Biomimicry via Electrospinning

Embed Size (px)

Text of Biomimicry via Electrospinning

  • This article was downloaded by: [Tsinghua University]On: 07 June 2012, At: 17:31Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

    Critical Reviews in Solid State and Materials SciencesPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/bsms20

    Biomimicry via ElectrospinningJinyou Lin a b c , Xianfeng Wang a b c , Bin Ding a b , Jianyong Yu b , Gang Sun c & Moran Wangd ea State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College ofMaterials Science and Engineering, Donghua University, Shanghai, Chinab Nanomaterials Research Center, Research Institute of Donghua University, Shanghai, Chinac College of Textiles, Donghua University, Shanghai, Chinad School of Aerospace, Tsinghua University, Beijing, Chinae Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos,New Mexico, USA

    Available online: 07 Jun 2012

    To cite this article: Jinyou Lin, Xianfeng Wang, Bin Ding, Jianyong Yu, Gang Sun & Moran Wang (2012): Biomimicry viaElectrospinning, Critical Reviews in Solid State and Materials Sciences, 37:2, 94-114

    To link to this article: http://dx.doi.org/10.1080/10408436.2011.627096

    PLEASE SCROLL DOWN FOR ARTICLE

    Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

    This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form toanyone is expressly forbidden.

    The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses shouldbe independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly inconnection with or arising out of the use of this material.

    http://www.tandfonline.com/loi/bsms20http://dx.doi.org/10.1080/10408436.2011.627096http://www.tandfonline.com/page/terms-and-conditions

  • Critical Reviews in Solid State and Materials Sciences, 37:94114, 2012Copyright c Taylor and Francis Group, LLCISSN: 1040-8436 print / 1547-6561 onlineDOI: 10.1080/10408436.2011.627096

    Biomimicry via Electrospinning

    Jinyou Lin,1,2,3 Xianfeng Wang,1,2,3 Bin Ding,1,2, Jianyong Yu,2 Gang Sun,3and Moran Wang4,5,1State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of MaterialsScience and Engineering, Donghua University, Shanghai, China2Nanomaterials Research Center, Research Institute of Donghua University, Shanghai, China3College of Textiles, Donghua University, Shanghai, China4School of Aerospace, Tsinghua University, Beijing, China5Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos,New Mexico, USA

    Electrospinning, an efficient technique to produce long fibers with micro- or nanoscale diam-eters, has attracted tremendous interests during past decades. By orchestrating parametersin electrospinning, diverse forms of fibrous assemblies and individual fibers with hierarchicalstructures can be successfully achieved. Some of these versatile micro- and nanostructuresdisplay a remarkable resemblance to the materials and objects existing in nature, such as hon-eycomb, spider webs, extracellular matrix, plant tendril and leaf, etc. The emerging field ofbiomimicry enables one to mimic biology or nature to develop novel nanomaterials as well as toimprove processes for materials via electrospinning. In this review, we present a full panoramaof recent studies on biomimicry via electrospinning, and highlight some of biomimicked one-dimensional nanomaterials as well as their functions and applications to date.

    Keywords electrospinning, biomimicry, biomimetics, electrospun fibers, hierarchical structures

    Table of Contents

    1. INTRODUCTION ................................................................................................................................................95

    2. ELECTROSPINNING TECHNOLOGYAN OVERVIEW .................................................................................952.1. History of Electrospinning ..............................................................................................................................952.2. Processing of Electrospinning ..........................................................................................................................96

    3. BIOMIMETIC PROCESS VIA ELECTROSPINNING ........................................................................................97

    4. BIOMIMICRY VIA MANIPULATING FIBER ASSEMBLIES ............................................................................984.1. Bamboo Leaf .................................................................................................................................................994.2. Feather ..........................................................................................................................................................994.3. Honeycomb ................................................................................................................................................. 1004.4. Extracellular Matrix ..................................................................................................................................... 101

    5. BIOMIMICRY VIA MANIPULATING INDIVIDUAL FIBER STRUCTURES .................................................. 1025.1. Lotus Leaf ................................................................................................................................................... 1025.2. Silver Ragwort Leaf ..................................................................................................................................... 103

    E-mail: binding@dhu.edu.cnE-mail: mrwang@tsinghua.edu.cn

    94

    Dow

    nloa

    ded

    by [

    Tsi

    nghu

    a U

    nive

    rsity

    ] at

    17:

    31 0

    7 Ju

    ne 2

    012

  • BIOMIMICRY VIA ELECTROSPINNING 95

    5.3. Plant Tendril ................................................................................................................................................ 1045.4. Soap-Bubble and Spider Web ........................................................................................................................ 1065.5. Polar Bear Hair ............................................................................................................................................ 108

    6. APPLICATIONS INSPIRED FROM NATURE .................................................................................................. 1106.1. Self-Cleaning Materials ................................................................................................................................ 1106.2. Tissue Engineering ....................................................................................................................................... 1106.3. Sensors ........................................................................................................................................................ 1106.4. Catalysis and Others ..................................................................................................................................... 110

    7. SUMMARY ........................................................................................................................................................ 110

    ACKNOWLEDGMENTS .......................................................................................................................................... 111

    REFERENCES ......................................................................................................................................................... 111

    1. INTRODUCTIONAfter billions of years stringent evolution and natural se-

    lection, nature has developed some materials and objects thatare endowed with fascinating structures with unique propertiesand functions, such as high strength, self-cleaning, structuralcolors, thermal insulation, dry adhesion and so on.1,2 The un-derstanding of these properties created by nature may give usnew insights into the imitation and production of new materi-als and processes. For instance, the idea of fishing nets mayhave originated from spider webs; the robust hexagonal honey-comb may have led to its applications in lightweight structuresin airplane.3 Copying, adaptation or derivation from biologyis referred to as biomimicry.4 The term biomimetics intro-duced by Schmitt in 1969,5 and originates from the Greek wordbiomimesis.6 Biomimetics can be defined as the investigationof the formation, structure or function of biologically producedsubstances and materials and biological mechanisms and pro-cesses especially for the purpose of synthesizing similar prod-ucts by artificial mechanisms which mimic natural ones.7 Theemerging field of biomimetics allows human to mimic nature toexploit nanomaterials, nanodevices, and processes which pro-vide desirable properties.7

    Diverse features found in natures objects are on thenanoscale. The major focus on nanoscience and nanotechnologysince the early 1990s has provided a significant impetus in mim-icking nature using nanofabrication techniques for commercialapplications.1,4 As an increasing hot nanofabrication technique,electrospinning has emerged as a versatile and cost-effectiveme