55
EPCIC ALLIANCE LNG REGASIFICATION UNIT, ISLAND BERTH AND SUBSEA PIPELINE SUBSEA PIPELINE AND SUBSEA CABLE INSTALLATION, TESTING & PRE-COMMISSIONING MASER PROJECT NO: MME-PJ-ME-PJ016 LYE PROJECT NO: LY104201 ON-BOTTOM ROUGHNESS ANALYSIS DOCUMENTATION REF. NO.: MME-PJ-ME-PJ016-ENG-RPT-006 11 00 3 Ap r 12 Issued for Use LS VKV

Bottom Roughness Analysis

Embed Size (px)

Citation preview

Page 1: Bottom Roughness Analysis

TABLE OF CONTENTS

EPCIC ALLIANCE LNG REGASIFICATION UNIT, ISLAND BERTH AND SUBSEA PIPELINE

SUBSEA PIPELINE AND SUBSEA CABLE INSTALLATION, TESTING & PRE-COMMISSIONING

MASER PROJECT NO: MME-PJ-ME-PJ016LYE PROJECT NO: LY104201

ON-BOTTOM ROUGHNESS ANALYSIS

DOCUMENTATION REF. NO.: MME-PJ-ME-PJ016-ENG-RPT-00611

00 3 Apr 12 Issued for Use LS VKV

B 10 Feb 12 Issued for PRW review LS VKV

A 3 Feb 12 Issued for MASER Review LS VKV

A1 2 Feb 12 Issued For Internal Review LS VKV

REV DATE DESCRIPTION PREPARED CHECKED MME APPROVED

PRW APPROVED

ALLIANCE ENDORSED

, 03/02/12,
Pls check whether or not we have sent out Rev A previously.
, 02/03/12,
Pls update and include the Appendixes.
, 02/10/12,
Page 2: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-00611

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00B Page 2 of 47

1. INTRODUCTION...................................................................................................31.1 General...................................................................................................................31.2 Objective of the Document.....................................................................................31.3 Abbreviations.........................................................................................................31.4 System of Units......................................................................................................4

2. EXECUTIVE SUMMARY.......................................................................................53. DESIGN DATA......................................................................................................7

3.1 Design Life..........................................................................................................73.2 Pipeline Process Data.........................................................................................73.3 Pipeline Data.......................................................................................................73.4 External Coating Material Properties..................................................................93.5 Environmental Data.............................................................................................93.6 Geotechnical Data.............................................................................................103.7 Soil Friction Factor............................................................................................113.8 Soil Stiffness Factors.........................................................................................113.8 Trenching and Burial Cover..............................................................................123.9 Allowable Stress Criteria...................................................................................123.10 Allowable Span Length.....................................................................................123.11 Pipeline Weight.................................................................................................13

4. METHODOLOGY................................................................................................144.1 Description of Computer Model............................................................................144.2 On-Bottom Roughness Analysis..........................................................................14

5. RESULTS AND DISCUSSION............................................................................166. REFERENCES....................................................................................................32

1. INTRODUCTION...........................................................................................................31.1 General.................................................................................................................31.2 Objective of the Document...................................................................................31.3 Abbreviations........................................................................................................31.4 System of Units....................................................................................................4

2. EXECUTIVE SUMMARY...............................................................................................53. DESIGN DATA..............................................................................................................73.1 Design Life............................................................................................................73.2 Pipeline Process Data..........................................................................................73.3 Pipeline Data........................................................................................................73.4 External Coating Material Properties....................................................................83.5 Environmental Data..............................................................................................83.6 Geotechnical Data...............................................................................................93.7 Soil Friction Factor..............................................................................................113.8 Soil Stiffness Factors.................................................................................................123.8 Trenching and Burial Cover................................................................................123.9 Allowable Stress Criteria....................................................................................123.10 Allowable Span Length...................................................................................12

Page 3: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-00611

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00B Page 3 of 47

3.11 Pipeline Weight........................................................................................................13

4. METHODOLOGY........................................................................................................144.1 Description of Computer Model..........................................................................144.2 On-Bottom Roughness Analysis.........................................................................14

5. RESULTS AND DISCUSSION................................................................................16156. REFERENCES................................................................................................3231APPENDICES

APPENDIX A - OFFPIPE OUTPUTSAPPENDIX B - TYPICAL FREE SPAN CORRECTION DETAILSAPPENDIX C - 30-INCH PIPELINE ALIGNMENT DRAWINGAPPENDIX D - SHORE APPROACH DRAWINGAPPENDIX E - PIPELINE WEIGHT CALCULATIONS

, 02/03/12,
Section 4.3 is not a new subsection. Section 4 only have 4.1 and 4.2. Pls check
Page 4: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-00611

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00B Page 4 of 47

1. INTRODUCTION

1.1 GeneralPETRONAS GAS BERHAD intends to build an LNG Import Facility at Mukim Sungai Udang, Melaka with an import capacity of 3.8 Million tons per annum. The facilities will be designed to receive LNG at an island jetty where the LNG will be transferred to two Floating Storage Units (FSU) for storage. Regasification of the LNG will take place in a Regasification Unit located on the island jetty. The gas will then be transferred back to shore via subsea pipeline.

The island jetty will be constructed within Sungai Udang harbor limit, located approximately 3km from shore.

1.2 Objective of the DocumentThis document presents the on-bottom roughness analyses due to the existing seabed profile for the 30-inch gas pipeline from the flare platform at Jetty Regasification Unit (JRU) to the Onshore Landfall Tie-in point at KP 2.531. KP 0.000 lies at the flare platform.

The scope of these analyses is:

To perform on-bottom roughness analyses for installation, hydrotest, flooded, and operation cases.

To identify the locations where the spanning spans exceeds the maximum allowable unsupported span length as per Pipeline Free Span Report, PGB0078-LEKAS(P2)-00-PL-REP-0012.

To ensure the stresses induced in the pipeline are within the maximum allowable stresses for spans in excess of allowable spans.

1.3 AbbreviationsThe following abbreviations have been used throughout the document:

3LPE 3 Layer Polyethylene

AE Asphalt Enamel

API American Petroleum Institute

ASME American Society of Mechanical Engineers

DNV Det Norske Veritas

FSU Floating Storage Units

HAT Highest Astronomical Tide

JRU Jetty Regasification Unit

LAT Lowest Astronomical Tide

LFP Landfall Tie-in Point

, 02/03/12,
Pls check the Rev number.
Page 5: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-00611

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00B Page 5 of 47

LNG Liquefied Natural Gas

LSAW Longitudinal Submerged Arc Weld

MSL Mean Sea Level

OD Outer Diameter

PGB Petronas Gas Berhad

PPMSB Petronas Penapisan Melaka Sdn. Bhd.

PTS Petronas Technical Standards

SI System International

SMYS Specific Minimum Yield Strength

SMTS Specific Minimum Tensile Strength

VIV Vortex Induced Vibration

1.4 System of UnitsThe International System (SI) of units is adopted as the main system of units throughout the engineering design unless otherwise noted.

Page 6: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-00611

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00B Page 6 of 47

2. EXECUTIVE SUMMARY

The pipeline on-bottom roughness analyses have been carried out for empty, flooded, hydrotest and operational conditions using OFFPIPE program. The pipe stresses and pipeline span lengths are checked against the over-stressing and over-spanning respectively. Over-stressing is a situation where the pipeline stress exceeds the allowable yield stress in accordance with Petronas Techanical Standard PTS 20.214 [Ref 4]. Over-spanning is considered when the pipeline span exceeds the stipulated computed maximum allowable span lengths given in Table 3.131.

The on-bottom roughness analyses have been carried out from flare platform located offshore at KP 0.000 to landfall point (LFP) near shore region. The bottom roughness analyses has been performed to identify the occurrences of free spans and their estimated lengths and locations based on seabed profile along the proposed pipeline route for the exposed unburied pipelines condition. During operation whole length except a short section from KP 0.000 to KP 0.300xxx to xxx will be trenched and buried. For on-bottom roughness analyses, pipeline is considered exposed along the proposed seabed or installation, flooded, and hydrotest cases and first 300 mm pipeline from KP 0.000 is not buried for operation case, The seabed elevations are determined from the offshore pipelines alignment sheets and shore approach drawing [Ref 6,7,8, and 9]Appendices C and D].

A number of over free spanning locations have been identified based on spans exceeding maximum allowable span lengths under installation and operating condition given in Table 3.10.3 For installation condition, span corrections are required from KP 0.124 to KP 0.175 and for operating condition span rectification needed from KP 0.126 to KP 0.172 and from KP 0.241 to KP 0.283. However, the stresses are all within the maximum allowable stress values under empty, flooded, hydrotest and operating condition. Thus, span correction is required over spanning location for installation and operating conditions.

However, iIt is recommended to verify the actual span vs. allowable spans during the post lay survey. Should any of the spanspans exceedsexceed the allowable, free span remedial measures should be introduced undertaken by means of grout bags or rock placement. It is proposed that or advanced fatigue analysis can may be carried out to reduce or eliminateoptimise span corrections. A typical free span correction configuration is attached in Appendix B.

Table 2.1 summarizes the on-bottom roughness analysis results for 30-inch gas pipeline from the flare platform at Jetty Regasification Unit (JRU) to the Onshore Landfall Tie-in point at KP 2.531. Detailed results are shown in Section 5 of this document.

Dr. Raj K Jain, 02/10/12,
Not clear
Dr. Raj K Jain, 02/10/12,
This table gives stress allowable.
Page 7: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT, ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-006

ON-BOTTOM ROUGHNESS ANALYSISRev: 00B Page 7 of 47

Table 2.1: Pipeline On-Bottom Roughness Analysis

KP (km) Number of Spans Exceeding Allowable Span Length Unity Check[1]

From To Installation FloodingFlooded Hydrotest Operating Installation FloodingFlooded Hydrotest Operating

0.000 0.300 1 NIL NIL 2

0.63 0.75 0.92 0.94

0.300 2.531 (LFP) NIL NIL NIL N/A

Note 1: Allowable stresses are derived based on allowable stress usage factors outlined in Table 3.12.0

Dr. Raj K Jain, 02/10/12,
Correction as discussed
Page 8: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 8 of 47

3. DESIGN DATA

The Pipeline design data summarized in the following subsections as stipulated given in the Residual Engineering Design Basis [Ref.1], unless stated otherwise.

3.1 Design LifeThe design life for the pipeline system shall be 20 years.

3.2 Pipeline Process Data

3.2.1 The pipeline process data considered in the design has been presented in Table 3.1.

Table 3.1: Pipeline Process Data

Parameters Unit 30-inch pipeline

Service - LNG

Design Pressure Barg 68.95

Hydrotest Pressure Barg 103.425

Design Temperature oC Maximum 55

Product Densities kg/m3Maximum 498

Minimum 439

3.2.2 The delta temperature and pressure used for the different load cases are listed below in Tables 3.2 and 3.3.

Table 3.2: Delta Temperature for Load Cases

Product Delta Temperature (°C)

Installation 0

HydrotestMaximum seawater temperature (30.0 °C) & Minimum ambient seawater temperature (20.0 °C)

10

FloodedMaximum seawater temperature (30.0 °C) & Minimum ambient seawater temperature (20.0 °C)

10

OperationMaximum design temperature (55.0 °C) & Minimum ambientt seawater temperature (20.0 °C

35

, 03/02/12,
Pls change the Header title. Not showing On-Bottom Roughness Analysis
Page 9: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 9 of 47

Note: The temperature difference (ΔT) is considered to be consistent along the pipeline

Table 3.3: Pressure Used for Load Cases

Design Condition Pressure (barg)Installation 0

Hydrotest 103.425 (Hydrotest Pressure)

Flooded 0

Operation 68.95 (Design Pressure)

3.3 Pipeline DataThe pipeline design data is summarized in Table 3.24.

Table 3.24: Pipeline Data

Description Unit Parameters

Outside Diameter mm (inch) 762 (30)

Line Pipe Wall Thickness mm 14.3

Concrete CoatingThickness

mm 95 (KP 0.0-1.0)

mm 115 (KP 1.0-2.531)

Cutback mm 350

Material Standard of Line pipe- - API 5L

Material Grade of Line pipe - Grade X-65

Line Pipe Manufacture - LSAW

Hydrostatic Test Medium - Treated (Inhibited) Sea Water

Hydrostatic Test Medium Density kg/m3 1025

Line pipe External Corrosion and Coating Thickness and Cutbacks

Offshore Pipeline - 5.5 mm AE

Cutback mm 250

Onshore Pipeline - 3.5 mm 3LPE

Cutback mm 250

SMTS MPa 535

SMYS MPa 450

Steel Density kg/m3 7850

Young’s Modulus MPa 2.07 x 105

Poisson Ratio - 0.3

, 02/03/12,
Pls include the bottom line. It’s like hanging.
Dr. Raj K Jain, 02/10/12,
Which edition?
Page 10: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 10 of 47

Description Unit Parameters

Coefficient of Linear Expansion °C 1.17 x 10 5

Internal Corrosion Allowance mm 0

3.4 External Coating Material PropertiesThe external coating properties are presented in Table 3.35.

Table 3.35: Coating Properties

Material Density (kg/m3)

Asphalt Enamel 1280

3 Layer Polyethylene (3LPE) 925

Concrete (Dry)[2] 3040

Field Joint Coating[3] 1027

Notes:1. The thermal conductivity and density of the 3LPE are the composite equivalent values of the

component materials FBE, adhesive and the polypropylene.2. 5% of water absorption will be considered in the analysis.3. Field joint coating density comprises of heat shrink sleeve and HDPU foam as infill material.

3.5 3.5 Environmental Data

3.5.1 Seawater Properties

The seawater properties are presented in Table 3.46.

Dr. Raj K Jain, 02/10/12,
Do they use both coatings?
Page 11: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 11 of 47

Table 3.46: Sea Water properties

Parameters Values

Density 1025 kg/m3

Kinematic Viscosity 0.96 x 10-6 m2/s

Surface Temperature 23oC – 33oC

Seabed Temperature 20oC – 30oC

3.5.2 Design Water Depth

The design water depth along the pipeline route is summarized as below.

Table 3.7: Design Water Depth

Description Unit Value

Design Min. Water Depth m 0

Max. Water Depth along Pipeline Route w.r.t. LAT m 20.2

Design Max. Water Depth m 22.85

Dr. Raj K Jain, 02/10/12,
This section may be made 3.5.1
Page 12: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 12 of 47

3.5.3 Tidal Data

The astronomical tidal range taken relative to Mean Sea Level (MSL) is given below.

Table 3.58: Tidal and Surge Data

Tide/Parameters Unit Height

Highest Astronomical Tide (HAT) m +1.46

Mean Sea Level (MSL) m 0.00

Lowest Astronomical Tide (LAT) m -1.19

3.5.3 Design Water Depth

The design water depth along the pipeline route is summarized as below.

Table 3.6: Design Water Depth

Description Unit Value

Design Max. Water Depth m 22.85

3.6

3.6 Geotechnical DataThe following general characterization of the soil properties along the pipeline corridor will be used for installation engineering purpose [Ref. 1].

Dr. Raj K Jain, 02/10/12,
This section may be made 3.5.1
Dr. Raj K Jain, 02/10/12,
Be made 3.5.2
Page 13: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 13 of 47

Table 3.79: Soil Properties

BoreHole / DropCore KP

Sample Depth

(m)Soil

ConditionSoil Strength

Parameter

Sub. Weight (kN/m3)

Dry Weight (kN/m3)

Drop Core 1 0.25 0 - 0.21 Very Soft SiltyCLAY No Data 2.90 5.20

Bore Hole 1 0.50

0 - 2 Medium Grey CLAY No Data - -

2 - 6 Sandy CLAY

Too Very Soft

3.83 6.45

6 - 7 Su=11kPa 1.39 6.56

Drop Core 2 0.750 - 0.5 Very Soft

Silty CLAY No Data 2.80 4.71

0.5 - 1 Very Soft SILT No Data 5.40 8.83

Drop Core 3 1.00 0 - 0.18 Soft SILT No Data 6.70 11.87

Bore Hole 2 1.25

0 - 0.5 Sandy SILT No Data - -

0.5 - 3 Medium Dense

SiltySAND

No Data - -

3 - 3.5 Φ= 40° - -

3.5 - 5 Φ= 38° - -

Drop Core 4 1.50 0 - 0.18Medium Dense SAND

No Data - -

Bore Hole 3 1.75

0 - 1.5 No Data No Data - -

1.5 - 3 Medium Grey CLAY Su=17kPa 4.43 7.52

3 - 4.5 Su=16kPa 4.63 8.00

Drop Core 5 2.00 0 - 0.23 Very Soft SILT No Data 5.30 8.53

Bore Hole 4 2.250 - 1 Medium

Grey CLAY No Data - -

1 - 2 Sandy CLAY Su=13kPa 4.97 8.63

2 - 3 Su=13kPa 4.75 8.51

, 02/03/12,
Drag the table in Page 11 and display it below this table.
Dr. Raj K Jain, 02/10/12,
Table needs tiding up
Page 14: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 14 of 47

BoreHole / DropCore KP

Sample Depth

(m)Soil

ConditionSoil Strength

Parameter

Sub. Weight (kN/m3)

Dry Weight (kN/m3)

3 - 4 Su=11kPa 4.33 7.84

Bore Hole 5 2.50

0 - 0.5 SandySILT No Data - -

0.5 - 2.5 Su=38kPa 1.83 14.04

2.5 – 6.5 Φ= 29° - -

Bore Hole 6 Note 1

0 - 2 No Data No Data 3.25 5.43

2 - 3 Grey CLAY Su=7kPa - -

Page 15: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 15 of 47

Notes:

1. Borehole number 6 is located at Jetty approach spool piece.2. In the absent of soil data at seabed surface, 4kPa soil shear strength is used for top soil along

the pipeline.

3.7 Soil Friction FactorThe soil condition along the pipeline route is predominantly soft to sandy clay. Longitudinal and lateral soil friction coefficients of 0.3 and 0.5 as per Section 3.4.6 [Ref 11] have been used in the analysis.

3.8 Soil Stiffness FactorsThe soil stiffness parameters used for soft clay and loose sand in the analyses are tabulated in Table 3.8 10 as stipulated in DNV RP F105 [Ref 5].

Page 16: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 16 of 47

Table 3.810: Soil Stiffness Factors

Soil TypeCoefficient for

Vertical Soil Stiffness, CV

(kN/m5/2)

Coefficient for Lateral Soil

Stiffness, CL (kN/m5/2)

Dynamic Stiffness

Factor, KV,S (kN/m/m)

Soft Clay 1400 1200 160 – 260

Loose Sand 10500 9000 250

3.8 Trenching and Burial CoverSubsea pipeline and cable are to be buried using post-trench method. Subsea cable will be buried minimum 2m to the top of cable for the entire subsea section. Burial of soil to the top of pipeline are given in Table 3.9 11 below.

Table 3.911: Trench and Burial Cover for Pipeline

KP Soil Cover to top

0-0.3 None

0.3-0.8 1 meter cover

0.8-2.531 2 meter cover

3.9 Allowable Stress CriteriaThe maximum allowable stresses for the nearshore and offshore sections of the pipeline system are tabulated in Table 3.1012, as a percentage of the Specified Minimum Yield Stress (SMYS) [Ref.2]. The allowable stresses are based on the PTS 20.214.

Table 3.1012: Pipeline Allowable Stress Criteria (Offshore)

Load Condition Allowable Stress (% SMYS)

Installation 72

Hydrotest 100

Operating 723.10

3.10 Allowable Span LengthThe maximum allowable span lengths for the pipeline is as per Pipeline Free Span Report, PGB0078-LEKAS(P2)-00-PL-REP-0012 [Ref. 2]. Allowable span lengths are stated in Table 3.1113.

Dr. Raj K Jain, 02/10/12,
Please clarify what stresses you are checking? These appear to be OK for hoop stress but may not be correct for equivalent stress, please check
Dr. Raj K Jain, 02/10/12,
Please state in introduction and executive summary that pipeline is trenched to what extent. It is not stated there.
Page 17: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 17 of 47

Page 18: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 18 of 47

Table 3.1113: Summary of Maximum Allowable Span Length for 30-inch Gas Pipeline

KP (km) Maximum Allowable Span Length (m)

From To Installation Flooding Hydrotest Operating

0.000 0.300 47 47 47 40

0.300 2.531 47 47 47 N/A

2.531 2.871 Onshore

3.11 Pipeline WeightThe pipeline weight used for the shore pull is shown in Table 3.1214. The detailed calculation is attached in Appendix E.

Table 3.1214: Pipeline Weight

Concrete Weight Coated (CWC) (mm)

CasePipe Weight In Air

(N/m)Pipe Submerged

Weight (N/m)

95Installation 10180.93 2982.12

Hydrotest 14427.44 7228.63

Flooded 14427.44 7228.63

Operation 12244.11 5045.30

115Installation 11952.35 4161.95

Hydrotest 16198.86 8408.45

Flooded 16198.86 8408.45

Operation 14015.53 6225.13

Page 19: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 19 of 47

4. METHODOLOGY

4.1 Description of Computer ModelThe on-bottom roughness analysis is performed using the pipeline installation analysis program “OFFPIPE”. It is a proprietary advanced, finite element computer programs developed specifically for designing offshore pipelines and to perform structural analysis of non-linear pipeline problems. The program is capable of modeling the separation of pipeline from the seabed, as well as the resulting stresses on the pipeline due to variations on the seabed profile.

4.2 On-Bottom Roughness AnalysisThe on-bottom roughness analyses have been performed to predict compute the theoretical free span occurrences and their estimated lengths and locations based on the seabed profile along the proposed pipeline route. The procedures adopted for on-bottom roughness analyses are:

Perform empty condition stress/free-spans finite element analyses using the existing seabed profile.

Identify the over-stressing and over-spanning location along the pipeline route (if any);

Perform flooded condition stress/free-spans finite element analysis using the seabed profile.

Identify the over-stressing and over-spanning location along the pipeline route (if any);

Using the existing seabed profile perform hydrotest pipeline condition stress/free-spans finite element analyses;

Identify the over-stressing and over-spanning location along the pipeline route (if any);

Using the existing seabed profile for first 300 m from KP 0.000 and perform operational pipeline condition stress/free-spans finite element analyses;

Identify the over stressing and over spanning location along the pipeline route (if any)

The analysis has been performed by dividing the pipeline in segments of 1000 m, each segment consisting of section between adjacent kilometer points.

4.3 Assumptions

Dr. Raj K Jain, 02/10/12,
Same type repeated againa and. The whole thing cabe presented better.
Dr. Raj K Jain, 02/10/12,
Flooded case not discussed here
Dr. Raj K Jain, 02/10/12,
Meaning what?
Page 20: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 20 of 47

The following assumptions and design considerations have been used in the pipeline on-bottom roughness analysis:

The properties of the steel pipe material are assumed as linear and modeled using constant density and modulus of elasticity.

Pipeline coatings are modeled to allow account for the resulting increased weight and external diameter of the pipeline. The pipe stresses are however calculated based on the dimensions of the steel pipe alone.

The analysis considers 100 m overlap for each KP range analysed load cases.

The pipeline span is assumed to be aoccur as isolated single span on the seabed, the boundary of the single span is assumed to be fixed-pinned.

A residual lay tension of 287.45 kN obtained from pipelay static analysis has been used in the analyses for installation, flooded, hydrotest, and operation condition.

Dr. Raj K Jain, 02/10/12,
Installation case not analysied.
Dr. Raj K Jain, 02/10/12,
This value appears to be excessive. I would have expected it to be very small particularly for short length.
Dr. Raj K Jain, 02/10/12,
Not necessary to state
Page 21: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 21 of 47

5. RESULTS AND DISCUSSION

The on-bottom roughness analyses have been carried out for empty, flooded, hydrotest and operational conditions using the OFFPIPE program. OFFPIPE program is used to model a pipeline to sink lay naturally and following the seabed profile. The pipe stresses and pipeline span locations and lengths, if any, are compared against the maximum stress criteria and allowable span length respectively. The pipeline is divided into a number of segments in the OFFPIPE analysis. The pipeline OFFPIPE analyses were segmented between the KP values with overlap lengths for effective continuity.

The pipe over-spanning refers to the pipe span longer than the maximum allowable span length given in Table 3.131. The pipe over-stressing refers to the pipe stress exceeding the allowable stress criteria defined in Table 3.120.

A number of over spanning locations have been identified based on spans exceeding maximum allowable span lengths under installation and operating condition given in Table 3.11. For installation condition, span corrections are required from KP 0.124 to KP 0.175 and for operating condition span rectification needed from KP 0.126 to KP 0.172 and from KP 0.241 to KP 0.283. Typical free span correction configuration is attached in Appendix B. However, the stresses are all within the maximum allowable stress values under empty, flooded, hydrotest and operating condition. Thus, span correction is required over spanning location for installation and operating conditions.

However, iIt is recommended to verify the actual span vs. allowable spans during the post lay survey. Should any of the span exceeds the allowable, free span remedial measures should be introduced undertaken by means of grout bags or rock placement. oIt is rsuggested that advanced fatigue analysis can be carried out to reduce or eliminatoptimisee span corrections.

Complete outputs of OFFPIPE analysis for as-laid empty, flooded, hydrotest, and operating conditions are attached in Appendix A. The pipeline on-bottom analyses results are summarized in Tables 5.1 to 5.4.

Dr. Raj K Jain, 02/10/12,
Not clear
Page 22: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 22 of 47

Table 5.1: Result of Pipeline On-Bottom Roughness Analyses (Installation)

From (km) To (km)

Case

Span Location (KP) Span Length

(m)

Allowable Span

Length (m)

Number of Spans eExceeding

Allowable Span Length

Maximum Stress (72%

SMYS)

Unity Check

( 1.0)From (km) To (km)

Installation 0.001 0.003 2 47 NIL 45 0.630.016 0.055 39 47 NIL0.060 0.070 10 47 NIL0.071 0.076 5 47 NIL0.081 0.116 35 47 NIL0.121 0.123 2 47 NIL0.124 0.175 51 47 10.180 0.207 27 47 NIL0.208 0.234 26 47 NIL0.239 0.284 45 47 NIL0.291 0.333 42 47 NIL0.333 0.336 3 47 NIL0.340 0.362 22 47 NIL0.370 0.390 20 47 NIL0.394 0.399 5 47 NIL0.401 0.413 12 47 NIL0.416 0.426 10 47 NIL0.440 0.474 34 47 NIL

Dr. Raj K Jain, 02/10/12,
Flag these as potential problem to be checked during survey
Page 23: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 23 of 47

From (km) To (km)

Case Span Location (KP) Span Length

(m)

Allowable Span

Length (m)

Number of Spans eExceeding

Allowable Span

Maximum Stress (72%

Unity Check

( 1.0)From (km) To (km)

0.480 0.498 18 47 NIL0.502 0.509 7 47 NIL0.510 0.515 5 47 NIL0.516 0.521 5 47 NIL0.523 0.529 6 47 NIL0.531 0.546 15 47 NIL0.547 0.550 3 47 NIL0.561 0.592 31 47 NIL0.594 0.597 3 47 NIL0.598 0.609 11 47 NIL0.609 0.612 3 47 NIL0.618 0.625 7 47 NIL0.629 0.640 11 47 NIL0.642 0.663 21 47 NIL0.673 0.698 25 47 NIL0.702 0.708 6 47 NIL0.719 0.733 14 47 NIL0.734 0.740 6 47 NIL0.745 0.759 14 47 NIL0.765 0.787 22 47 NIL0.791 0.815 24 47 NIL0.816 0.819 3 47 NIL 45 0.630.827 0.832 5 47 NIL0.832 0.850 18 47 NIL0.851 0.868 17 47 NIL0.879 0.898 19 47 NIL0.903 0.907 4 47 NIL0.913 0.916 3 47 NIL0.917 0.924 7 47 NIL0.926 0.931 5 47 NIL0.936 0.941 5 47 NIL0.944 0.967 23 47 NIL0.970 1.001 31 47 NIL1.012 1.046 34 47 NIL1.047 1.079 32 47 NIL1.082 1.098 16 47 NIL1.099 1.143 44 47 NIL1.145 1.179 34 47 NIL1.180 1.201 21 47 NIL1.203 1.229 26 47 NIL

Dr. Raj K Jain, 02/10/12,
Flag
Page 24: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 24 of 47

From (km) To (km)

Case Span Location (KP) Span Length

(m)

Allowable Span

Length (m)

Number of Spans eExceeding

Allowable Span

Maximum Stress (72%

Unity Check

( 1.0)From (km) To (km)

1.230 1.256 26 47 NIL1.257 1.263 6 47 NIL1.265 1.294 29 47 NIL1.297 1.320 23 47 NIL1.322 1.342 20 47 NIL1.345 1.354 9 47 NIL1.355 1.396 41 47 NIL1.399 1.435 36 47 NIL1.436 1.478 42 47 NIL1.479 1.491 12 47 NIL1.493 1.521 28 47 NIL1.523 1.535 12 47 NIL1.536 1.554 18 47 NIL1.556 1.587 31 47 NIL1.589 1.636 47 47 NIL1.637 1.639 2 47 NIL1.639 1.680 41 47 NIL1.682 1.704 22 47 NIL1.705 1.736 31 47 NIL1.737 1.741 4 47 NIL1.741 1.765 24 47 NIL1.768 1.782 14 47 NIL1.783 1.791 8 47 NIL1.792 1.809 17 47 NIL 45 0.631.811 1.821 10 47 NIL1.823 1.843 20 47 NIL1.848 1.864 16 47 NIL1.867 1.881 14 47 NIL1.883 1.888 5 47 NIL1.891 1.896 5 47 NIL1.906 1.912 6 47 NIL1.913 1.919 6 47 NIL1.921 1.947 26 47 NIL1.951 1.959 8 47 NIL1.960 1.968 8 47 NIL1.968 1.977 9 47 NIL1.979 1.989 10 47 NIL1.990 1.996 6 47 NIL1.997 2.016 19 47 NIL2.019 2.050 31 47 NIL

Dr. Raj K Jain, 02/10/12,
Flag
Dr. Raj K Jain, 02/10/12,
Flag
Dr. Raj K Jain, 02/10/12,
Flag
Page 25: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 25 of 47

From (km) To (km)

Case Span Location (KP) Span Length

(m)

Allowable Span

Length (m)

Number of Spans eExceeding

Allowable Span

Maximum Stress (72%

Unity Check

( 1.0)From (km) To (km)

2.051 2.069 18 47 NIL2.071 2.100 29 47 NIL2.102 2.105 3 47 NIL2.107 2.129 22 47 NIL2.130 2.133 3 47 NIL2.137 2.157 20 47 NIL2.162 2.195 33 47 NIL2.198 2.202 4 47 NIL2.203 2.227 24 47 NIL2.231 2.249 18 47 NIL2.252 2.254 2 47 NIL2.255 2.282 27 47 NIL2.289 2.315 26 47 NIL2.315 2.318 3 47 NIL2.320 2.327 7 47 NIL2.328 2.338 10 47 NIL2.338 2.346 8 47 NIL2.346 2.354 8 47 NIL2.356 2.358 2 47 NIL2.362 2.375 13 47 NIL2.377 2.380 3 47 NIL2.380 2.384 4 47 NIL2.388 2.403 15 47 NIL2.410 2.413 3 47 NIL2.414 2.429 15 47 NIL2.429 2.434 5 47 NIL2.435 2.441 6 47 NIL 45 0.632.442 2.449 7 47 NIL2.449 2.456 7 47 NIL2.458 2.485 27 47 NIL2.488 2.531 43 47 NIL

Note 1: Span length exceeds 40 m is potential span locations that need to be checked during post-lay trench.

Dr. Raj K Jain, 02/10/12,
Flag
Page 26: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 26 of 47

Table 5.2: Result of Pipeline On-Bottom Roughness Analyses (Flooding)

From (km) To (km)

Case

Span Location (KP)Span

Length (m)

Allowable Span Length

(m)

Number of Spans Exceeding

Allowable Span Length

Maximum Stress (100% SMYS)

Unity Check

( 1.0)From (km) To (km)

Flooding 1 3 2 47 NIL 75 0.7525 35 10 47 NIL36 43 7 47 NIL50 52 2 47 NIL60 69 9 47 NIL72 75 3 47 NIL

Page 27: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 27 of 47

From (km) To (km)

Case Span Location (KP) Span Length (m)

Allowable Span Length

(m)

Number of Spans Exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( 1.0)From (km) To (km)

83 87 4 47 NIL96 114 18 47 NIL

126 128 2 47 NIL129 138 9 47 NIL140 160 20 47 NIL161 172 11 47 NIL181 192 11 47 NIL193 201 8 47 NIL215 234 19 47 NIL243 252 9 47 NIL253 281 28 47 NIL292 313 21 47 NIL323 331 8 47 NIL345 353 8 47 NIL356 361 5 47 NIL376 386 10 47 NIL403 411 8 47 NIL417 424 7 47 NIL442 444 2 47 NIL448 451 3 47 NIL460 467 7 47 NIL471 473 2 47 NIL481 483 2 47 NIL484 488 4 47 NIL511 514 3 47 NIL535 545 10 47 NIL562 568 6 47 NIL572 581 9 47 NIL585 588 3 47 NIL601 605 4 47 NIL605 608 3 47 NIL618 623 5 47 NIL630 634 4 47 NIL644 661 17 47 NIL 75 0.75679 692 13 47 NIL703 707 4 47 NIL721 731 10 47 NIL736 738 2 47 NIL747 750 3 47 NIL768 773 5 47 NIL

Page 28: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 28 of 47

From (km) To (km)

Case Span Location (KP) Span Length (m)

Allowable Span Length

(m)

Number of Spans Exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( 1.0)From (km) To (km)

773 785 12 47 NIL794 798 4 47 NIL801 813 12 47 NIL836 846 10 47 NIL853 855 2 47 NIL857 863 6 47 NIL863 866 3 47 NIL882 890 8 47 NIL947 959 12 47 NIL972 983 11 47 NIL986 990 4 47 NIL991 993 2 47 NIL996 999 3 47 NIL

1001 1006 5 47 NIL1014 1042 28 47 NIL1043 1046 3 47 NIL1047 1056 9 47 NIL1056 1067 11 47 NIL1068 1078 10 47 NIL1082 1098 16 47 NIL1100 1102 2 47 NIL1104 1110 6 47 NIL1114 1119 5 47 NIL1119 1135 16 47 NIL1136 1138 2 47 NIL1138 1142 4 47 NIL1146 1177 31 47 NIL1181 1201 20 47 NIL1204 1229 25 47 NIL1231 1248 17 47 NIL1249 1255 6 47 NIL1257 1263 6 47 NIL1268 1274 6 47 NIL1275 1293 18 47 NIL 75 0.751297 1320 23 47 NIL1323 1329 6 47 NIL1330 1341 11 47 NIL1346 1353 7 47 NIL1355 1361 6 47 NIL1362 1369 7 47 NIL

Page 29: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 29 of 47

From (km) To (km)

Case Span Location (KP) Span Length (m)

Allowable Span Length

(m)

Number of Spans Exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( 1.0)From (km) To (km)

1371 1396 25 47 NIL1400 1435 35 47 NIL1436 1446 10 47 NIL1447 1478 31 47 NIL1480 1492 12 47 NIL1498 1512 14 47 NIL1513 1520 7 47 NIL1524 1527 3 47 NIL1528 1534 6 47 NIL1538 1554 16 47 NIL1557 1587 30 47 NIL1591 1615 24 47 NIL1616 1636 20 47 NIL1637 1639 2 47 NIL1640 1645 5 47 NIL1645 1669 24 47 NIL1670 1679 9 47 NIL1684 1703 19 47 NIL1706 1718 12 47 NIL1718 1730 12 47 NIL1731 1735 4 47 NIL1737 1740 3 47 NIL1741 1752 11 47 NIL1762 1765 3 47 NIL1768 1782 14 47 NIL1784 1788 4 47 NIL1788 1790 2 47 NIL1793 1803 10 47 NIL1805 1809 4 47 NIL1811 1820 9 47 NIL1824 1834 10 47 NIL1849 1856 7 47 NIL1858 1861 3 47 NIL1867 1874 7 47 NIL 75 0.751877 1880 3 47 NIL1885 1888 3 47 NIL1891 1895 4 47 NIL1907 1911 4 47 NIL1913 1919 6 47 NIL1923 1942 19 47 NIL

Page 30: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 30 of 47

From (km) To (km)

Case Span Location (KP) Span Length (m)

Allowable Span Length

(m)

Number of Spans Exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( 1.0)From (km) To (km)

1943 1947 4 47 NIL1952 1958 6 47 NIL1960 1967 7 47 NIL1969 1972 3 47 NIL1973 1976 3 47 NIL1979 1987 8 47 NIL1991 1996 5 47 NIL1998 2015 17 47 NIL2021 2035 14 47 NIL2035 2043 8 47 NIL2044 2049 5 47 NIL2052 2069 17 47 NIL2072 2097 25 47 NIL2102 2105 3 47 NIL2109 2123 14 47 NIL2138 2144 6 47 NIL2145 2156 11 47 NIL2163 2185 22 47 NIL2187 2195 8 47 NIL2198 2201 3 47 NIL2204 2226 22 47 NIL2232 2235 3 47 NIL2235 2245 10 47 NIL2246 2249 3 47 NIL2256 2281 25 47 NIL2289 2293 4 47 NIL2295 2310 15 47 NIL2311 2314 3 47 NIL2321 2326 5 47 NIL2329 2337 8 47 NIL2339 2344 5 47 NIL2349 2354 5 47 NIL2363 2368 5 47 NIL2368 2370 2 47 NIL 75 0.752381 2383 2 47 NIL2392 2402 10 47 NIL2416 2429 13 47 NIL2430 2434 4 47 NIL2436 2441 5 47 NIL2442 2449 7 47 NIL

Page 31: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 31 of 47

From (km) To (km)

Case Span Location (KP) Span Length (m)

Allowable Span Length

(m)

Number of Spans Exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( 1.0)From (km) To (km)

2450 2455 5 47 NIL2459 2485 26 47 NIL2492 2506 14 47 NIL2519 2529 10 47 NIL

Page 32: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 32 of 47

Table 5.3: Result of Pipeline On-Bottom Roughness Analyses (Hydrotest)

From (km) To (km)

Case

Span Location (KP)Span

Length (m)

Allowable Span Length

(m)

Number of Spans exceeding

Allowable Span Length

Maximum Stress (100% SMYS)

Unity Check

( 1.0)

From (km) To (km)

Hydrotest 1 3 2 47 NIL 92 0.9225 35 10 47 NIL36 43 7 47 NIL50 52 2 47 NIL60 69 9 47 NIL72 75 3 47 NIL83 87 4 47 NIL

Page 33: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 33 of 47

From (km) To (km)

CaseSpan Location (KP) Span

Length (m)Allowable

Span Length (m)

Number of Spans exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( From (km) To (km)

96 114 18 47 NIL126 128 2 47 NIL129 138 9 47 NIL140 160 20 47 NIL161 172 11 47 NIL181 192 11 47 NIL193 201 8 47 NIL215 234 19 47 NIL243 252 9 47 NIL253 281 28 47 NIL292 313 21 47 NIL323 331 8 47 NIL345 353 8 47 NIL356 361 5 47 NIL376 386 10 47 NIL403 411 8 47 NIL417 424 7 47 NIL442 444 2 47 NIL448 451 3 47 NIL460 467 7 47 NIL471 473 2 47 NIL481 483 2 47 NIL484 488 4 47 NIL511 514 3 47 NIL535 545 10 47 NIL562 568 6 47 NIL572 581 9 47 NIL585 588 3 47 NIL601 605 4 47 NIL 92 0.92605 608 3 47 NIL618 623 5 47 NIL630 634 4 47 NIL644 661 17 47 NIL679 692 13 47 NIL703 707 4 47 NIL721 731 10 47 NIL736 738 2 47 NIL747 750 3 47 NIL

Page 34: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 34 of 47

From (km) To (km)

CaseSpan Location (KP) Span

Length (m)Allowable

Span Length (m)

Number of Spans exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( From (km) To (km)

768 773 5 47 NIL773 785 12 47 NIL794 798 4 47 NIL801 813 12 47 NIL836 846 10 47 NIL853 855 2 47 NIL857 863 6 47 NIL863 866 3 47 NIL882 890 8 47 NIL937 940 3 47 NIL947 959 12 47 NIL972 983 11 47 NIL986 990 4 47 NIL991 993 2 47 NIL996 999 3 47 NIL

1001 1006 5 47 NIL1014 1042 28 47 NIL1043 1046 3 47 NIL1047 1056 9 47 NIL1056 1067 11 47 NIL1068 1078 10 47 NIL1082 1098 16 47 NIL1100 1102 2 47 NIL1104 1110 6 47 NIL1114 1119 5 47 NIL1119 1135 16 47 NIL1136 1138 2 47 NIL1138 1142 4 47 NIL 92 0.921146 1177 31 47 NIL1181 1201 20 47 NIL1204 1229 25 47 NIL1231 1248 17 47 NIL1249 1255 6 47 NIL1257 1263 6 47 NIL1268 1274 6 47 NIL1275 1293 18 47 NIL1297 1320 23 47 NIL1323 1329 6 47 NIL

Dr. Raj K Jain, 02/10/12,
Not clear why singled out for short spans
Page 35: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 35 of 47

From (km) To (km)

CaseSpan Location (KP) Span

Length (m)Allowable

Span Length (m)

Number of Spans exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( From (km) To (km)

1330 1341 11 47 NIL1346 1353 7 47 NIL1355 1361 6 47 NIL1362 1369 7 47 NIL1371 1396 25 47 NIL1400 1435 35 47 NIL1436 1446 10 47 NIL1447 1478 31 47 NIL1480 1492 12 47 NIL1498 1512 14 47 NIL1513 1520 7 47 NIL1524 1527 3 47 NIL1528 1534 6 47 NIL1538 1554 16 47 NIL1557 1587 30 47 NIL1591 1615 24 47 NIL1616 1636 20 47 NIL1637 1639 2 47 NIL1640 1645 5 47 NIL1645 1669 24 47 NIL1670 1679 9 47 NIL1684 1703 19 47 NIL1706 1718 12 47 NIL1718 1730 12 47 NIL1731 1735 4 47 NIL1737 1740 3 47 NIL1741 1752 11 47 NIL 92 0.921762 1765 3 47 NIL1768 1782 14 47 NIL1784 1788 4 47 NIL1788 1790 2 47 NIL1793 1803 10 47 NIL1805 1809 4 47 NIL1811 1820 9 47 NIL1824 1834 10 47 NIL1849 1856 7 47 NIL1858 1861 3 47 NIL1867 1874 7 47 NIL

Page 36: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 36 of 47

From (km) To (km)

CaseSpan Location (KP) Span

Length (m)Allowable

Span Length (m)

Number of Spans exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( From (km) To (km)

1877 1880 3 47 NIL1885 1888 3 47 NIL1891 1895 4 47 NIL1907 1911 4 47 NIL1913 1919 6 47 NIL1923 1942 19 47 NIL1943 1947 4 47 NIL1952 1958 6 47 NIL1960 1967 7 47 NIL1969 1972 3 47 NIL1973 1976 3 47 NIL1979 1987 8 47 NIL1991 1996 5 47 NIL1998 2015 17 47 NIL2021 2035 14 47 NIL2035 2043 8 47 NIL2044 2049 5 47 NIL2052 2069 17 47 NIL2072 2097 25 47 NIL2102 2105 3 47 NIL2109 2123 14 47 NIL2138 2144 6 47 NIL2145 2156 11 47 NIL2163 2185 22 47 NIL2187 2195 8 47 NIL2198 2201 3 47 NIL 92 0.922204 2226 22 47 NIL2232 2235 3 47 NIL2235 2245 10 47 NIL2246 2249 3 47 NIL2256 2281 25 47 NIL2289 2293 4 47 NIL2295 2310 15 47 NIL2311 2314 3 47 NIL2321 2326 5 47 NIL2329 2337 8 47 NIL2339 2344 5 47 NIL2349 2354 5 47 NIL

Page 37: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 37 of 47

From (km) To (km)

CaseSpan Location (KP) Span

Length (m)Allowable

Span Length (m)

Number of Spans exceeding

Allowable Span

Maximum Stress (100%

Unity Check

( From (km) To (km)

2363 2368 5 47 NIL2368 2370 2 47 NIL2381 2383 2 47 NIL2392 2402 10 47 NIL2416 2429 13 47 NIL2430 2434 4 47 NIL2436 2441 5 47 NIL2442 2449 7 47 NIL2450 2455 5 47 NIL2459 2485 26 47 NIL2492 2506 14 47 NIL2519 2529 10 47 NIL

Page 38: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 38 of 47

Table 5.4: Result of Pipeline On-Bottom Roughness Analyses (Operation)

Case

Span Location (KP)Span

Length (m)

Allowable Span Length

(m)

Number of Spans exceeding

Allowable Span Length

Maximum Stress (72%

SMYS)

Unity Check

( 1.0)From (km) To (km)

Operation 1 3 2 40 NIL 68 0.9424 44 20 40 NIL49 52 3 40 NIL60 70 10 40 NIL72 76 4 40 NIL83 87 4 40 NIL89 92 3 40 NIL95 116 21 40 NIL

126 172 46 40 1181 202 21 40 NIL203 206 3 40 NIL212 234 22 40 NIL241 283 42 40 1292 300 8 40 NIL

Page 39: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 39 of 47

6. REFERENCES

1. MME-PJ-ME-PJ016-ENG-RPT-001 Residual Engineering Design Basis.

2. PGB0078-LEKAS(P2)-00-PL-REP-0012 Pipeline Free Span Report

3. OFFPIPE USER’S GUIDE MANUAL by Robert C. Malahy, Jr

4. Petronas Technical Standards, Pipeline and Riser Engineering PTS 20.214

5. DNV-RP-F105, Free Spanning Pipelines

6. PG80078-LEKAS(P2)-00-PL-DGA-0007 30-inch Pipeline Alignment Drawing

7. PG80078-LEKAS(P2)-00-PL-DGA-0018 30-inch Pipeline trench and Burial Details

8. MME-PJ-ME-PJ016-ENG-DWG-001 Shore Approach-Site Layout Plan

9. MME-PJ-ME-PJ016-ENG-DWG-003 Shore Approach-Sections, Elevations, and Detail

10. MME-PJ-ME-PJ016-ENG-DWG-016 Typical Free Span Correction Details Drawing

11. DNV RP F109 On-Bottom Stability Design of Submarine Pipelines

Page 40: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-006

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00BA Page 40 of 47

APPENDIX AOFFPIPE OUTPUTS

Page 41: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-006

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00BA Page 41 of 47

Page 42: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 42 of 47

APPENDIX B

TYPICAL FREE SPAN CORRECTION DETAILS

Page 43: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-006

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00BA Page 43 of 47

APPENDIX C30-INCH PIPELINE ALIGNMENT DRAWING

Page 44: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-006

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00BA Page 44 of 47

APPENDIX DSHORE APPROACH DRAWING

Page 45: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-0062

ON-BOTTOM ROUGHNESS ANALYSIS Rev: B00 Page 45 of 47

Page 46: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT,

ISLAND BERTH AND SUBSEA PIPELINE

Project No.:MME-PJ- ME-PJ016Doc No:MME-PJ-ME-PJ016-ENG-RPT-006

ON-BOTTOM ROUGHNESS ANALYSIS Rev: 00BA Page 46 of 47

APPENDIX EPIPELINE WEIGHT CALCULATIONS

Page 47: Bottom Roughness Analysis

EPCIC ALLIANCE LNG REGASIFICATION UNIT, ISLAND BERTH AND SUBSEA

PIPELINE

MME-PJ- ME-PJ016

MME-PJ-ME-PJ016-ENG-RPT-006ON-BOTTOM ROUGHNESS ANALYSIS Rev: A Page 47