Open C i r c u i t Wet-Overfl ow-Closed C i r c u i t Wet-Diaphragm-Open C i r c u i t .

    . .

    Wet-Diaphragm-Closed.Circui t Dry-Diaphragm-Open C i r c u i t Dry-Diaphragm-Cl osed C i r c u i t

    Wi th B i n inches and diameter .(D) . i n f e e t equat ion 18 becomes:

    Table X I g ives . the e q u i l i b r i u m s ta r t -up b a l l charge f o r t o p + b a l l s izes f rom 115 mm (4.5"). t o 40 mm (1.5"). These two equations g i ve the l a r g e s t diameter o f the g r i nd ing media requi'red. Since the ca l cu la ted s i z e i s n o t always an a v a i l a b l e stand- a r d s i z e s e l e c t t he nearest l a r g e r s i z e ava i l ab le . Actual opera t ing experience may d i c t a t e a change from the ca l cu la ted s ize . Theoret ic- a l l y i t i s always adv isab le t o use a graded charge as a replacement charge. Using a graded charge o f ten i s no t p r a c t i c a l . The l oss i n e f f i c i e n c y by n o t us ing a graded charge genera l ly can n o t be measured. I n some cases, i t i s on l y necessary t o add the l a r g e s t s i z e media c a l - c u l a t e d as make-up. Operating r e s u l t s w i l l i n d i c a t e the necess i ty o f us ing more than one s i z e of media i n the make-up charge.

    The bes t f i g u r e s f o r media and l i n e r consumption come from ac tua l oper- a t i n g experience and as opera t ing data i s generated t h i s should be used t o e s t a b l i s h wear ra tes .

    Actual t e s t i n g i n l abo ra to ry scale equipment t o determine the abrasion c h a r a c t e r i s t i c s o f an ore i s d i f f i c u l t , and a v a i l a b l e t e s t s are guides f o r es t imat ing purposes b u t a re n o t completely accurate. One abrasion t e s t measures the weight l oss o f a s tee l paddle cont inuous ly impact ing f a l l i n g ore p a r t i c l e s f o r a prescr ibed t ime per iod under standard con- d . i t ions . From t h i s i s developed a measurement c a l l e d an abrasion In - dex, A i . From p l a n t data, emperical equations c o r r e l a t i n g w i t h A i : were developed t o be used t o est imate rod, b a l l , m i l l 1 i n e r and crusher 1 i n e r wear ra tes . . These equations are:

    Wet Rod M i l l s : Rods, kg/Kwh = 0.175 ( A i - 0.020)'2

  • MINERAL PROCESSING PLANT DESIGN

    L iners , kglKwh = 0.175 ( A i - 0 . 0 1 5 ) ' ~ (20 Wet B a l l M i l l s :

    Ba l l s , kg/Kwh = 0.175 (A i - 0.015) 113 (21 ) L iners , kg/Kwh = 0.013 ( A i - 0 . 0 1 5 ) ' ~ (22

    M u l t i p l y equations 19, 20, 21 and 22 by 2.2 t o get pounds per k i l o w a t t .

    These formulas g i ve est imates o f wear r a t e s which can be used as a guide. They a re sub jec t t o such th ings as m i l l speeds, percent vo lu- m e t r i c loading, a l l o y o f g r i nd ing media and l i n e r s , opera t ing prac- t i c e s , e t c .

    The re ference in format ion used t o prepare t h i s was:

    Bond F. C.

    Rowland C. A. "Gr inding Ca lcu la t ions Re,lated t o the Appl i- c a t i o n o f Large Rod and B a l l M i l l s " , A l l i s - Chalmers Pub l i ca t i on 22P4704.

    Bond F. C. "Gr inding B a l l Size.Select ion", Mining Engi- nee r i ng . May, 1958. . .

    Rowland C. A. "App l i ca t i on o f Dry Gr inding Rod M i l l s " , & Nealey R. C. Transact ions o f Society o f Mining Engineers

    o f A.I.M.E.