199
Prepared by: JR Ejorcadas BLOCK No. 1 North Side Computations: Pole Distance = 150 ft # of Poles = 10 poles System Voltage =240 V kVA residential = 41.22 kVA Voltage Drop = 5 % VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V 41.222 + (0.16 x 10) = 42.82 kVA No. of Bundles: 1 kVA NORTH = kVA Span NORTH = 128.69 kVA Total Current Computation: I NORTH = (kVA NORTH ) ÷ (System Voltage) = (42.822 x1000)/240 = 178.425 A Total Distance Computation: d NORTH = (kVA-Span NORTH ÷ kVA NORTH ) x (Pole Distance) = (128.686 ÷ 42.822)x150 = 450.771 ft Circular Mill Computation: CM = (24 x I NORTH x d NORTH ) / (VDC x B) = (24 x 178.425 x 450.771) / (12 x 1) = 160858 CM CM Based on Table For Circular Mill: Use: No. 000 AWG Copper Conductor, 2-Wires 7 Strands Hard Drawn Copper Conductor 167806 CMILS (For 3 ft. Spacing Between Two 167806 CM Wires:) Based on Table R a = 0.382 Ω/mile X a = 0.518 Ω/mile X d = 0.2794 log GMR Ω/mile = 0.2794 log (3 x 3) Ω/mile = 0.133 Ω/mile X t = X a + X d = 0.651 Ω/mile Reactance and Resistance Ratio (X t /R a ): Ratio= X t ÷ R a = 0.651307678568674 ÷ 0.382 = 1.705 Based on Table : AC DROP FACTOR @ 85% = 1.85 167806

Cable Sizing Calc

Embed Size (px)

DESCRIPTION

Cable Sizing Sample

Citation preview

Page 1: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 1

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage =240 V kVAresidential = 41.22 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

41.222 + (0.16 x 10) = 42.82 kVA No. of Bundles: 1kVANORTH= kVA SpanNORTH = 128.69 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (42.822 x1000)/240= 178.425 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (128.686 ÷ 42.822)x150= 450.771 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 178.425 x 450.771) / (12 x 1)= 160858 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires7 Strands Hard Drawn Copper Conductor

167806 CMILS

(For 3 ft. Spacing Between Two 167806 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.651 Ω/mile

Reactance and Resistance Ratio (X t/Ra):Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

167806

Page 2: Cable Sizing Calc

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 178.425 x 450.771) ÷ (167806 x 1)= 11.503 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.503 x 1.85= 21.281 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (21.281 ÷ 240) x 100 = 8.867 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 3: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 56.80 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 56.796 + (0.16 x 10) = 58.40 kVA No. of Bundles: 1kVA SpanSOUTH = 129.25 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (58.396 x1000)/240 = 243.317 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (129.252 ÷ 58.396)x150 = 332.006 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 243.317 x 332.006) / (12 x 1)= 161565 CM ≈ 167806 CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires167806 7 Strands Hard Drawn Copper Conductor

167806 CMILS

(For 3 ft. Spacing Between Two 167806 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6513 Ω/mile

Reactance and Resistance Ratio (X t/Ra):Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

Page 4: Cable Sizing Calc

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 243.317 x 332.006) ÷ (167806 x 1)= 11.554 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.554 x 1.85= 21.375 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (21.375 ÷ 240) x 100= 8.906 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 5: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 2

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 52.60 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 52.6 + (0.16 x 10) = 54.20 kVA No. of Bundles: 1kVA SpanNORTH = 189.18 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (54.2 x1000)/240= 225.833 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (189.178 ÷ 54.2)x150= 523.555 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 225.833 x 523.555) / (12 x 1)= 236472 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 6: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 225.833 x 523.555) ÷ (250000 x 1)= 11.351 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.351 x 3.1= 35.188 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.188 ÷ 240) x 100= 14.662 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 7: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 65.41 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 65.408 + (0.16 x 10) = 67.01 kVA No. of Bundles: 1kVA SpanSOUTH = 188.81 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (67.008 x1000)/240= 279.200 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (188.81 ÷ 67.008)x150= 422.658 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 279.200 x 422.658) / (12 x 1)= 236012 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 8: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 279.200 x 422.658) ÷ (250000 x 1)= 11.329 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.329 x 3.1= 35.120 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.120 ÷ 240) x 100= 14.633 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 9: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 3

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 78.00 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 77.996 + (0.16 x 10) = 79.60 kVA No. of Bundles: 1kVA SpanNORTH = 287.64 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (79.596 x1000)/240= 331.650 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (287.642 ÷ 79.596)x150= 542.066 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 331.650 x 542.066) / (12 x 1)= 359552 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 10: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 331.650 x 542.066) ÷ (400000 x 1)= 10.787 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.787 x 3.1= 33.440 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.440 ÷ 240) x 100= 13.933 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 11: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 63.90 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 63.9 + (0.16 x 10) = 65.50 kVA No. of Bundles: 1kVA SpanSOUTH = 288.16 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (65.5 x1000)/240= 272.917 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (288.164 ÷ 65.5)x150= 659.918 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 272.917 x 659.918) / (12 x 1)= 360206 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 12: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 272.917 x 659.918) ÷ (400000 x 1)= 10.806 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.806 x 3.1= 33.499 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.499 ÷ 240) x 100= 13.958 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 13: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 4

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 57.75 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 57.746 + (0.16 x 10) = 59.35 kVA No. of Bundles: 1kVA SpanNORTH = 256.93 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (59.346 x1000)/240= 247.275 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (256.926 ÷ 59.346)x150= 649.393 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 247.275 x 649.393) / (12 x 1)= 321157 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 14: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 247.275 x 649.393) ÷ (400000 x 1)= 9.635 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.635 x 3.1= 29.869 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.869 ÷ 240) x 100= 12.445 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 15: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.15 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 59.152 + (0.16 x 10) = 60.75 kVA No. of Bundles: 1kVA SpanSOUTH = 256.89 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (60.752 x1000)/240= 253.133 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (256.892 ÷ 60.752)x150= 634.280 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 253.133 x 634.280) / (12 x 1)= 321114 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 16: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 253.133 x 634.280) ÷ (400000 x 1)= 9.633 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.633 x 3.1= 29.862 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.862 ÷ 240) x 100= 12.443 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 17: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 5

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 79.16 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 79.164 + (0.16 x 10) = 80.76 kVA No. of Bundles: 1kVA SpanNORTH = 280.44 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (80.764 x1000)/240= 336.517 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (280.438 ÷ 80.764)x150= 520.847 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 336.517 x 520.847) / (12 x 1)= 350548 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 336.517 x 520.847) ÷ (400000 x 1)= 10.516 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.516 x 3.1= 32.600 V

400000

Page 18: Cable Sizing Calc

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (32.600 ÷ 240) x 100= 13.583 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 19: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 64.98 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 64.978 + (0.16 x 10) = 66.58 kVA No. of Bundles: 1kVA SpanSOUTH = 279.69 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (66.578 x1000)/240= 277.408 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (279.694 ÷ 66.578)x150= 630.150 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 277.408 x 630.150) / (12 x 1)= 349617 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 277.408 x 630.150) ÷ (400000 x 1)= 10.489 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.489 x 3.1= 32.516 V

400000

Page 20: Cable Sizing Calc

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (32.516 ÷ 240) x 100= 13.548 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 21: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 6

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 53.96 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 53.958 + (0.16 x 10) = 55.56 kVA No. of Bundles: 1kVA SpanNORTH = 254.52 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (55.558 x1000)/240= 231.492 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (254.518 ÷ 55.558)x150= 687.168 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 231.492 x 687.168) / (12 x 1)= 318148 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 22: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 231.492 x 687.168) ÷ (400000 x 1)= 9.544 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.544 x 2.6= 24.814 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.814 ÷ 240) x 100= 10.339 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 23: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 64.04 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 64.044 + (0.16 x 10) = 65.64 kVA No. of Bundles: 1kVA SpanSOUTH = 255.19 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (65.644 x1000)/240= 273.517 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (255.192 ÷ 65.644)x150= 583.127 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 273.517 x 583.127) / (12 x 1)= 318990 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 24: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 273.517 x 583.127) ÷ (400000 x 1)= 9.570 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.570 x 2.6= 24.882 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.882 ÷ 240) x 100= 10.368 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 25: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 7

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 50.67 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 50.672 + (0.16 x 10) = 52.27 kVA No. of Bundles: 1kVA SpanNORTH = 192.12 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (52.272 x1000)/240= 217.800 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (192.12 ÷ 52.272)x150= 551.309 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 217.800 x 551.309) / (12 x 1)= 240150 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 26: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 217.800 x 551.309) ÷ (250000 x 1)= 11.527 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.527 x 2.28= 26.282 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.282 ÷ 240) x 100= 10.951 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 27: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 46.42 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 46.418 + (0.16 x 10) = 48.02 kVA No. of Bundles: 1kVA SpanSOUTH = 191.17 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (48.018 x1000)/240= 200.075 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (191.174 ÷ 48.018)x150= 597.195 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 200.075 x 597.195) / (12 x 1)= 238968 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 28: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 200.075 x 597.195) ÷ (250000 x 1)= 11.470 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.470 x 2.28= 26.152 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.152 ÷ 240) x 100= 10.897 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 29: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 8

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 71.65 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 71.648 + (0.16 x 10) = 73.25 kVA No. of Bundles: 1kVA SpanNORTH = 262.86 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (73.248 x1000)/240= 305.200 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (262.858 ÷ 73.248)x150= 538.290 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 305.200 x 538.290) / (12 x 1)= 328572 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 30: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 305.200 x 538.290) ÷ (400000 x 1)= 9.857 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.857 x 3.1= 30.557 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.557 ÷ 240) x 100= 12.732 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 31: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 75.02 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 75.018 + (0.16 x 10) = 76.62 kVA No. of Bundles: 1kVA SpanSOUTH = 263.43 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (76.618 x1000)/240= 319.242 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (263.426 ÷ 76.618)x150= 515.726 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 319.242 x 515.726) / (12 x 1)= 329283 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 32: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 319.242 x 515.726) ÷ (400000 x 1)= 9.878 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.878 x 3.1= 30.622 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.622 ÷ 240) x 100= 12.759 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 33: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 9

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 78.07 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 78.068 + (0.16 x 10) = 79.67 kVA No. of Bundles: 1kVA SpanNORTH = 294.48 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (79.668 x1000)/240= 331.950 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (294.484 ÷ 79.668)x150= 554.459 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 331.950 x 554.459) / (12 x 1)= 368105 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 34: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 331.950 x 554.459) ÷ (400000 x 1)= 11.043 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.043 x 3.1= 34.233 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.233 ÷ 240) x 100= 14.264 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 35: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 67.05 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 67.048 + (0.16 x 10) = 68.65 kVA No. of Bundles: 1kVA SpanSOUTH = 294.48 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (68.648 x1000)/240= 286.033 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (294.484 ÷ 68.648)x150= 643.465 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 286.033 x 643.465) / (12 x 1)= 368104 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 36: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 286.033 x 643.465) ÷ (400000 x 1)= 11.043 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.043 x 3.1= 34.233 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.233 ÷ 240) x 100= 14.264 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 37: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 10

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.13 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 48.132 + (0.16 x 10) = 49.73 kVA No. of Bundles: 1kVA SpanNORTH = 179.28 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (49.732 x1000)/240= 207.217 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (179.276 ÷ 49.732)x150= 540.726 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 207.217 x 540.726) / (12 x 1)= 224095 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 38: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 207.217 x 540.726) ÷ (250000 x 1)= 10.757 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.757 x 2.28= 24.526 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.526 ÷ 240) x 100= 10.219 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 39: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 45.00 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 44.996 + (0.16 x 10) = 46.60 kVA No. of Bundles: 1kVA SpanSOUTH = 179.28 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (46.596 x1000)/240= 194.150 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (179.276 ÷ 46.596)x150= 577.118 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 194.150 x 577.118) / (12 x 1)= 224095 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 40: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 194.150 x 577.118) ÷ (250000 x 1)= 10.757 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.757 x 2.28= 24.526 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.526 ÷ 240) x 100= 10.219 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 41: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 11

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 44.68 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 44.676 + (0.16 x 10) = 46.28 kVA No. of Bundles: 1kVA SpanNORTH = 191.89 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (46.276 x1000)/240= 192.817 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (191.888 ÷ 46.276)x150= 621.990 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 192.817 x 621.990) / (12 x 1)= 239860 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 42: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 192.817 x 621.990) ÷ (250000 x 1)= 11.513 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.513 x 3.1= 35.690 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.690 ÷ 240) x 100= 14.871 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 43: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 54.91 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 54.912 + (0.16 x 10) = 56.51 kVA No. of Bundles: 1kVA SpanSOUTH = 191.93 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (56.512 x1000)/240= 235.467 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (191.932 ÷ 56.512)x150= 509.446 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 235.467 x 509.446) / (12 x 1)= 239915 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 44: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 235.467 x 509.446) ÷ (250000 x 1)= 11.516 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.516 x 3.1= 35.700 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.700 ÷ 240) x 100= 14.875 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 45: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 12

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 77.11 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 77.114 + (0.16 x 10) = 78.71 kVA No. of Bundles: 1kVA SpanNORTH = 294.14 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (78.714 x1000)/240= 327.975 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (294.142 ÷ 78.714)x150= 560.527 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 327.975 x 560.527) / (12 x 1)= 367678 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 46: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 327.975 x 560.527) ÷ (400000 x 1)= 11.030 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.030 x 3.1= 34.193 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.193 ÷ 240) x 100= 14.247 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 47: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 70.82 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 70.82 + (0.16 x 10) = 72.42 kVA No. of Bundles: 1kVA SpanSOUTH = 293.34 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (72.42 x1000)/240= 301.750 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (293.336 ÷ 72.42)x150= 607.572 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 301.750 x 607.572) / (12 x 1)= 366670 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 48: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 301.750 x 607.572) ÷ (400000 x 1)= 11.000 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.000 x 3.1= 34.100 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.100 ÷ 240) x 100= 14.208 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 49: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 13

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 65.47 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 65.468 + (0.16 x 10) = 67.07 kVA No. of Bundles: 1kVA SpanNORTH = 270.21 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (67.068 x1000)/240= 279.450 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (270.208 ÷ 67.068)x150= 604.330 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 279.450 x 604.330) / (12 x 1)= 337760 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 50: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 279.450 x 604.330) ÷ (400000 x 1)= 10.133 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.133 x 3.1= 31.412 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (31.412 ÷ 240) x 100= 13.088 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 51: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 65.16 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 65.16 + (0.16 x 10) = 66.76 kVA No. of Bundles: 1kVA SpanSOUTH = 270.71 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (66.76 x1000)/240= 278.167 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (270.712 ÷ 66.76)x150= 608.250 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 278.167 x 608.250) / (12 x 1)= 338390 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 52: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 278.167 x 608.250) ÷ (400000 x 1)= 10.152 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.152 x 3.1= 31.471 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (31.471 ÷ 240) x 100= 13.113 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 53: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 14

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.61 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 48.614 + (0.16 x 10) = 50.21 kVA No. of Bundles: 1kVA SpanNORTH = 163.92 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (50.214 x1000)/240= 209.225 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (163.918 ÷ 50.214)x150= 489.658 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 209.225 x 489.658) / (12 x 1)= 204897 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.629 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 54: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 209.225 x 489.658) ÷ (211600 x 1)= 11.620 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.620 x 2.03= 23.589 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (23.589 ÷ 240) x 100= 9.829 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 55: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 50.68 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 50.684 + (0.16 x 10) = 52.28 kVA No. of Bundles: 1kVA SpanSOUTH = 163.03 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (52.284 x1000)/240= 217.850 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (163.028 ÷ 52.284)x150= 467.719 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 217.850 x 467.719) / (12 x 1)= 203785 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6293 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 56: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 217.850 x 467.719) ÷ (211600 x 1)= 11.557 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.557 x 2.03= 23.461 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (23.461 ÷ 240) x 100= 9.775 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 57: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 15

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 68.15 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 68.152 + (0.16 x 10) = 69.75 kVA No. of Bundles: 1kVA SpanNORTH = 214.62 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (69.752 x1000)/240= 290.633 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (214.624 ÷ 69.752)x150= 461.544 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 290.633 x 461.544) / (12 x 1)= 268280 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 58: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 290.633 x 461.544) ÷ (300000 x 1)= 10.731 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.731 x 2.6= 27.901 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.901 ÷ 240) x 100= 11.625 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 59: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 56.81 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 56.812 + (0.16 x 10) = 58.41 kVA No. of Bundles: 1kVA SpanSOUTH = 214.28 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (58.412 x1000)/240= 243.383 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (214.284 ÷ 58.412)x150= 550.274 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 243.383 x 550.274) / (12 x 1)= 267855 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 60: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 243.383 x 550.274) ÷ (300000 x 1)= 10.714 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.714 x 2.6= 27.856 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.856 ÷ 240) x 100= 11.607 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 61: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 16

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 63.72 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 63.724 + (0.16 x 10) = 65.32 kVA No. of Bundles: 1kVA SpanNORTH = 209.51 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (65.324 x1000)/240= 272.183 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (209.512 ÷ 65.324)x150= 481.091 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 272.183 x 481.091) / (12 x 1)= 261890 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 62: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 272.183 x 481.091) ÷ (300000 x 1)= 10.476 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.476 x 2.6= 27.238 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.238 ÷ 240) x 100= 11.349 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 63: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 55.70 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 55.696 + (0.16 x 10) = 57.30 kVA No. of Bundles: 1kVA SpanSOUTH = 209.18 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (57.296 x1000)/240= 238.733 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (209.18 ÷ 57.296)x150= 547.630 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 238.733 x 547.630) / (12 x 1)= 261475 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 64: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 238.733 x 547.630) ÷ (300000 x 1)= 10.459 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.459 x 2.6= 27.193 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.193 ÷ 240) x 100= 11.330 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 65: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 17

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.78 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 48.784 + (0.16 x 10) = 50.38 kVA No. of Bundles: 1kVA SpanNORTH = 236.36 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (50.384 x1000)/240= 209.933 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (236.356 ÷ 50.384)x150= 703.664 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 209.933 x 703.664) / (12 x 1)= 295445 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 66: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 209.933 x 703.664) ÷ (300000 x 1)= 11.818 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.818 x 2.6= 30.727 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.727 ÷ 240) x 100= 12.803 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 67: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 49.88 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 49.876 + (0.16 x 10) = 51.48 kVA No. of Bundles: 1kVA SpanSOUTH = 235.70 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (51.476 x1000)/240= 214.483 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (235.7 ÷ 51.476)x150= 686.825 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 214.483 x 686.825) / (12 x 1)= 294625 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 68: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 214.483 x 686.825) ÷ (300000 x 1)= 11.785 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.785 x 2.6= 30.641 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.641 ÷ 240) x 100= 12.767 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 69: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 18

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 46.56 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 46.564 + (0.16 x 10) = 48.16 kVA No. of Bundles: 1kVA SpanNORTH = 195.52 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (48.164 x1000)/240= 200.683 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (195.52 ÷ 48.164)x150= 608.920 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 200.683 x 608.920) / (12 x 1)= 244400 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 70: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 200.683 x 608.920) ÷ (250000 x 1)= 11.731 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.731 x 2.28= 26.747 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.747 ÷ 240) x 100= 11.145 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 71: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.00 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 48 + (0.16 x 10) = 49.60 kVA No. of Bundles: 1kVA SpanSOUTH = 195.91 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (49.6 x1000)/240= 206.667 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (195.908 ÷ 49.6)x150= 592.464 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 206.667 x 592.464) / (12 x 1)= 244886 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 72: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 206.667 x 592.464) ÷ (250000 x 1)= 11.755 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.755 x 2.28= 26.801 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.801 ÷ 240) x 100= 11.167 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 73: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 19

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.63 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 59.634 + (0.16 x 10) = 61.23 kVA No. of Bundles: 1kVA SpanNORTH = 253.14 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (61.234 x1000)/240= 255.142 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (253.144 ÷ 61.234)x150= 620.106 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 255.142 x 620.106) / (12 x 1)= 316430 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 74: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 255.142 x 620.106) ÷ (400000 x 1)= 9.493 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.493 x 3.1= 29.428 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.428 ÷ 240) x 100= 12.262 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 75: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.48 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 59.484 + (0.16 x 10) = 61.08 kVA No. of Bundles: 1kVA SpanSOUTH = 253.20 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (61.084 x1000)/240= 254.517 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (253.196 ÷ 61.084)x150= 621.757 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 254.517 x 621.757) / (12 x 1)= 316495 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 76: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 254.517 x 621.757) ÷ (400000 x 1)= 9.495 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.495 x 3.1= 29.435 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.435 ÷ 240) x 100= 12.265 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 77: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 20

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 33.28 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 33.278 + (0.16 x 10) = 34.88 kVA No. of Bundles: 1kVA SpanNORTH = 100.80 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (34.878 x1000)/240= 145.325 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (100.796 ÷ 34.878)x150= 433.494 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 145.325 x 433.494) / (12 x 1)= 125995 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 00 AWG Copper Conductor, 2-Wires133077 7 Strands Hard Drawn Copper Conductor

133077 CMILS

(For 3 ft. Spacing Between Two 133077 CM Wires:)Based on Table

Ra = 0.48 Ω/mileXa = 0.532 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.665 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

133077

Page 78: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.665307678568674 ÷ 0.48= 1.3861

Based on Table : AC DROP FACTOR @ 85% = 1.61

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 145.325 x 433.494) ÷ (133077 x 1)= 11.361 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.361 x 1.61= 18.291 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.291 ÷ 240) x 100= 7.621 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 79: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 39.48 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 39.482 + (0.16 x 10) = 41.08 kVA No. of Bundles: 1kVA SpanSOUTH = 100.63 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (41.082 x1000)/240= 171.175 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (100.628 ÷ 41.082)x150= 367.416 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 171.175 x 367.416) / (12 x 1)= 125785 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 00 AWG Copper Conductor, 2-Wires133077 7 Strands Hard Drawn Copper Conductor

133077 CMILS

(For 3 ft. Spacing Between Two 133077 CM Wires:)Based on Table

Ra = 0.48 Ω/mileXa = 0.532 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6653 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

133077

Page 80: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.665307678568674 ÷ 0.48= 1.3861

Based on Table : AC DROP FACTOR @ 85% = 1.61

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 171.175 x 367.416) ÷ (133077 x 1)= 11.342 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.342 x 1.61= 18.261 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.261 ÷ 240) x 100= 7.609 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 81: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 21

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 46.97 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 46.97 + (0.16 x 10) = 48.57 kVA No. of Bundles: 1kVA SpanNORTH = 144.08 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (48.57 x1000)/240= 202.375 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (144.08 ÷ 48.57)x150= 444.966 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 202.375 x 444.966) / (12 x 1)= 180100 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires167806 7 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.651 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 82: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 202.375 x 444.966) ÷ (211600 x 1)= 10.214 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.214 x 1.85= 18.896 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.896 ÷ 240) x 100= 7.873 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 83: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.61 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 48.614 + (0.16 x 10) = 50.21 kVA No. of Bundles: 1kVA SpanSOUTH = 144.84 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (50.214 x1000)/240= 209.225 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (144.84 ÷ 50.214)x150= 432.668 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 209.225 x 432.668) / (12 x 1)= 181050 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires167806 7 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6513 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 84: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 209.225 x 432.668) ÷ (211600 x 1)= 10.267 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.267 x 1.85= 18.994 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.994 ÷ 240) x 100= 7.914 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 85: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 22

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 61.08 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 61.08 + (0.16 x 10) = 62.68 kVA No. of Bundles: 1kVA SpanNORTH = 236.48 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (62.68 x1000)/240= 261.167 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (236.482 ÷ 62.68)x150= 565.927 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 261.167 x 565.927) / (12 x 1)= 295603 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 86: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 261.167 x 565.927) ÷ (300000 x 1)= 11.824 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.824 x 2.6= 30.742 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.742 ÷ 240) x 100= 12.809 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 87: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 61.61 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 61.608 + (0.16 x 10) = 63.21 kVA No. of Bundles: 1kVA SpanSOUTH = 237.09 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (63.208 x1000)/240= 263.367 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (237.094 ÷ 63.208)x150= 562.652 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 263.367 x 562.652) / (12 x 1)= 296368 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 88: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 263.367 x 562.652) ÷ (300000 x 1)= 11.855 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.855 x 2.6= 30.823 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.823 ÷ 240) x 100= 12.843 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 89: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 23

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 76.67 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 76.672 + (0.16 x 10) = 78.27 kVA No. of Bundles: 1kVA SpanNORTH = 290.05 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (78.272 x1000)/240= 326.133 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (290.05 ÷ 78.272)x150= 555.850 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 326.133 x 555.850) / (12 x 1)= 362562 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 90: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 326.133 x 555.850) ÷ (400000 x 1)= 10.877 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.877 x 3.1= 33.719 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.719 ÷ 240) x 100= 14.050 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 91: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 69.17 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 69.172 + (0.16 x 10) = 70.77 kVA No. of Bundles: 1kVA SpanSOUTH = 289.66 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (70.772 x1000)/240= 294.883 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (289.662 ÷ 70.772)x150= 613.933 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 294.883 x 613.933) / (12 x 1)= 362077 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 92: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 294.883 x 613.933) ÷ (400000 x 1)= 10.862 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.862 x 3.1= 33.672 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.672 ÷ 240) x 100= 14.030 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 93: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 24

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 44.37 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 44.374 + (0.16 x 10) = 45.97 kVA No. of Bundles: 1kVA SpanNORTH = 137.36 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (45.974 x1000)/240= 191.558 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (137.356 ÷ 45.974)x150= 448.153 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 191.558 x 448.153) / (12 x 1)= 171695 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.629 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 94: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 191.558 x 448.153) ÷ (211600 x 1)= 9.737 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.737 x 2.03= 19.766 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.766 ÷ 240) x 100= 8.236 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 95: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 49.65 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 49.654 + (0.16 x 10) = 51.25 kVA No. of Bundles: 1kVA SpanSOUTH = 137.11 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (51.254 x1000)/240= 213.558 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (137.114 ÷ 51.254)x150= 401.278 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 213.558 x 401.278) / (12 x 1)= 171392 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6293 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 96: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 213.558 x 401.278) ÷ (211600 x 1)= 9.720 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.720 x 2.03= 19.732 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.732 ÷ 240) x 100= 8.222 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 97: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 25

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 60.11 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 60.11 + (0.16 x 10) = 61.71 kVA No. of Bundles: 1kVA SpanNORTH = 241.85 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (61.71 x1000)/240= 257.125 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (241.846 ÷ 61.71)x150= 587.861 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 257.125 x 587.861) / (12 x 1)= 302308 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 98: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 257.125 x 587.861) ÷ (400000 x 1)= 9.069 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.069 x 3.1= 28.114 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (28.114 ÷ 240) x 100= 11.714 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 99: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.89 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 59.89 + (0.16 x 10) = 61.49 kVA No. of Bundles: 1kVA SpanSOUTH = 241.64 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (61.49 x1000)/240= 256.208 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (241.638 ÷ 61.49)x150= 589.457 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 256.208 x 589.457) / (12 x 1)= 302047 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 100: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 256.208 x 589.457) ÷ (400000 x 1)= 9.061 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.061 x 3.1= 28.089 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (28.089 ÷ 240) x 100= 11.704 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 101: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 26

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 66.33 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 66.334 + (0.16 x 10) = 67.93 kVA No. of Bundles: 1kVA SpanNORTH = 254.51 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (67.934 x1000)/240= 283.058 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (254.506 ÷ 67.934)x150= 561.956 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 283.058 x 561.956) / (12 x 1)= 318132 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 102: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 283.058 x 561.956) ÷ (400000 x 1)= 9.544 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.544 x 3.1= 29.586 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.586 ÷ 240) x 100= 12.328 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 103: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 78.88 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 78.88 + (0.16 x 10) = 80.48 kVA No. of Bundles: 1kVA SpanSOUTH = 255.07 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (80.48 x1000)/240= 335.333 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (255.07 ÷ 80.48)x150= 475.404 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 335.333 x 475.404) / (12 x 1)= 318837 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 104: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 335.333 x 475.404) ÷ (400000 x 1)= 9.565 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.565 x 3.1= 29.652 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.652 ÷ 240) x 100= 12.355 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 105: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 27

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 55.79 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 55.793 + (0.16 x 10) = 57.39 kVA No. of Bundles: 1kVA SpanNORTH = 137.82 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (57.393 x1000)/240= 239.138 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (137.821 ÷ 57.393)x150= 360.203 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 239.138 x 360.203) / (12 x 1)= 172276 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.629 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 106: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 239.138 x 360.203) ÷ (211600 x 1)= 9.770 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.770 x 2.03= 19.833 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.833 ÷ 240) x 100= 8.264 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 107: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 40.58 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 40.579 + (0.16 x 10) = 42.18 kVA No. of Bundles: 1kVA SpanSOUTH = 137.39 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (42.179 x1000)/240= 175.746 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (137.393 ÷ 42.179)x150= 488.607 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 175.746 x 488.607) / (12 x 1)= 171741 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6293 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Page 108: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 175.746 x 488.607) ÷ (211600 x 1)= 9.740 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.740 x 2.03= 19.772 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.772 ÷ 240) x 100= 8.238 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 109: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 28

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 73.90 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 73.902 + (0.16 x 10) = 75.50 kVA No. of Bundles: 1kVA SpanNORTH = 294.63 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (75.502 x1000)/240= 314.592 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (294.628 ÷ 75.502)x150= 585.338 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 314.592 x 585.338) / (12 x 1)= 368285 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 110: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 314.592 x 585.338) ÷ (400000 x 1)= 11.049 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.049 x 3.1= 34.252 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.252 ÷ 240) x 100= 14.272 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 111: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 71.22 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 71.218 + (0.16 x 10) = 72.82 kVA No. of Bundles: 1kVA SpanSOUTH = 295.18 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (72.818 x1000)/240= 303.408 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (295.176 ÷ 72.818)x150= 608.042 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 303.408 x 608.042) / (12 x 1)= 368970 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Page 112: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 303.408 x 608.042) ÷ (400000 x 1)= 11.069 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.069 x 3.1= 34.314 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.314 ÷ 240) x 100= 14.298 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 113: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 29

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 49.03 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 49.03 + (0.16 x 10) = 50.63 kVA No. of Bundles: 1kVA SpanNORTH = 233.92 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (50.63 x1000)/240= 210.958 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (233.924 ÷ 50.63)x150= 693.040 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 210.958 x 693.040) / (12 x 1)= 292405 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 114: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 210.958 x 693.040) ÷ (300000 x 1)= 11.696 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.696 x 2.6= 30.410 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.410 ÷ 240) x 100= 12.671 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 115: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 47.30 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 47.302 + (0.16 x 10) = 48.90 kVA No. of Bundles: 1kVA SpanSOUTH = 234.70 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (48.902 x1000)/240= 203.758 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (234.696 ÷ 48.902)x150= 719.897 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 203.758 x 719.897) / (12 x 1)= 293370 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Page 116: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 203.758 x 719.897) ÷ (300000 x 1)= 11.735 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.735 x 2.6= 30.511 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.511 ÷ 240) x 100= 12.713 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 117: Cable Sizing Calc

Prepared by: JR Ejorcadas BLOCK No. 30

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 52.85 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 52.854 + (0.16 x 10) = 54.45 kVA No. of Bundles: 1kVA SpanNORTH = 194.86 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (54.454 x1000)/240= 226.892 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (194.864 ÷ 54.454)x150= 536.776 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 226.892 x 536.776) / (12 x 1)= 243580 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 118: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 226.892 x 536.776) ÷ (250000 x 1)= 11.692 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.692 x 2.28= 26.658 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.658 ÷ 240) x 100= 11.108 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 119: Cable Sizing Calc

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 43.19 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 43.194 + (0.16 x 10) = 44.79 kVA No. of Bundles: 1kVA SpanSOUTH = 193.98 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (44.794 x1000)/240= 186.642 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (193.976 ÷ 44.794)x150= 649.560 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 186.642 x 649.560) / (12 x 1)= 242470 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Page 120: Cable Sizing Calc

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 186.642 x 649.560) ÷ (250000 x 1)= 11.639 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.639 x 2.28= 26.537 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.537 ÷ 240) x 100= 11.057 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Page 121: Cable Sizing Calc

Per Block Transformers Sizing Calculation

Block No: 1

kVANORTH + kVASOUTH

= 42.822 + 58.396= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 2

kVANORTH + kVASOUTH

= 54.2 + 67.008= kVA

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

1Ф Transformer =

1Ф Transformer =

22.82

=

Vp x 125%

19.05

x 300%

Fuse Rating =126.5225

x 300%19.92

Fuse Rating = kVA x 1000

Primary Voltage

1Ф Transformer =

x 300% =19.92

121.21

At 80% Transformer Loading:

1Ф Transformer = 151.51

Primary Voltage

Fuse Rating =151.51

Fuse Rating = kVA x 1000

x 300%

101.22

126.52

Page 122: Cable Sizing Calc

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 3

kVANORTH + kVASOUTH

= 79.596 + 65.5= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 4

kVANORTH + kVASOUTH

= 59.346 + 60.752= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

1Ф Transformer = 181.37

Fuse Rating =

Fuse Rating =181.37

x 300%

1Ф Transformer = 150.12

Fuse Rating = kVA x 1000

x 300%Primary Voltage

Vp x 125%

1Ф Transformer =

120.10

= 27.3119.92

Vp x 125%

1Ф Transformer =

145.10

kVA x 1000 x 300%

Primary Voltage

Page 123: Cable Sizing Calc

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 5

kVANORTH + kVASOUTH

= 80.764 + 66.578= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 6

kVANORTH + kVASOUTH

= 55.558 + 65.644= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 151.50

121.20

1Ф Transformer =

Vp x 125%

Fuse Rating =184.1775

x 300% = 27.7419.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

1Ф Transformer = 184.18

147.34

1Ф Transformer =

Vp x 125%

Fuse Rating =150.1225

x 300% = 22.6119.92

Page 124: Cable Sizing Calc

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =151.5025

x 300% = 22.8219.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

Page 125: Cable Sizing Calc

Per Block Transformers Sizing Calculation

Block No: 7

kVANORTH + kVASOUTH

= 52.272 + 48.018= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 8

kVANORTH + kVASOUTH

= 73.248 + 76.618= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

= 28.2119.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

187.3325x 300%

x 300%Primary Voltage

Fuse Rating =125.3625

1Ф Transformer =

100.29

1Ф Transformer = 125.36

Fuse Rating = kVA x 1000

18.8819.92

Vp x 125%

1Ф Transformer =

1Ф Transformer = 187.33

=x 300%

149.87

Fuse Rating =

Page 126: Cable Sizing Calc

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 9

kVANORTH + kVASOUTH

= 79.668 + 68.648= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 10

kVANORTH + kVASOUTH

= 46.596 + 49.732= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kVPrimary Voltage

Fuse Rating = kVA x 1000

x 300%

1Ф Transformer = 120.41

96.33

Vp x 125%

1Ф Transformer =

19.92185.395

x 300% = 27.92

Primary Voltagex 300%

Vp x 125%

Fuse Rating =

kVA x 1000 Fuse Rating =

1Ф Transformer =

148.32

1Ф Transformer = 185.40

Page 127: Cable Sizing Calc

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 11

kVANORTH + kVASOUTH

= 46.276 + 56.512= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 12

kVANORTH + kVASOUTH

= 78.714 + 72.42= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 188.92

151.13

1Ф Transformer =

Vp x 125%

x 300% = 19.3519.92

Fuse Rating = kVA x 1000

Primary Voltage

Fuse Rating =128.485

x 300%

1Ф Transformer = 128.49

102.79

Vp x 125%

1Ф Transformer =

Fuse Rating =120.41

x 300% = 18.1319.92

Page 128: Cable Sizing Calc

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =188.9175

x 300% = 28.4519.92

x 300%Fuse Rating = kVA x 1000

Primary Voltage

Page 129: Cable Sizing Calc

Per Block Transformers Sizing Calculation

Block No: 13

kVANORTH + kVASOUTH

= 67.068 + 66.76= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 14

kVANORTH + kVASOUTH

= 50.214 + 52.284= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

= 19.3019.92

x 300%

Fuse Rating = kVA x 1000

x 300%Primary Voltage

1Ф Transformer =

1Ф Transformer =

Fuse Rating = kVA x 1000

19.92

Vp x 125%

1Ф Transformer =

133.83

1Ф Transformer = 128.12

x 300%Primary Voltage

Fuse Rating =167.285

x 300% = 25.19

167.29

102.50

Fuse Rating =128.1225

Page 130: Cable Sizing Calc

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 15

kVANORTH + kVASOUTH

= 69.752 + 58.412= kVA

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 16

kVANORTH + kVASOUTH

= 65.324 + 57.296= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kVPrimary Voltage

x 300%Fuse Rating = kVA x 1000

1Ф Transformer = 153.28

122.62

Vp x 125%

1Ф Transformer =

19.92160.205

x 300% = 24.13Fuse Rating =

At 80% Transformer Loading:

Primary Voltagex 300%Fuse Rating =

kVA x 1000

Vp x 125%

1Ф Transformer =

128.16

1Ф Transformer = 160.21

Page 131: Cable Sizing Calc

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 17

kVANORTH + kVASOUTH

= 50.384 + 51.476= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 18

kVANORTH + kVASOUTH

= 48.164 + 49.6= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 122.21

97.76

1Ф Transformer =

Vp x 125%

Fuse Rating =127.325

x 300% = 19.1819.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

127.331Ф Transformer =

101.86

Vp x 125%

1Ф Transformer =

Fuse Rating =153.275

x 300% = 23.0819.92

Page 132: Cable Sizing Calc

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =122.205

x 300% = 18.4019.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

Page 133: Cable Sizing Calc

Per Block Transformers Sizing Calculation

Block No: 19

kVANORTH + kVASOUTH

= 61.234 + 61.084= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 20

kVANORTH + kVASOUTH

= 34.878 + 41.082= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 100 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Fuse Rating =94.95

x 300% = 14.3019.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

= 23.0319.92

Vp x 125%

1Ф Transformer =

x 300%Primary Voltage

Fuse Rating =152.8975

x 300%

1Ф Transformer =

1Ф Transformer = 152.90

Fuse Rating = kVA x 1000

75.96

122.32

1Ф Transformer = 94.95

Page 134: Cable Sizing Calc

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 21

kVANORTH + kVASOUTH

= 48.57 + 50.214= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 22

kVANORTH + kVASOUTH

= 62.68 + 63.208= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

1Ф Transformer = 157.36

Primary VoltageFuse Rating =

kVA x 1000 x 300%

125.89

Vp x 125%

1Ф Transformer =

19.92123.48

x 300% = 18.60Fuse Rating =

1Ф Transformer = 123.48

Primary VoltageFuse Rating =

kVA x 1000 x 300%

98.78

1Ф Transformer =

Vp x 125%

Page 135: Cable Sizing Calc

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 23

kVANORTH + kVASOUTH

= 78.272 + 70.772= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 24

kVANORTH + kVASOUTH

= 45.974 + 51.254= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

121.541Ф Transformer =

97.23

1Ф Transformer =

Vp x 125%

Fuse Rating =186.305

x 300% = 28.0619.92

kVA x 1000 x 300%

Primary VoltageFuse Rating =

1Ф Transformer = 186.31

149.04

Vp x 125%

1Ф Transformer =

Fuse Rating =157.36

x 300% = 23.7019.92

Page 136: Cable Sizing Calc

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =121.535

x 300% = 18.3019.92

Primary VoltageFuse Rating =

kVA x 1000 x 300%

Page 137: Cable Sizing Calc

Per Block Transformers Sizing Calculation

Block No: 25

kVANORTH + kVASOUTH

= 61.71 + 61.49= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 26

kVANORTH + kVASOUTH

= 67.934 + 80.48= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

27.9419.92

=Fuse Rating =185.5175

x 300%

x 300%

= 23.1919.92

Vp x 125%

1Ф Transformer =

123.20

1Ф Transformer = 154.00

x 300%Primary Voltage

Fuse Rating =154

x 300%

1Ф Transformer =

Fuse Rating = kVA x 1000

148.41

1Ф Transformer = 185.52

Fuse Rating = kVA x 1000

Primary Voltage

Page 138: Cable Sizing Calc

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 27

kVANORTH + kVASOUTH

= 57.393 + 42.179= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 28

kVANORTH + kVASOUTH

= 75.502 + 72.818= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

1Ф Transformer = 185.40

kVA x 1000 x 300%

Primary VoltageFuse Rating =

148.32

Vp x 125%

1Ф Transformer =

124.465x 300% = 18.74

19.92Fuse Rating =

1Ф Transformer = 124.47

kVA x 1000 x 300%

Primary VoltageFuse Rating =

99.57

Vp x 125%

1Ф Transformer =

Page 139: Cable Sizing Calc

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 29

kVANORTH + kVASOUTH

= 50.63 + 48.902= kVA

For 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 30

kVANORTH + kVASOUTH

= 54.454 + 44.794= kVA

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 124.06

99.25

1Ф Transformer =

Vp x 125%

Fuse Rating =124.415

x 300% = 18.7419.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

1Ф Transformer = 124.42

99.53

Vp x 125%

1Ф Transformer =

Fuse Rating =185.4

x 300% = 27.9219.92

Page 140: Cable Sizing Calc

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =124.06

x 300% = 18.6819.92

x 300%Primary Voltage

Fuse Rating = kVA x 1000

Page 141: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: SM Department Store - Silang

S = 33.06 kVA

At 80% Transformer Loading:S ÷ 80% = 33.06 ÷ 0.8 = 41.33 kVA

For Transformer Specification:Use: 45 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

59.65 = (33.06 x 1000 x 1.25)÷400√3 = 59.65 AUse: Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (33.06 ÷ (34.5 x √3)) x 300%= 1.66 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Cleanway Technology Corp.

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%= 21.34 A

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

3Ф Transformer =

3Ф Transformer =

3-No. 8 AWG + 8 AWG (G)

Page 142: Cable Sizing Calc

Facility Name: Hypermarket

S = 47.22 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Waltermart

S = 47.2 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Page 143: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: FEU Silang-Cavite

S = 47.2 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Cavite State University

S = 47.2 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Page 144: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: Silang Municipal Hall

S = 47.22 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Philippine Oasis Hotel & Resort

S = 283.3 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (Pad Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

3Ф Transformer =

3Ф Transformer =

Page 145: Cable Sizing Calc

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

Facility Name: The Hills Condotel

S = 188.9 kVA

At 80% Transformer Loading:S ÷ 80% = 188.89 ÷ 0.8 = 236.11 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

340.81 = (188.89 x 1000 x 1.25) ÷ 400√3 = 340.81 AUse: 3-No. 2/0 AWG + 4 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (188.89 ÷ (34.5 x √3)) x 300%= 9.48 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Renz Villa Hotel

S = 188.9 kVA

At 80% Transformer Loading:S ÷ 80% = 188.89 ÷ 0.8 = 236.11 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

340.81 = (188.89 x 1000 x 1.25) ÷ 400√3 = 340.81 AUse: 3-No. 2/0 AWG + 4 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (188.89 ÷ (34.5 x √3)) x 300%

3Ф Transformer =

3Ф Transformer =

Page 146: Cable Sizing Calc

= 9.48 AUse: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Page 147: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: D-Zone Backpackers Inn

S = 94.44 kVA

At 80% Transformer Loading:S ÷ 80% = 94.44 ÷ 0.8 = 118.05 kVA

For Transformer Specification:Use: 150 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

170.4 = (94.44 x 1000 x 1.25) ÷ 400√3 = 170.40 AUse: 3-No. 4 AWG + 8 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (94.44 ÷ (34.5 x √3)) x 300%= 4.74 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Estrella Hospital

S = 283.3 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

3Ф Transformer =

3Ф Transformer =

Page 148: Cable Sizing Calc

Facility Name: Silang General Hospital

S = 283.33 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Velasco Hospital

S = 283.33 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Page 149: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: La Freva Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Green Papaya Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Page 150: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: The Theodore Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Microtel Inn and Suites Eagle-Ridges

S = 94.4 kVA

At 80% Transformer Loading:S ÷ 80% = 94.44 ÷ 0.8 = 118.05 kVA

For Transformer Specification:Use: 150 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

170.4 = (94.44 x 1000 x 1.25) ÷ 400√3 = 170.40 AUse: 3-No. 4 AWG + 8 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (94.44 ÷ (34.5 x √3)) x 300%= 4.74 A

3Ф Transformer =

3Ф Transformer =

Page 151: Cable Sizing Calc

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

Facility Name: Tagaytay Heaven Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: TRI-R ALLIED INDUSTRIAL INC

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%

3Ф Transformer =

3Ф Transformer =

Page 152: Cable Sizing Calc

= 21.34 AUse: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

Page 153: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: Sustamina Dressing Plant

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.78 ÷ 0.8 = 472.23 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

681.62 = (377.78 x 1000 x 1.25) ÷ 400√3 = 681.62 AUse: 3-No. 400 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.78 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Eurotiles

S = 330.6 kVA

At 80% Transformer Loading:S ÷ 80% = 330.56 ÷ 0.8 = 413.20 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

596.42 = (330.56 x 1000 x 1.25) ÷ 400√3 = 596.42 AUse: 3-No. 300 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (330.56 ÷ (34.5 x √3)) x 300%= 16.60 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

3Ф Transformer =

3Ф Transformer =

Page 154: Cable Sizing Calc

Facility Name: Cavite Techno Industrial Supply

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.78 ÷ 0.8 = 472.23 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

1185.42 = (377.78 x 1000 x 1.25) ÷ 400√3 = 681.62 AUse: 2 SETS OF 3-No. 300 MCM + 2/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.78 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: NAV Trading Corporation

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.78 ÷ 0.8 = 472.23 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

681.62 = (377.78 x 1000 x 1.25) ÷ 400√3 = 681.62 AUse: 3-No. 400 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.78 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Page 155: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: RS-Unitech Manufacturing & Trading

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%= 21.34 A

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Cleanway Technology Corp.

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%= 21.34 A

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Page 156: Cable Sizing Calc

Calculations for 3Ф Transformers:

Facility Name: Cavite Techno Industry

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.8 ÷ 0.8 = 472.25 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

681.65 = (377.8 x 1000 x 1.25) ÷ 400√3 = 681.65 AUse: 3-No. 400 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.8 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

Page 157: Cable Sizing Calc
Page 158: Cable Sizing Calc
Page 159: Cable Sizing Calc
Page 160: Cable Sizing Calc
Page 161: Cable Sizing Calc
Page 162: Cable Sizing Calc
Page 163: Cable Sizing Calc
Page 164: Cable Sizing Calc

BLOCK NO. RESIDENTIAL COMMERCIAL INDUSTRIAL TOTAL kVA

1 68.16 66.116 0 134.28

2 102.32 184.16 0 286.48

3 116.77 75.55 0 192.32

4 91.77 28.33 425 545.10

5 109.57 37.774 377.78 525.12

6 92.87 28.33 377.78 498.98

7 48.34 240.84 0 289.18

8 116.81 221.95 0 338.76

9 115.26 269.17 0 384.43

10 63.27 33.06 0 96.33

11 69.73 127.5 0 197.23

12 89.75 108.606 0 198.35

13 100.77 80.28 0 181.05

14 74.17 28.33 377.78 480.28

15 95.10 33.06 377.78 505.94

16 89.56 33.06 425 547.62

17 68.80 269.17 0 337.97

18 64.70 269.17 0 333.87

19 93.99 264.44 0 358.43

20 47.63 28.33 0 75.96

21 70.45 75.55 0 146.00

22 97.56 28.33 0 125.89

23 120.71 28.33 0 149.04

24 68.90 311.66 0 380.56

25 104.31 18.89 425 548.20

26 115.36 316.386 0 431.74

27 71.24 311.664 0 382.90

28 129.44 302.21 0 431.65

29 94.81 38.45 330.56 463.82

30 70.92 75.55 0 146.47

SUMMARY OF LOADS

Page 165: Cable Sizing Calc

TOTAL kVA 2663.02 3934.25 3116.68 9713.95

Page 166: Cable Sizing Calc

AB BC CA 3Ф AB BC CA 3Ф AB BC CA 3Ф

1 101.22 33.06 11 102.79 94.44 21 98.78 47.22

2 121.21 165.27 12 151.13 47.22 22 125.89

3 145.10 47.22 13 133.83 47.22 23 149.04

4 120.10 425 14 102.50 377.78 24 97.23 283.33

5 147.34 377.78 15 128.16 377.78 25 123.20 425

6 121.20 377.78 16 122.62 425 26 148.41 283.33

7 100.29 188.89 17 101.86 236.11 27 99.57 283.33

8 149.87 188.89 18 97.76 236.11 28 148.32 283.33

9 148.32 236.11 19 122.32 236.11 29 99.53 364.29

10 96.33 20 75.96 30 99.25 47.22

Sum 417.934 418.416 414.614 2040 Sum 383.106 377.062 378.766 2077.77 Sum 394.83 397.41 396.99 2017.05

Total Total Total

9713.95

FEEDER LOAD BALANCING

Total Load kVA =

3290.964 3216.704 3206.28

PHASEBLOCK

PHASE PHASEBLOCK BLOCK

Page 167: Cable Sizing Calc

134.28 197.23 146.00

286.48 198.35 125.89

192.32 181.05 149.04

545.10 480.28 380.56

525.12 505.94 548.20

498.98 547.62 431.74

289.18 337.97 382.90

338.76 333.87 431.65

384.43 358.43 463.82

96.33 75.96 146.47

3290.96 3216.70 3206.28

Page 168: Cable Sizing Calc

Computation of Distance:

Division # of Poles Po-Po Distance

SS - AB 29 150 4350 ft

A-C 18 150 2700 ft

A-D 31 150 4650 ft

B-E 44 150 6600 ft

B-F 11 150 1650 ft

F-G 22 150 3300 ft

F-H 10 150 1500 ft

Total = 24750

Allowable Voltage Drop per 1000ft:

Allowable VD = (1725 x 1000) ÷ 24750

= 69.70 V

Voltage Drop per Division:

Division Distance VD Vdc

SS - AB 4350 69.70 303.20 V

A-C 2700 69.70 188.19 V

A-D 4650 69.70 324.11 V

B-E 6600 69.70 460.02 V

B-F 1650 69.70 115.01 V

F-G 3300 69.70 230.01 V

F-H 1500 69.70 104.55 V

Total = 1725 V

Reference TCL (kVA) I CM DcVd e Vac

SS - AB 512.06 8.57 16510 54.19 40.1 45.99

A-C 262.87 4.40 16510 27.82 13 23.6103

A-D 737.41 12.34 16510 83.41 62 70.7884

B-E 935.50 15.66 16510 150.24 111 127.506

B-F 338.76 5.67 16510 13.60 10 11.542

F-G 384.43 6.43 16510 30.85 23 26.1818

F-H 96.33 1.61 16510 3.51 2.598 2.97887

TOTAL 3267.35 54.68 363.62 261.27 308.60

FEEDER 1: SUMMARY OF VALUES

DESIGN OF PRIMARY DISTRIBUTION SYSTEM FEEDER 1

Page 169: Cable Sizing Calc

SS - AB

Total kVA = 512.06 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (512.058) ÷ (34.5kV x √3)

= 8.57 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 4350 x 8.57) ÷ 303.20

= 2951 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 4350 x 8.57) ÷16510

= 54.19 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 54.19 x 0.98

= 45.99 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 4350 x 8.57 x (cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 40.1 V

Page 170: Cable Sizing Calc

A - C

Total kVA = 262.87 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (262.868) ÷ (34.5kV x √3)

= 4.40 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2700 x 4.40) ÷ 188.19

= 1515 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2700 x 4.40) ÷16510

= 27.82 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 27.82 x 0.98

= 23.61 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2700 x 4.40 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 12.78 V

Page 171: Cable Sizing Calc

A - D

Total kVA = 737.41 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (737.414) ÷ (34.5kV x √3)

= 12.34 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 4650 x 12.34) ÷ 324.11

= 4249 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 4650 x 12.34) ÷16510

= 83.41 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 83.41 x 0.98

= 70.79 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 4650 x 12.34 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 61.72 V

Page 172: Cable Sizing Calc

B - E

Total kVA = 935.50 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (935.504) ÷ (34.5kV x √3)

= 15.66 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 6600 x 15.66) ÷ 460.02

= 5392 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 6600 x 15.66) ÷16510

= 150.24 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 150.24 x 0.98

= 127.5 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 6600 x 15.66 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 111.2 V

Page 173: Cable Sizing Calc

B - F

Total kVA = 338.76 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (338.756) ÷ (34.5kV x √3)

= 5.67 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1650 x 5.67) ÷ 115.01

= 1952 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1650 x 5.67) ÷16510

= 13.60 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 13.60 x 0.98

= 11.54 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1650 x 5.67 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 10.06 V

Page 174: Cable Sizing Calc

F - G

Total kVA = 384.43 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (384.426) ÷ (34.5kV x √3)

= 6.43 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 3300 x 6.43) ÷ 230.01

= 2214 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 3300 x 6.43) ÷16510

= 30.85 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 30.85 x 0.98

= 26.18 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 3300 x 6.43 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 22.82 V

Page 175: Cable Sizing Calc

F - H

Total kVA = 96.33 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (96.328) ÷ (34.5kV x √3)

= 1.61 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1500 x 1.61) ÷ 104.55

= 554 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1500 x 1.61) ÷16510

= 3.51 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 3.51 x 0.98

= 2.979 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1500 x 1.61 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 2.598 V

Page 176: Cable Sizing Calc

Computation of Distance:

Division # of Poles Po-Po Distance

SS - A' 7 150 1050 ft

A'-C' 19 150 2850 ft

B'-E' 18 150 2700 ft

D'-H' 14 150 2100 ft

F'-G' 7 150 1050 ft

A'-L' 43 150 6450 ft

J'-K' 3 150 450 ft

I'-Q' 17 150 2550 ft

M'-P' 12 150 1800 ft

N'-O' 11 150 1650 ft

Total = 22650

Allowable Voltage Drop per 1000ft:

Allowable VD = (1725 x 1000) ÷ 22650

= 76.16 V

Voltage Drop per Division:

Division Distance VD Vdc

SS - A' 1050 76.16 79.97 V

A'-C' 2850 76.16 217.06 V

B'-E' 2700 76.16 205.63 V

D'-H' 2100 76.16 159.94 V

F'-G' 1050 76.16 79.97 V

A'-L' 6450 76.16 491.23 V

J'-K' 450 76.16 34.27 V

I'-Q' 2550 76.16 194.21 V

M'-P' 1800 76.16 137.09 V

N'-O' 1650 76.16 125.66 V

Total = 1725 V

Reference TCL (kVA) I CM DcVd e Vac

SS - A' 94.44 #REF! 16510 #REF! #REF! #REF!

A'-C' 480.28 #REF! 16510 #REF! #REF! #REF!

B'-E' 505.96 #REF! 16510 #REF! #REF! #REF!

DESIGN OF PRIMARY DISTRIBUTION SYSTEM FEEDER 2

FEEDER 2: SUMMARY OF VALUES

Page 177: Cable Sizing Calc

SS - A'

Total kVA = 94.44 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (94.44) ÷ (34.5kV x √3)

= 1.58 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1050 x 1.58) ÷ 79.97

= 498 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 1050 x 1.58) ÷16510

= 2.41 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 2.41 x 0.98

= 2.045 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1050 x 1.58 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 1.785 V

Page 178: Cable Sizing Calc

A' - C'

Total kVA = 480.28 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (480.278) ÷ (34.5kV x √3)

= 8.04 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2850 x 8.04) ÷ 217.06

= 2534 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2850 x 8.04) ÷16510

= 12.27 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 12.27 x 0.98

= 10.413 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2850 x 8.04 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 24.648 V

Page 179: Cable Sizing Calc

B' - E'

Total kVA = 505.96 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (505.964) ÷ (34.5kV x √3)

= 8.47 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2700 x 8.47) ÷ 205.63

= 2669 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2700 x 8.47) ÷16510

= 33.24 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 33.24 x 0.98

= 28.21 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2700 x 8.47 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 24.60 V

Page 180: Cable Sizing Calc

D' - H'

Total kVA = 337.97 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (337.97) ÷ (34.5kV x √3)

= 5.66 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2100 x 5.66) ÷ 159.94

= 1784 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 2100 x 5.66) ÷16510

= 17.28 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 17.28 x 0.98

= 14.67 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2100 x 5.66 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 12.79 V

Page 181: Cable Sizing Calc

F' - G'

Total kVA = 547.62 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (547.62) ÷ (34.5kV x √3)

= 9.16 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1050 x 9.16) ÷ 79.97

= 2886 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1050 x 9.16) ÷16510

= 13.98 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 13.98 x 0.98

= 11.86 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1050 x 9.16 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 10.35 V

Page 182: Cable Sizing Calc

A' - L'

Total kVA = 434.97 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (434.97) ÷ (34.5kV x √3)

= 7.28 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 6450 x 7.28) ÷ 491.23

= 2294 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 6450 x 7.28) ÷16510

= 68.26 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 68.26 x 0.98

= 57.93 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 6450 x 7.28 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 50.51 V

Page 183: Cable Sizing Calc

J' - K'

Total kVA = 47.22 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (47.22) ÷ (34.5kV x √3)

= 0.79 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 450 x 0.79) ÷ 34.27

= 249 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 450 x 0.79) ÷16510

= 0.52 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 0.52 x 0.98

= 0.441 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 450 x 0.79 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 0.382 V

Page 184: Cable Sizing Calc

I' - Q'

Total kVA = 333.87 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (333.874) ÷ (34.5kV x √3)

= 5.59 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2550 x 5.59) ÷ 194.21

= 1762 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 2550 x 5.59) ÷16510

= 20.72 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 20.72 x 0.98

= 17.58 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2550 x 5.59 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 15.33 V

Page 185: Cable Sizing Calc

M' - P'

Total kVA = 75.96 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (75.96) ÷ (34.5kV x √3)

= 1.27 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1800 x 1.27) ÷ 137.09

= 400 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1800 x 1.27) ÷16510

= 3.32 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 3.32 x 0.98

= 2.818 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1800 x 1.27 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 2.459 V

Page 186: Cable Sizing Calc

N' - O'

Total kVA = 122.32 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (122.318) ÷ (34.5kV x √3)

= 2.05 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1650 x 2.05) ÷ 125.66

= 646 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1650 x 2.05) ÷16510

= 4.92 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 4.92 x 0.98

= 4.176 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1650 x 2.05 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 3.638 V

Page 187: Cable Sizing Calc

Computation of Distance:

Division # of Poles Po-Po Distance

SS - D'' 15 150 2250 ft

A''-B'' 31 150 4650 ft

A''-C'' 37 150 5550 ft

D''-F'' 23 150 3450 ft

E''-G'' 2 150 300 ft

D''-H'' 47 150 7050 ft

Total = 23250

Allowable Voltage Drop per 1000ft:

Allowable VD = (1725 x 1000) ÷ 23250

= 74.19 V

Voltage Drop per Division:

Division Distance VD Vdc

SS - D' 2250 74.19 166.93 V

A''-B'' 4650 74.19 344.98 V

A''-C'' 5550 74.19 411.75 V

D''-F'' 3450 74.19 255.96 V

E''-G'' 300 74.19 22.26 V

D''-H'' 7050 74.19 523.04 V

Total = 1725 V

Reference TCL (kVA) I CM DcVd e Vac

SS - D' #REF! #REF! 16510 #REF! #REF! #REF!

A''-B'' #REF! #REF! 16510 #REF! #REF! #REF!

A''-C'' #REF! #REF! 16510 #REF! #REF! #REF!

D''-F'' #REF! #REF! 16510 #REF! #REF! #REF!

E''-G'' #REF! #REF! 16510 #REF! #REF! #REF!

D''-H'' #REF! #REF! 16510 #REF! #REF! #REF!

TOTAL #REF! 29.38 525.96 433.59 355.28

DESIGN OF PRIMARY DISTRIBUTION SYSTEM FEEDER 1

FEEDER 1: SUMMARY OF VALUES

Page 188: Cable Sizing Calc

SS - D"

Total kVA = 146.00 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (146.004) ÷ (34.5kV x √3)

= 2.44 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2250 x 2.44) ÷ 166.93

= 789 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2250 x 2.44) ÷16510

= 7.98 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 7.98 x 0.98

= 6.772 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2250 x 2.44 x (cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 5.905 V

Page 189: Cable Sizing Calc

A" - B"

Total kVA = 274.93 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (274.932) ÷ (34.5kV x √3)

= 4.60 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 4650 x 4.60) ÷ 344.98

= 1488 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 4650 x 4.60) ÷16510

= 15.05 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 15.05 x 0.98

= 12.77 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 4650 x 4.60 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 23.01 V

Page 190: Cable Sizing Calc

A" - C"

Total kVA = 928.76 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (928.758) ÷ (34.5kV x √3)

= 15.54 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 5550 x 15.54) ÷ 411.75

= 5027 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 5550 x 15.54) ÷16510

= 125.37 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 125.37 x 0.98

= 106.4 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 5550 x 15.54 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 92.77 V

Page 191: Cable Sizing Calc

D" - F"

Total kVA = 715.07 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (715.074) ÷ (34.5kV x √3)

= 11.97 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 3450 x 11.97) ÷ 255.96

= 3872 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 3450 x 11.97) ÷16510

= 60.03 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 60.03 x 0.98

= 50.95 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 3450 x 11.97 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 44.42 V

Page 192: Cable Sizing Calc

E" - G"

Total kVA = 99.57 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (99.572) ÷ (34.5kV x √3)

= 1.67 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 300 x 1.67) ÷ 22.26

= 540 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 300 x 1.67) ÷16510

= 0.73 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 0.73 x 0.98

= 0.62 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 300 x 1.67 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 0.539 V

Page 193: Cable Sizing Calc

D" - H"

Total kVA = 384.43 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (384.426) ÷ (34.5kV x √3)

= 6.43 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 7050 x 6.43) ÷

= #DIV/0! CM ≈ #DIV/0! CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

#DIV/0! CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= #DIV/0!

= #DIV/0! V

#DIV/0!

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= #DIV/0!

= #DIV/0! V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 7050 x 6.43 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 48.76 V

Page 194: Cable Sizing Calc

Reference TCL, kVA I, Amp CM ACSR AWG DCvd e, V Vac

PP - A #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - B #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - A' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A' - C' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A" - C" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!

TOTAL #REF! 26.38 525.96 #REF! #REF!

VOLTAGE REGULATION FOR FEEDER 1

#REF!

#REF!

Reference TCL, kVA I, Amp CM ACSR AWG DCvd e, V Vac

PP - A #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - A' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A -B #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - C #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!C - C' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!C - C" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!

TOTAL #REF! 29.98 295.43 #REF! #REF!

VOLTAGE REGULATION FOR FEEDER 1

#REF!

#REF!

Reference TCL, kVA I, Amp CM ACSR AWG DCvd e, V Vac

PP - A #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - A' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A -B #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - C #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!C - C' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!

TOTAL #REF! 28.9 295.43 #REF! #REF!

VOLTAGE REGULATION FOR FEEDER 1

#REF!

#REF!

SUMMARY OF VALUES FOR FEEDER 1

%VR= (∑Vac / Vp) x 100 = #REF!

%VR= (∑Ve / Vp) x 100 = #REF!

SUMMARY OF VALUES FOR FEEDER 2

%VR= (∑Vac / Vp) x 100 = #REF!

%VR= (∑Ve / Vp) x 100 = #REF!

%VR= (∑Ve / Vp) x 100 = #REF!

SUMMARY OF VALUES FOR FEEDER 3

%VR= (∑Vac / Vp) x 100 = #REF!

Page 195: Cable Sizing Calc

PEC 2009 Edition, Table 2.50.3.17 

Grounding Electrode Conductor for Alternating‐Current System

Over 400 MCM to 600 MCM

Over 600 MCM to 1000 MCM

COPPER

2 AWG or Smaller

AWG/MCM

Equivalent for Ungrounded

14

22

1 AWG or 1/0 AWG

2/0 or 3/0 AWG

Over  3/0 AWG to 400 MCM30

50

60

80

Over 325 through 500

Over 500

Over 80 through 200

Over 200 through 325

38 or 50

60 or 80

(mm²)

Size of Grounding 

Electrode Conductor 

COPPER

Size of Largest Ungrounded 

Service Entrance Conductor or

Equivalent Area for Parallel Conductors

 (mm²)

8

COPPER

30 or Smaller

Page 196: Cable Sizing Calc

1/0 AWG

2/0 AWG

COPPER

8 AWG

AWG/MCM

Equivalent for 

grounded

6 AWG

4 AWG

2 AWG

Page 197: Cable Sizing Calc

BLOCK NO. RESIDENTIAL COMMERCIAL INDUSTRIAL TOTAL kVA

SUMMARY OF LOADS

Page 198: Cable Sizing Calc

TOTAL kVA

Page 199: Cable Sizing Calc

AB BC CA 3Ф AB BC CA 3Ф AB BC CA 3Ф

1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19 29

10 20 30

Sum Sum Sum

Total Total Total

Total Load kVA =

FEEDER LOAD BALANCING

BLOCK PHASE BLOCK PHASE BLOCK PHASE