45
Blind deconvolution of 3D data in wide field fluorescence microscopy Ferréol Soulez 1,2 Loïc Denis 2,3 Yves Tourneur 1 Eric Thiébaut 2 1 Centre Commun de Quantimétrie Lyon I, France 2 Centre de Recherche Astrophysique de Lyon Lyon I, France 3 Laboratoire Hubert Curien St Etienne, France ISBI 2012 1/1

Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution of 3D data in wide fieldfluorescence microscopy

Ferréol Soulez1,2 Loïc Denis2,3 Yves Tourneur1 Eric Thiébaut2

1Centre Commun de QuantimétrieLyon I, France

2Centre de Recherche Astrophysique de LyonLyon I, France

3Laboratoire Hubert CurienSt Etienne, France

ISBI 2012

1 / 1

Page 2: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Wide Field Fluorescence Microscopy

Uniform illumination of thewhole specimen,

Imaging at the emissionwavelenght,

Moving the focal planeproduces a 3D representationof the specimen.

Coarse depth resolution

Improving resolution

Improving PSF (confocal,multiphoton. . . ),

single molecule microscopy,

Deconvolution.from Griffa et al. (2010).

2 / 1

Page 3: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Wide Field Fluorescence Microscopy

Uniform illumination of thewhole specimen,

Imaging at the emissionwavelenght,

Moving the focal planeproduces a 3D representationof the specimen.

Coarse depth resolution

Improving resolution

Improving PSF (confocal,multiphoton. . . ),

single molecule microscopy,

Deconvolution.from Griffa et al. (2010).

2 / 1

Page 4: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Wide Field Fluorescence Microscopy

Uniform illumination of thewhole specimen,

Imaging at the emissionwavelenght,

Moving the focal planeproduces a 3D representationof the specimen.

Coarse depth resolution

Improving resolution

Improving PSF (confocal,multiphoton. . . ),

single molecule microscopy,

Deconvolution.from Griffa et al. (2010).

2 / 1

Page 5: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 6: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 7: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 8: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 9: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 10: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 11: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 12: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution

Blur modeled by a convolution : y = h ∗ x + n

Deconvolution :Estimating the crisp image x of the specimen given the data y, the PSF hand the noise n statistics.See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known

— theoretical diffraction-limited PSF no flexibility— measured PSF with calibration beads complex, noisy— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.2010].

3 / 1

Page 13: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Maximum a posteriori blind deconvolution

Estimating the most probable couple Object/PSF {x+,h+} accordingto the data and some a priori knowledge.

Done by the minimisation of a cost function J(x,h):

J(x,h) = Jdata(x,h)︸ ︷︷ ︸likelihood

+µ Jprior(x)︸ ︷︷ ︸object priors

,

PSF priors enforced by its parametrization.

Object a priori globally smooth with few sharp edges :Hyperbolic approximation of 3D total variation :

Jprior(x) =∑

k

√‖∇xk‖

22 + ε

2 .

4 / 1

Page 14: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Maximum a posteriori blind deconvolution

Estimating the most probable couple Object/PSF {x+,h+} accordingto the data and some a priori knowledge.

Done by the minimisation of a cost function J(x,h):

J(x,h) = Jdata(x,h)︸ ︷︷ ︸likelihood

+µ Jprior(x)︸ ︷︷ ︸object priors

,

PSF priors enforced by its parametrization.

Object a priori globally smooth with few sharp edges :Hyperbolic approximation of 3D total variation :

Jprior(x) =∑

k

√‖∇xk‖

22 + ε

2 .

4 / 1

Page 15: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Maximum a posteriori blind deconvolution

Estimating the most probable couple Object/PSF {x+,h+} accordingto the data and some a priori knowledge.

Done by the minimisation of a cost function J(x,h):

J(x,h) = Jdata(x,h)︸ ︷︷ ︸likelihood

+µ Jprior(x)︸ ︷︷ ︸object priors

,

PSF priors enforced by its parametrization.

Object a priori globally smooth with few sharp edges :Hyperbolic approximation of 3D total variation :

Jprior(x) =∑

k

√‖∇xk‖

22 + ε

2 .

4 / 1

Page 16: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Likelihood

Gaussian noise :

Jdata(x) =12

(y −H · x)T · C−1noise · (y −H · x)

Uncorrelated non-stationnary Gaussian noise :

Jdata(x) =∑

k=Pixels

∑λ

1σk,λ

[(H · x)k − yk,λ

]2

Missing pixels k −→ σk,λ = ∞.

Poisson Noise ≈ non-stationnary Gaussian noise

σk,λ = γ(H · x)k,λ + σ2CCD≈ γmax(yk,λ, 0) + σ2

CCD

where γ is a quantization factor and σ2CCD account for Gaussian

additive noise (e.g. readout noise).

5 / 1

Page 17: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Likelihood

Gaussian noise :

Jdata(x) =12

(y −H · x)T · C−1noise · (y −H · x)

Uncorrelated non-stationnary Gaussian noise :

Jdata(x) =∑

k=Pixels

∑λ

1σk,λ

[(H · x)k − yk,λ

]2

Missing pixels k −→ σk,λ = ∞.

Poisson Noise ≈ non-stationnary Gaussian noise

σk,λ = γ(H · x)k,λ + σ2CCD≈ γmax(yk,λ, 0) + σ2

CCD

where γ is a quantization factor and σ2CCD account for Gaussian

additive noise (e.g. readout noise).

5 / 1

Page 18: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Likelihood

Gaussian noise :

Jdata(x) =12

(y −H · x)T · C−1noise · (y −H · x)

Uncorrelated non-stationnary Gaussian noise :

Jdata(x) =∑

k=Pixels

∑λ

1σk,λ

[(H · x)k − yk,λ

]2

Missing pixels k −→ σk,λ = ∞.

Poisson Noise ≈ non-stationnary Gaussian noise

σk,λ = γ(H · x)k,λ + σ2CCD≈ γmax(yk,λ, 0) + σ2

CCD

where γ is a quantization factor and σ2CCD account for Gaussian

additive noise (e.g. readout noise).

5 / 1

Page 19: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

h(rj, z) =∣∣∣∣∑k

Fj,k ak(z)∣∣∣∣2 ,

with rj lateral position of pixel j, F discrete Fourier transform and ak(z)pupil function at frequel k and depth z.

ak(z) = ρk exp(i 2 π (φk + zψk)) ,

ρk =∑

nβnZn

k ,

φk =∑

nαnZn

k ,

ψk =√

(ni/λ)2 − ‖κk‖2

where Znk the n-th Zernike polynomial [Hanser 2004] and ni the refractive

index of immersion medium.

PSF parametrized by {ni,α,β}

6 / 1

Page 20: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

h(rj, z) =∣∣∣∣∑k

Fj,k ak(z)∣∣∣∣2 ,

with rj lateral position of pixel j, F discrete Fourier transform and ak(z)pupil function at frequel k and depth z.

ak(z) = ρk exp(i 2 π (φk + zψk)) ,

ρk =∑

nβnZn

k ,

φk =∑

nαnZn

k ,

ψk =√

(ni/λ)2 − ‖κk‖2

where Znk the n-th Zernike polynomial [Hanser 2004] and ni the refractive

index of immersion medium.

PSF parametrized by {ni,α,β}

6 / 1

Page 21: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

h(rj, z) =∣∣∣∣∑k

Fj,k ak(z)∣∣∣∣2 ,

with rj lateral position of pixel j, F discrete Fourier transform and ak(z)pupil function at frequel k and depth z.

ak(z) = ρk exp(i 2 π (φk + zψk)) ,

ρk =∑

nβnZn

k ,

φk =∑

nαnZn

k ,

ψk =√

(ni/λ)2 − ‖κk‖2

where Znk the n-th Zernike polynomial [Hanser 2004] and ni the refractive

index of immersion medium.

PSF parametrized by {ni,α,β}

6 / 1

Page 22: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

h(rj, z) =∣∣∣∣∑k

Fj,k ak(z)∣∣∣∣2 ,

with rj lateral position of pixel j, F discrete Fourier transform and ak(z)pupil function at frequel k and depth z.

ak(z) = ρk exp(i 2 π (φk + zψk)) ,

ρk =∑

nβnZn

k ,

φk =∑

nαnZn

k ,

ψk =√

(ni/λ)2 − ‖κk‖2

where Znk the n-th Zernike polynomial [Hanser 2004] and ni the refractive

index of immersion medium.

PSF parametrized by {ni,α,β}

6 / 1

Page 23: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

h(rj, z) =∣∣∣∣∑k

Fj,k ak(z)∣∣∣∣2 ,

with rj lateral position of pixel j, F discrete Fourier transform and ak(z)pupil function at frequel k and depth z.

ak(z) = ρk exp(i 2 π (φk + zψk)) ,

ρk =∑

nβnZn

k ,

φk =∑

nαnZn

k ,

ψk =√

(ni/λ)2 − ‖κk‖2

where Znk the n-th Zernike polynomial [Hanser 2004] and ni the refractive

index of immersion medium.

PSF parametrized by {ni,α,β}

6 / 1

Page 24: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

h(rj, z) =∣∣∣∣∑k

Fj,k ak(z)∣∣∣∣2 ,

with rj lateral position of pixel j, F discrete Fourier transform and ak(z)pupil function at frequel k and depth z.

ak(z) = ρk exp(i 2 π (φk + zψk)) ,

ρk =∑

nβnZn

k ,

φk =∑

nαnZn

k ,

ψk =√

(ni/λ)2 − ‖κk‖2

where Znk the n-th Zernike polynomial [Hanser 2004] and ni the refractive

index of immersion medium.

PSF parametrized by {ni,α,β}

6 / 1

Page 25: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

Preventing some degeneracies :

Centering PSF : removing phase tip-tilt α1 = α2 = 0.normalizing PSF

∫h(k)dk = 1 : constraining

∑n β

2n = 1.

Benefits of such parametrization :

optically derived model,

require only the knowledge of the wavelength λ, the numericalaperture NA,

few parameters (several tenth),

no additional priors (regularization),

ensure PSF positivity,

taking only radial Zernike polynomials ensure axially symmetric PSF.

7 / 1

Page 26: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

PSF parametrization

Preventing some degeneracies :

Centering PSF : removing phase tip-tilt α1 = α2 = 0.normalizing PSF

∫h(k)dk = 1 : constraining

∑n β

2n = 1.

Benefits of such parametrization :

optically derived model,

require only the knowledge of the wavelength λ, the numericalaperture NA,

few parameters (several tenth),

no additional priors (regularization),

ensure PSF positivity,

taking only radial Zernike polynomials ensure axially symmetric PSF.

7 / 1

Page 27: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Algorithm summary

Solution given by :

{x+, n+i ,α+,β+} = arg min

x,ni,α,β

{Jdata(x,h(ni,α,β; y)) + µJprior(x)

}Non-convex and badly conditioned problem.Alternating minimization :

Begin with aberrations free PSF h(0) (α = β = 0),set n = 1:

1 x(n) = arg minx

{Jdata(x,h(n−1); y) + µJprior(x)

}2 n(n)

i = arg minni

Jdata(x(n),h(ni,α(n−1),β(n−1)); y)

3 α(n) = arg minαJdata(x(n),h(n(n)

i ,α,β(n−1)); y)

4 β(n) = arg minβJdata(x(n),h(n(n)

i ,α(n),β; y) under constraint∑

k β2k = 1.

5 n = n + 1, go to step 1

until a certain convergence.

8 / 1

Page 28: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Algorithm summary

Solution given by :

{x+, n+i ,α+,β+} = arg min

x,ni,α,β

{Jdata(x,h(ni,α,β; y)) + µJprior(x)

}Non-convex and badly conditioned problem.Alternating minimization :

Begin with aberrations free PSF h(0) (α = β = 0),set n = 1:

1 x(n) = arg minx

{Jdata(x,h(n−1); y) + µJprior(x)

}2 n(n)

i = arg minni

Jdata(x(n),h(ni,α(n−1),β(n−1)); y)

3 α(n) = arg minαJdata(x(n),h(n(n)

i ,α,β(n−1)); y)

4 β(n) = arg minβJdata(x(n),h(n(n)

i ,α(n),β; y) under constraint∑

k β2k = 1.

5 n = n + 1, go to step 1

until a certain convergence.

8 / 1

Page 29: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Algorithm summary

Solution given by :

{x+, n+i ,α+,β+} = arg min

x,ni,α,β

{Jdata(x,h(ni,α,β; y)) + µJprior(x)

}Non-convex and badly conditioned problem.Alternating minimization :

Begin with aberrations free PSF h(0) (α = β = 0),set n = 1:

1 x(n) = arg minx

{Jdata(x,h(n−1); y) + µJprior(x)

}2 n(n)

i = arg minni

Jdata(x(n),h(ni,α(n−1),β(n−1)); y)

3 α(n) = arg minαJdata(x(n),h(n(n)

i ,α,β(n−1)); y)

4 β(n) = arg minβJdata(x(n),h(n(n)

i ,α(n),β; y) under constraint∑

k β2k = 1.

5 n = n + 1, go to step 1

until a certain convergence.

8 / 1

Page 30: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Algorithm summary

Solution given by :

{x+, n+i ,α+,β+} = arg min

x,ni,α,β

{Jdata(x,h(ni,α,β; y)) + µJprior(x)

}Non-convex and badly conditioned problem.Alternating minimization :

Begin with aberrations free PSF h(0) (α = β = 0),set n = 1:

1 x(n) = arg minx

{Jdata(x,h(n−1); y) + µJprior(x)

}2 n(n)

i = arg minni

Jdata(x(n),h(ni,α(n−1),β(n−1)); y)

3 α(n) = arg minαJdata(x(n),h(n(n)

i ,α,β(n−1)); y)

4 β(n) = arg minβJdata(x(n),h(n(n)

i ,α(n),β; y) under constraint∑

k β2k = 1.

5 n = n + 1, go to step 1

until a certain convergence.

8 / 1

Page 31: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Algorithm summary

Solution given by :

{x+, n+i ,α+,β+} = arg min

x,ni,α,β

{Jdata(x,h(ni,α,β; y)) + µJprior(x)

}Non-convex and badly conditioned problem.Alternating minimization :

Begin with aberrations free PSF h(0) (α = β = 0),set n = 1:

1 x(n) = arg minx

{Jdata(x,h(n−1); y) + µJprior(x)

}2 n(n)

i = arg minni

Jdata(x(n),h(ni,α(n−1),β(n−1)); y)

3 α(n) = arg minαJdata(x(n),h(n(n)

i ,α,β(n−1)); y)

4 β(n) = arg minβJdata(x(n),h(n(n)

i ,α(n),β; y) under constraint∑

k β2k = 1.

5 n = n + 1, go to step 1

until a certain convergence.

8 / 1

Page 32: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Algorithm summary

Solution given by :

{x+, n+i ,α+,β+} = arg min

x,ni,α,β

{Jdata(x,h(ni,α,β; y)) + µJprior(x)

}Non-convex and badly conditioned problem.Alternating minimization :

Begin with aberrations free PSF h(0) (α = β = 0),set n = 1:

1 x(n) = arg minx

{Jdata(x,h(n−1); y) + µJprior(x)

}2 n(n)

i = arg minni

Jdata(x(n),h(ni,α(n−1),β(n−1)); y)

3 α(n) = arg minαJdata(x(n),h(n(n)

i ,α,β(n−1)); y)

4 β(n) = arg minβJdata(x(n),h(n(n)

i ,α(n),β; y) under constraint∑

k β2k = 1.

5 n = n + 1, go to step 1

until a certain convergence.

8 / 1

Page 33: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Algorithm summary

Solution given by :

{x+, n+i ,α+,β+} = arg min

x,ni,α,β

{Jdata(x,h(ni,α,β; y)) + µJprior(x)

}Non-convex and badly conditioned problem.Alternating minimization :

Begin with aberrations free PSF h(0) (α = β = 0),set n = 1:

1 x(n) = arg minx

{Jdata(x,h(n−1); y) + µJprior(x)

}2 n(n)

i = arg minni

Jdata(x(n),h(ni,α(n−1),β(n−1)); y)

3 α(n) = arg minαJdata(x(n),h(n(n)

i ,α,β(n−1)); y)

4 β(n) = arg minβJdata(x(n),h(n(n)

i ,α(n),β; y) under constraint∑

k β2k = 1.

5 n = n + 1, go to step 1

until a certain convergence.

8 / 1

Page 34: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution on simulations

Ground truth Data proposed method

XY

sect

ion

XZ

sect

ion

Simulation with depth aberrations from Kenig, Kam & Feuer, TPAMI, (2010)

9 / 1

Page 35: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution on simulations

Ground truth Data proposed method

XY

sect

ion

XZ

sect

ion

Simulation with depth aberrations from Kenig, Kam & Feuer, TPAMI, (2010)

9 / 1

Page 36: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Blind deconvolution on simulations

Ground truth Data Kenig et al. Proposed method

XY

sect

ion

XZ

sect

ion

RMSE 36.16 24.88 11.27Simulation with depth aberrations from Kenig, Kam & Feuer, TPAMI, (2010)

10 / 1

Page 37: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Experimental results: Calibration bead

XY section XZ section

0 5 10 15 0

5

10

15

0 5 10 15 0

5

10

15

20

0

1e+03

2e+03

3e+03

4e+03

— Bead diameter: 2.5µm, NA = 1.4— 2563 pixels 64.5 × 64.5 × 160nm3

from A. Griffa, N. Garin & D. Sage, G.I.T. Imaging & Microscopy, 2010.

11 / 1

Page 38: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Non blind deconvolution with theoretical PSF

XY section XZ section

0 5 10 15 0

5

10

15

0 5 10 15 0

5

10

15

20

0

1.64e+04

3.28e+04

4.92e+04

6.55e+04

— Bead diameter: 2.5µm, NA = 1.4, λ = 512nm— 2563 pixels 64.5 × 64.5 × 160nm3

from A. Griffa, N. Garin & D. Sage, G.I.T. Imaging & Microscopy, 2010.

12 / 1

Page 39: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Calibration bead : blind deconvolution

XY section XZ section

0 5 10 15 0

5

10

15

0 5 10 15 0

5

10

15

20

— Bead diameter: 2.5µm, NA = 1.4, λ = 512nm— 2563 voxels 64.5 × 64.5 × 160nm3

from A. Griffa, N. Garin & D. Sage, G.I.T. Imaging & Microscopy, 2010.

13 / 1

Page 40: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Calibration bead

5 10 0.0

0.5

1.0

DataDeconvolutionBlind deconvolution

3D Radial profile of the bead

data Hyugens AutoDeblur Deconvol. proposed methodparameters Lab non-blind blind

transversal FWHM 2.87 2.71 2.71 2.66 2.74 2.78axial FWHM (in µm) 4.76 4.00 4.64 4.16 3.05 2.98

Relative contrast 18 % 53 % 78 % 68 % 84 % 88 %

Performance of 3 deconvolution methods as reported by Griffa (2010) comparedto the proposed method. Hyugens and AutoDeblur are commercial softwares and

Deconvolution Lab is an imageJ plugin implementing (Vonesch, 2008).14 / 1

Page 41: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Calibration bead: PSFTh

eore

tical

PS

F

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

Est

imat

edP

SF

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

−3 −2 −1 0 1 2 3

−4

−2

0

2

4

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

XZ section XZ section YZ section

15 / 1

Page 42: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Experimental result: C. Elegans

C. Elegans embryo

×63, 1.4 NA oilobjective,

DAPI + FITC + CY3,

672 × 712 × 104 voxels,

voxels size64.5 × 64.5 × 200 nm3

from A. Griffa, N. Garin & D.Sage, G.I.T. Imaging &Microscopy, 2010.

16 / 1

Page 43: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Experimental result: C. Elegans

17 / 1

Page 44: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Conclusion

An effective blind deconvolution method

increase both lateral and axial resolution,

optically motivated PSF model,

few needed parameters (NA and wavelength),

But still one hyper-parameter to tune.

Works in progress

extending to confocal and two photons microscopy,

using [Denis et al 2011] for depth variant blind deconvolution.

18 / 1

Page 45: Blind deconvolution of 3D data in wide field …...Wide Field Fluorescence Microscopy Uniform illumination of the whole specimen, Imaging at the emission wavelenght, Moving the focal

Conclusion

An effective blind deconvolution method

increase both lateral and axial resolution,

optically motivated PSF model,

few needed parameters (NA and wavelength),

But still one hyper-parameter to tune.

Works in progress

extending to confocal and two photons microscopy,

using [Denis et al 2011] for depth variant blind deconvolution.

18 / 1