Author
trinhmien
View
214
Download
0
Embed Size (px)
Cellular Respiration
Chapter 5 Notes
Some Terms to Know
Aerobic = WITH oxygen
Anaerobic = withOUT oxygen
NAD+ electron carrier = NADH
FAD electron carrier = FADH2
Cellular Respiration a way for cells to make
energy when oxygen is present
Fermentation a way for cells to make energy
when oxygen is not present
Cellular Respiration Overview
Transformation of chemical energy in food into
energy cells can use in the form of ATP
Overall Reaction:
C6H12O6 + 6O2 6CO2 + 6H2O + ATP (energy)
Decomposition Reactionwhy?
Hydrolysis
When water is
inserted into a
bond to break it!
Most biological
decomposition
reactions involve
hydrolysis
http://images.google.com/imgres?imgurl=http://www.clker.com/cliparts/6/8/9/3/1195429510337449011tomas_arad_water_drop.svg.hi.png&imgrefurl=http://www.clker.com/clipart-10571.html&usg=__YzlMJB45W9o4KbjqXBZdMTjnwoA=&h=592&w=402&sz=69&hl=en&start=19&um=1&tbnid=Sa2VUNlYxQHBpM:&tbnh=135&tbnw=92&prev=/images%3Fq%3Dwater%2Bdroplet%2Banimation%26hl%3Den%26safe%3Dactive%26sa%3DN%26um%3D1
Cellular Respiration in 3 Stages
Glycolysis in cytoplasm of cell
Krebs Cycle in the mitochondrial matrix
Electron Transport Chain after the Krebs Cycle
and in the cristae (membranes) of mitochondria
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=TocHzTYqfMMCoM&tbnid=S5Ct_cnbMNkebM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.dreamstime.com%2Froyalty-free-stock-images-mitochondria-image14218389&ei=o5zzUrCrGIHWkQeluICwBw&bvm=bv.60799247,d.aWc&psig=AFQjCNH2xo0DrPw9s2_aWdp1C-0xP4iA4A&ust=1391783452264008
Cellular Respiration Overview
Breakdown of glucose begins in the cytoplasm
Then energy is made in one of two pathways
Anaerobic cellular respiration (aka fermentation)
Aerobic cellular respiration
Diagram of the Reaction
C.R. Reactions
Glycolysis Requires 2 ATP molecules
- Occurs in cytoplasm of all cells
Series of reactions that break glucose molecule down
into two 3-carbon molecules called pyruvate (aka
pyruvic acid)
Gains 2 ATP molecules for every one glucose
molecule broken down
Gains 2 NADH per glucose molecule
All organisms from simple bacteria to humans perform
it the same way
Glycolysis Reaction
Glycolysis Reaction Cont.
Anaerobic Cellular Respiration /Fermentation
Some organisms thrive in environments with little or no oxygen
Marshes, bogs, gut of animals, sewage treatment ponds
No oxygen used= anaerobic
Results in no more ATP after glycolysis, final steps in these
pathways serve ONLY to regenerate NAD+ so it can return to pick up
more electrons and hydrogens in glycolysis.
Occurs in cytoplasm
End products such as ethanol and CO2 (single cell fungi (yeast) in
beer/bread) or lactic acid (muscle cells)
Aerobic Cellular Respiration
Oxygen required=aerobic
2 more sets of reactions that occur in the
mitochondria
1. Krebs Cycle
2. Electron Transport Chain
Krebs Cycle
Completes the breakdown of glucose
Takes the pyruvate (3-carbons) and breaks it down.
The carbon and oxygen atoms end up in CO2 and H2O
Hydrogens and electrons are stripped from the
pyruvates and loaded onto NAD+ and FAD to produce
NADH and FADH2 (reduction).
Only 2 more ATP are made but loads of NADH
and FADH2 with H+ and electrons, which move to
the 3rd stageETC
http://highered.mcgraw-
hill.com/sites/0072507470/stude
nt_view0/chapter25/animation_
_how_the_krebs_cycle_works__
quiz_1_.html
http://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter25/animation__how_the_krebs_cycle_works__quiz_1_.htmlhttp://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter25/animation__how_the_krebs_cycle_works__quiz_1_.htmlhttp://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter25/animation__how_the_krebs_cycle_works__quiz_1_.htmlhttp://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter25/animation__how_the_krebs_cycle_works__quiz_1_.htmlhttp://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter25/animation__how_the_krebs_cycle_works__quiz_1_.htmlhttp://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter25/animation__how_the_krebs_cycle_works__quiz_1_.html
//upload.wikimedia.org/wikipedia/commons/0/0b/Citric_acid_cycle_with_aconitate_2.svg
Electron Transport Chain
Electron carriers are loaded with electrons and
protons from the Krebs cycle and move to this
chain-like a series of steps (staircase).
As electrons drop down stairs, energy released
to form a total of 34 ATP
Oxygen waits at bottom of staircase, picks up
electrons and protons and in doing so becomes
water
Electron Carriers
NAD + electrons = NADH
FAD + electrons = FADH2
NADH is worth 3 ATP in the ETC
FADH2 is worth 2 ATP in the ETC
Energy Tally
38 ATP for aerobic vs. 2 ATP for anaerobic
Glycolysis 2 ATP
Krebs 2 ATP
Electron Transport 34 ATP
38 ATP
Anaerobic organisms cant be too energetic but are important for global recycling of carbon
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=xN-RE4SBDXPdPM&tbnid=saM1oRMl4fp33M:&ved=0CAUQjRw&url=http://www.personal.psu.edu/smh5089/blogs/henning/technical-description.html&ei=bZryUsizDZWksQT81IDoCQ&bvm=bv.60799247,d.aWc&psig=AFQjCNHtbfmHqKt8oeqaej2rkfOm7KlZVg&ust=1391717339807238
http://www.brookscole.com/chemistry_d/templ
ates/student_resources/shared_resources/animat
ions/oxidative/oxidativephosphorylation.html
http://www.wiley.com/legacy/college/boyer/04
70003790/animations/electron_transport/electr
on_transport.htm
Cellular Respiration - heat
Cell Resp. releases some
energy as heat which help
keep our internal temps
constant.
Brown fat- more
mitochondria so faster CR
and more heat = important
for hibernating animals and
infants
Cellular Resp-heat production in
plants Some plants produce
enough heat energy
so that organic
compounds break
down, causing an
odor. Insects flock to
the odor plant gets
pollinated
Mitochondrial Disease
Diseases of the mitochondria appear to
cause the most damage to cells of the
brain, heart, liver, skeletal muscles, kidney
and the endocrine and respiratory
systems. http://www.umdf.org/site/pp.aspx?c=8qKOJ0MvF7LUG&b=7934629
http://www.umdf.org/site/pp.aspx?c=8qKOJ0MvF7LUG&b=7934629
More Mitochondrial Functions
Non-ATP-related functions are intimately involved with most of the
major metabolic pathways used by a cell to build, break down, and
recycle its molecular building blocks. Cells cannot even make the
RNA and DNA they need to grow and function without mitochondria.
The building blocks of RNA and DNA are purines and pyrimidines.
Mitochondria contain the rate-limiting enzymes for pyrimidine
biosynthesis (dihydroorotate dehydrogenase) and heme synthesis
(d-amino levulinic acid synthetase) required to make hemoglobin. In
the liver, mitochondria are specialized to detoxify ammonia in the
urea cycle. Mitochondria are also required for cholesterol
metabolism, for estrogen and testosterone synthesis, for
neurotransmitter metabolism, and for free radical production and
detoxification. They do all this in addition to breaking down
(oxidizing) the fat, protein, and carbohydrates we eat and drink.
Facultative aerobes - Can survive for
longs periods of
time with or without
oxygen
They switch back
and forth between
cell resp &
fermentation
depending on the
availability of
oxygen
Ex: staph/ecoli
Obligate Anaerobes-
Does not require
oxygen and only lives
in an anaerobic env.
Use fermentation/
anaerobic respiration
to yield energy
Much less ATP is
made this way
EX: Clostridium
bacteria
Obligate Aerobes-
REQUIRE oxygen
for respiration or
they wont live
Yield much more
energy than
obligate
anaerobes
EX: plants,
animals
Nutrient Cycles
Biogeochemical cycles
Chemicals are limited, those essential for
life must be recycled.
Elements move through a global cycle
(carbon dioxide, oxygen, and nitrogen)
Phosphorous and sulfur dont move much
stick around in the soil.
Carbon Cycle, Nitrogen Cycle, Water cycle
The Carbon Connection
Photosynthesis uses it (all photosynthetic
organisms)
CR creates it (so, all living things)
Cars, factories, appliances emit it
Decaying organic matter releases it
Adds to global warming
OhhhhCarbon
Carbon is the backbone of life on Earth. We are made of
carbon, we eat carbon, and our civilizationsour
economies, our homes, our means of transportare
built on carbon. We need carbon, but that need is also
entwined with one of the most serious problems facing
us today: global climate change.
Carbon is the fourth most abundant element in the
Universe. Most of Earths carbonabout 65,500 billion
metric tonsis stored in rocks. The rest is in the ocean,
atmosphere, plants, soil, and fossil fuels
http://www.google.com/url?sa=i&rct=j&q=label+the+carbon+cycle&source=images&cd=&cad=rja&docid=sv-fkAQg9v3esM&tbnid=CVE5aqzHecHkPM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.sciencelearn.org.nz%2FContexts%2FThe-Ocean-in-Action%2FSci-Media%2FAnimations-and-Interactives%2FCarbon-cycle&ei=pCQIUbPEI4br0QHAl4DoAg&bvm=bv.41524429,d.dmQ&psig=AFQjCNGiy_nmGQhh8-qrj5eanfzHl__CxA&ust=1359574565039202
Your carbon footprint?
Carbon Credits
http://www.google.com/url?sa=i&rct=j&q=how+do+carbon+credits+work%3F&source=images&cd=&cad=rja&docid=6FexCPGSyd5gEM&tbnid=8HJvsrbFNgceAM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.greenbrideguide.com%2Fcarbonfree-carbonfundorg&ei=szcIUcW8L7K40AHQqoGIAw&psig=AFQjCNELOQIVVanjUesG8gRSWSuai8N4cA&ust=1359579444332858http://www.google.com/url?sa=i&rct=j&q=how+do+carbon+credits+work%3F&source=images&cd=&cad=rja&docid=SV2ILaOcnYv-ZM&tbnid=HNn_xA4YElb-UM:&ved=0CAUQjRw&url=http%3A%2F%2Funambig.com%2Fcarbon-credits-chosen-over-kids-in-b-c%2F&ei=szcIUcW8L7K40AHQqoGIAw&psig=AFQjCNELOQIVVanjUesG8gRSWSuai8N4cA&ust=1359579444332858