29
4/28/14 1 Evaporator Mohd Sobri Takriff Dept. of Chemical & Process Engineering UniversiE Kebangsaan Malaysia EvaporaEon A special case of heat transfer, where a phase change takes place. Concentrate a soluEon consisEng of a nonvolaEle solute and a volaEle solvent – Why?? The volaEle solute evaporates leaving a more concentrated soluEon. Example: removal of water from fruit juice, removal of water from dairy product,

Case Study No 3Case Study No 3 - Multistage Evaporator

Embed Size (px)

Citation preview

Page 1: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

1  

Evaporator  

Mohd  Sobri  Takriff  Dept.  of  Chemical  &  Process  

Engineering  UniversiE  Kebangsaan  Malaysia  

EvaporaEon  

•  A  special  case  of  heat  transfer,  where  a  phase  change  takes  place.    

•  Concentrate  a  soluEon  consisEng  of  a  nonvolaEle  solute  and  a  volaEle  solvent  –  Why??  

•  The  volaEle  solute  evaporates  leaving  a  more  concentrated  soluEon.  

•  Example:  removal  of  water  from  fruit  juice,  removal  of  water  from  dairy  product,  

Page 2: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

2  

Evaporators  

•  a  unit  operaEon  that  is  used  extensively  in  processing  foods,  chemicals,  pharmaceuEcals,  fruit  juices,  dairy  products,  paper  and  pulp,  and  both  malt  and  grain  beverages.    

•  a  unit  operaEon  which,  with  the  possible  excepEon  of  disEllaEon,  is  the  most  energy  intensive  

Evaporators  

•  Evaporators  are  used  to  separate  materials  based  on  differences  in  their  boiling  temperatures.  

•  Its  purpose  is  to  concentrate  nonvolaEle  solutes  such  as  organic  compounds,  inorganic  salts,  acids  or  bases.    

•  Examples  of    solutes  are  phosphoric  acid,  causEc  soda,  sodium  chloride,  sodium  sulfate,  gelaEn,  syrups  and  urea.  

4/28/14 4

Page 3: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

3  

Why  EvaporaEon  •  Reduces  transportaEon  cost  •  Storage  costs    •  Prepare  for  the  next  Unit  operaEon  –  

drying,    crystallisaEon  etc.  •  Reduces  deterioraEve  chemical  reacEons    •  BeVer  microbiological  stability    •  Recovery  of  solvent  

vaporization

energy in 2260 kJ

fusion

energy in 334 kJ

condensation

energy out 2260 kJ

solidification

energy out 334 kJ

steam (1 kg)

water (1 kg)

ice (1 kg)

Summary: Change of State

Page 4: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

4  

ice

Liquid water

steam

Water temperature with heating

-100

-50

0

50

100

150

200

0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06

heat input (J/kg)

tem

pera

ture

(C)

Heating Curve for Water

Water boils

Ice melts

Heat of Fusion •  When the phase change is from solid to

liquid, the sample must absorb heat; when the phase change is from a liquid to solid, the sample must release heat.

•  The heat of transformation for these phase changes is called the heat of fusion, λf.

•  Water: λf = 334 J/g = 79.5 cal/g

q =m ⋅λf

Page 5: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

5  

Heat of Vaporization •  To vaporize a liquid means to change it from the liquid

state to the vapor or gas state. This process requires energy because the molecules must be freed from the liquid state.

•  Condensing a gas to a liquid is the reverse of vaporizing; it requires that energy be removed from the gas so that the molecules can cluster together instead of flying away from each other.

•  The heat of transformation for these phase changes is called the heat of vaporization, λv.

•  Water: λv = 2256 J/g = 539 cal/g

q =m ⋅λv

Page 6: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

6  

Heat  Transfer  Terminology  •  Sensible  heat  

– Sensible  heat  is  heat  exchanged  by  a  body  or  thermodynamic  system  that  has  as  its  sole  effect  a  change  of  temperature  

•  Latent  heat  – The  quanEty  of  heat  absorbed  or  released  by  a  substance  undergoing  a  change  of  state,  such  as  ice  changing  to  water  or  water  to  steam,  at  constant  temperature  and  pressure  

qsensible =m•

cPΔT

qlatent =m•

λ

Evaporators  Terminology  •  SINGLE-­‐EFFECT  EVAPORATION  Single-­‐effect  evaporaEon  occurs  when  a  dilute  soluEon  is  contacted  only  once  with  a  heat  source  to  produce  a  concentrated  soluEon  and  an  essenEally  pure  water  /  solvent  vapor  discharge.    

•  MULTIPLE-­‐EFFECT  E  APORATION  MulEple-­‐effect  evaporaEons  use  the  vapor  generated  in  one  effect  as  the  energy  source  to  an  adjacent  effect.  Double-­‐  and  triple-­‐effect  evaporators  are  the  most  common;  however,  six-­‐effect  evaporaEon  can  be  found  in  the  paper  industry,    

Page 7: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

7  

Evaporators  Terminology  •  BOILING-­‐POINT  ELEVATION  (BPE)  -­‐  expresses  the  difference  between  the  boiling  point  of  a  constant  composiEon  soluEon  and  the  boiling  point  of  pure  water  at  the  same  pressure.    

•  Use  Dühring  plot  to  determine  the  boiling  point  of  the  soluEon  at  various  concentraEon    

•  For  example,  pure  water  boils  at  212°F  (100°C)  at  1  atmosphere,  and  a  35%  sodium  hydroxide  soluEon  boils  at  about  250°F  (121°C)  at  1  atmosphere.  

Dühring  plot    

Page 8: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

8  

Evaporators  Terminology  •  CAPACITY  The  capacity  for  an  evaporator  is  measured  in  

terms  of  its  evaporaEng  capability,  i.e.  Kg    of  vapor  produced  per  unit  Eme.  The  steam  requirements  for  an  evaporaEng  train  may  be  determined  by  dividing  the  capacity  by  the  economy.    

•  ECONOMY  This  term  is  a  measure  of  steam  use  and  is  expressed  in  pounds  of  vapor  produced  per  pound  of  steam  supplied  to  the  evaporator  train.    –  For  a  well-­‐  designed  evaporator  system  the  economy  will  be  about  

10%  less  than  the  number  of  effects;  thus,  for  a  triple-­‐effect  evaporator  the  economy  will  be  roughly  2.7.    

Falling  Film  Evaporator  

Page 9: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

9  

Forced  CirculaEon  Evaporator  

Single  Effect  Evaporator  

•  Single-­‐effect  evaporaEon  occurs  when  a  dilute  soluEon  is  contacted  only  once  with  a  heat  source  to  produce  a  concentrated  soluEon  and  an  essenEally  pure  water  /  solvent  vapor  discharge  

•  Heat  source  is  supplied  by  suitable  heaEng  media  

Page 10: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

10  

Evaporator  

Single  Effect  Evaporator  

Page 11: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

11  

Single  Effect  Evaporator  

Falling  Film  Evaporator  

Forced  CirculaEon  Evaporator  

Agitated  Film  Evaporator  

Single  Effect  Evaporator  

mS

mC

mV

mF

, xF

m•

, x

Page 12: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

12  

mS

mC

mV

mF

, xF

m•

, x

mF =mass flow rate of feedxF = solid/solute fraction in feed streamHF = enthalpy of feed stream•

mV =mass flow rate of vaporHV = enthalpy of vapor stream•

m =mass flow rate of productx = solid/solute fraction in product streamH = enthalpy of product stream•

mS =mass flow rate of steamHS = enthalpy of steam•

mC =mass flow rate of condensateHC = enthalpy of condenstae

Mass  balance  for  heaEng  media  

Mass  balance  for  process  fluids  

mS =•

mC

mF =•

m+•

mV

Mass  Balance  for  single  effect  evaporator  

mS

mC

mV

mF

, xF

m•

, x

mF =mass flow rate of feedxF = solid/solute fraction in feed streamHF = enthalpy of feed stream•

mV =mass flow rate of vaporHV = enthalpy of vapor stream•

m =mass flow rate of productx = solid/solute fraction in product streamH = enthalpy of product stream•

mS =mass flow rate of steamHS = enthalpy of steam•

mC =mass flow rate of condensateHC = enthalpy of condensateλS = latent heat of vaporization of steamqS = rate of heat transfer through heating mediaq = rate of heat transfer from heating surface to liquid

Energy  balance  for  the  heaEng  media  qS =m

S HS −HC( ) =m•

S λ S

Energy  balance  for  fluid  

q =m•

H +m•

V HV −m•

F H F

In  the  absence  of  heat  loss:  

qS = q

m•

S λ S=m•

H + mF

−m•"

#$

%&'HV −m

F H F

Energy  Balance  for  single  effect  evaporator  

m•

S λ S=m•

H −HV( )+m•

F H −H F( )

Page 13: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

13  

Example  1  

A   single   effect   evaporator   is   to   concentrate     20,000  lbh-­‐1   (9700   kgh-­‐1)   of   a   20%   soluEon   of   sodium  hydroxide   to   50%   solids.   The   gauge   pressure   of   the  steam  is  to  be  20  psi  and  the  absolute  pressure   in  the  vapor  space  is  to  be  100  mm  Hg.  The  overall  coefficient  is  esEmated  to  be  250  btun-­‐2h-­‐1oF-­‐1  (1400  Wm-­‐2oC-­‐1.  The  feed   temperature   is   100oF     (37.38oC).   Calculate   the  amount   of   steam   consumed,   the   economy   and   the  heaEng  surface  required.  

Example  1    SoluEon  Basis  1  lb  NaOH  Feed:  (80/20)=    4  lb  of  water  per  lb  of  NaOH  Product:  (50/50)=  1.0  lb  of  water  per  lb  of  NaOH  Water  evaporated:  (4-­‐1.0)*20000lb/hr*0.20  

           =8000  lb/hr  à  capacity  

Page 14: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

14  

Example  1  (Ref:  Unit  OperaEon  in  Chemical  Engineering,  McCabe,  Smith  &  Harriot)  

Steam  consumpEon:  •  Boiling  Point  ElevaEon  

–  Boiling  point  of  water  at  100mmHg  =  124oF  (App.  7)  –  Boiling  point  of  50%  soluEon  =  197oF  (figure  16.3)  –  BPE  =  BP50%NAOH  –  BPwater=  73oF  

•  Enthalpy  of  feed  and  thick  liquor  –  Feed  20%  solids,  100oF:  Hf=  55  btu/lb  (fig  16.6)  –  Thick  liquid  50%  solids  at  197oF:  H=221  btu/lb  

Example  1  

•  Enthalpy  of  vapor  leaving  evaporator,  Hv  –  Enthalpy  of  saturated  steam  at  197oF=1149  Btu/lb  (App.  7)  –  Heat  capacity  of  vapor  at  197oF  =  0.45  btu/lboF  (App.  14)  –  Hv=  1149  btu/lb  +  (0.45  btu/lboF)  (73oF)=  1,149  btu/lb  

•  Latent  heat  of  vaporizaEon  –  At  20  psi:  λs=939  btu/lb  (App7)  

Page 15: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

15  

Example  1    •  Heat  transfer        

q = mf −m( )Hv +mH −mfH f

= 20000lbh−1 −8000lbh−1( )(1149btulb−1)+ 8000lbh−1( ) 221btulb−1( )− 20000lbh−1( ) 55btulb−1( )=14, 446, 000btuh−1

m•

s =14, 456, 000btuh−1

939btulb−1=15, 400lbh−1

•  Steam  consumpEon:      

q =msλs = mf −m( )Hv +mH −mfH f

Example  1    •  Economy  

–  pounds  of  vapor  produced  per  pound  of  steam  supplied  

     

economy = 12,000lbh−1

15, 400lb−1= 0.78

q =UAΔT

A = qUΔT

A = 14, 456, 000btuh−1

250btuft−1 oF−1h−1( ) 259−197( ) oF= 930 ft2

•  HeaEng  Surface:      

Page 16: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

16  

Example  2  A   single   effect   evaporator   is   required   to   concentrate   a  soluEon  from  10%  solids  to  30%  solids  at  the  rate  of  250  kg  of  feed  per  hour.  If  the  pressure  in  the  evaporator  is  77kPa  absolute   and   if   the   steam   is   available   at   200   kPa   gauge,  calculate  the  steam  required  per  hour    and  the  area  of  heat  transfer   surface   if   the   overall   heat   transfer   coefficient   is  1700  Jm-­‐2s-­‐1oC-­‐1.  Assume  that  the  temperature  of  the  feed  is  10oC  and  the  boiling  point  of  the  soluEon  under  pressure  of  77kPa  absolute   is  91oC.  Assume  also   that   the  specific  heat  of   the   soluEon   is   the   same   as   water   that   is  4.186x103Jkg-­‐1oC-­‐1,   and   the   latent   heat   of   vaporizaEon   of  the  soluEon   is   the  same  as  that   for  water  under  the  same  condiEons.  

MulEple-­‐effect  Evaporator  •  Water  /  solvent  is  boiled  in  a  sequence  of  vessels,  each  held  at  a  lower  pressure  than  the  last.    

 •  Because  the  boiling  point  of  water  /  solvent  decreases  as  pressure  decreases,  the  vapor  boiled  off  in  one  vessel  can  be  used  to  heat  the  next  

 •  Generally  the  first  vessel  (at  the  highest  pressure)  requires  an  external  source  of  heat    

Page 17: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

17  

MulE  Effect  Evaporator  

MulEple  Effect  Evaporator  

Page 18: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

18  

MulEple  Effect  Evaporator  

MulEple  Effect  Evaporator  

Forward  feed   Backward  feed  

Page 19: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

19  

MulEple  Effect  Evaporator  

Mixed  feed   Parallel  feed  

MulEple  Effect  Evaporator  

Page 20: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

20  

MulE-­‐Effect  Evaporator  First  Effect  

q1 = A1U1ΔT1

Second  Effect  

q2 = A2U2ΔT2

q1  and  q2  are  nearly  equal,  all  the  heat  that  is  required  to  create  the  vapor  in  the  first  effect  must  be    given  up  when  the  same  vapor  condenses  in  the  second  effect  

A1U1ΔT1 = A2U2ΔT2

Same  argument  may  be  extended  for  addiEonal  effects  

A1U1ΔT1 = A2U2ΔT2 = ......... = AnUnΔTn

MulEple-­‐Effect  Evaporator  

q1 = A1U1ΔT1q2 = A2U2ΔT2q3 = A3U3ΔT3

Consider  triple  effects  evaporator  

Total  capacity  is  proporEonal  to  total  rate  of  heat  transfer  

q1 + q2 + q3 = A1U1ΔT1 + A2U2ΔT2 + A3U3ΔT3

qT = AU ΔT1 +ΔT2 +ΔT3( ) =UAΔT

Page 21: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

21  

Example  4  

EsEmate   the   requirement   of   steam,   heat   transfer  surface  ad  the  evaporaEng  temperature   in  each  effect  for   a   triple   evaporator,   evaporaEng   500   kgh-­‐1   of   10%  soluEon   up   to   a   30%   soluEon.   Steam   is   available   at  200kPa   gauge   and   the   pressure   is   the   evaporaEon  space   in   the   final   effect   is   60kPa.   Assume   that   the  overall   heat   transfer   coefficient   are   2270,   2000   and  1420Jm-­‐2s-­‐1oC-­‐1   in   the   first,   second   and   third   effects,  respecEvely.  Neglect   sensible  heat.  Assume  no  boiling  point   elevaEon   and   also   equal   heat     transfer   in   each  effect.  

Example  4  

Mass  balance  

Item   Solid  (kgh-­‐1)   Liquid  (kgh-­‐1)   Total  (kgh-­‐1)    

Feed   50   450   500  

Product   50   117   167  

EvaporaEon   333  

Page 22: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

22  

Example  4  Energy  balance:  From  steam  table  the  temperature  of  steam  at  200  kPa  gauge  (300  kPa  absolute)  is    134oC  and  latent  heat  of  2164  kJkg-­‐1.  EvaporaEng  temperature    at  the  final  effect    under  60kPa  absolute  is    86oC    and  since  there  is  no  BPE  the  latent  heat  is  2294  kJkg-­‐1.  

Equal  heat  transfer  rate  in  each  effect  

q1 = q2 = q3U1A1ΔT1 =U2A2ΔT2 =U3A3ΔT3and

ΔT1 +ΔT2 +ΔT3 = (134oC −86oC) = 48oC

Example  4  Assuming:    

Then  

A1 = A2 = A3

ΔT2 =U1ΔT1U2

ΔT3 =U1ΔT1U3

Page 23: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

23  

Example  4  

ΔT1 1+2270Jm−2s−1 oC−1

2210Jm−2s−1 oC−1 +2270Jm−2s−1 oC−1

1420Jm−2s−1 oC−1

#

$%

&

'(= 48oC

ΔT1 =12.9oC

Thus:    

ΔT1 1+U1U2

+U1

U3

"

#$

%

&'= 48oC

Example  4  

ΔT2 =U1ΔT1U2

=2270Jm−2s−1 oC−1

2210Jm−2s−1 oC−1 (12.9oC) =14.6 oC

ΔT3 =U1ΔT1U3

=2270Jm−2s−1 oC−1

1420Jm−2s−1 oC−1 (12.9oC) = 20.6 oC

ΔT2 =U1ΔT1U2

ΔT3 =U1ΔT1U3

Page 24: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

24  

Example  4  

Effect   EvaporaCng  ToC   Latent  heat  

1   (134oC-­‐12.9oC=121.1oC   2200  kJkg-­‐1  

2   (121.1oC-­‐14.6oC=106.5oC   2240  kJkg-­‐1  

3   (106.5oC-­‐20.6oC=86oC   2294  kJkg-­‐1  

*  Latent  heat  from  steam  table  

Example  4  Steam  consumpEon  EquaEng  heat  transfer  rate  

m•

1λ1 =m•

2 λ2 =m•

3 λ3 =m•

s λs

m•

1+m•

2+m•

3 = 333kgh−1

m•

2 =m•

1λ1λ2

m•

3 =m•

1λ1λ3

m•

s =m•

1λ1λs

Page 25: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

25  

Example  4  Total  mass  evaporated  

m•

1+m•

2+m•

3 = 333kgh−1

m•

1 1+ λ1λ2+λ1λ3

!

"#

$

%&= 333kgh−1

m•

1 =333kgh−1

1+ 2200kJkg−1

2240kJkg−1+2200kJkg−1

2294kJkg−1"

#$

%

&'

=113kgh−1

Example  4  

m•

2 =m•

1λ1λ2

=113kgh−1 2200kJkg−1

2240kJkg−1"

#$

%

&'=111kgh−1

m•

3 =m•

1λ1λ3=113kgh−1 2200kJkg

−1

2294kJkg−1"

#$

%

&'=108kgh−1

m•

s =m•

1λ1λs=113kgh−1 2200kJkg

−1

2164kJkg−1"

#$

%

&'=115kgh−1

Page 26: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

26  

Example  3  Steam  consumpEon  

•  115kg  steam  is  required  to  evaporate  333  kg  of  water  

steam consumption = 115kg333kg

= 0.35kgsteam / kg water evaporated

Example  4  Heat  exchange  surface  

q1 =U1A1ΔT1 =m•

1λ1

2270Jm−2s−1 oC−1( ) 12.9 oC( )A1 = 113kgh−1

3600h s

"

#

$$

%

&

''2.2x106 Jkg−1( )

A1 = 2.4m2 = A2 = A3

Total  heat  exchange  surface  

AT = A1 + A2 + A3 = 7.2m2

Page 27: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

27  

Stream   SpecificaCons  

Steam   T=300  oC  P=120  kPa  Flow  rate:  600  kg/hr  ComposiEon:  water=  100%  

NaOH  SoluEon   T=85  oC  P=300  kPa  Flow  rate:  200  kg/hr  ComposiEon:  water=  90%;  NaOH=10%  

Heat  Exchanger   Del  P  tube  =  120  kPa  Del  P  shell  =  30  kPa  UA=3000  

Example  

Stream   SpecificaCons  

Steam   T=300  oC  P=120  kPa  Flow  rate:  600  kg/hr  ComposiEon:  water=  100%  

NaOH  SoluEon   T=85  oC  P=300  kPa  Flow  rate:  200  kg/hr  ComposiEon:  water=  90%;  NaOH=10%  

Heat  Exchanger   Del  P  tube  =  120  kPa  Del  P  shell  =  30  kPa  UA=3000  

Example:  MulE-­‐effect  evaporator  

Page 28: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

28  

Example:  MulE-­‐effect  evaporator  

E-­‐101   V-­‐101   E-­‐102   V-­‐102  Feed  

Steam  

Condensate  

Product  

Vapor  

Example  

Page 29: Case Study No 3Case Study No 3 - Multistage Evaporator

4/28/14  

29  

Case  Study  No  3    

1.  To  develop  an  a  general  algorithm  for  mulEstage  evaporator  

2.  To  develop  a  matlab®  code  for  solving  the  above  algorithm  

3.  To  demonstrate  the  applicaEon  of  the  algorithm  and  the  matlab®  code  base  on  a  selected  system  

4.  To  validate  the  matlab®  code  by  comparing  it  with  iCON®  simulaEon