18
Lecture Biomaterials Surfaces: Chemistry Hydrolysis Supporting notes 1

Biomaterials Surfaces: Chemistry Hydrolysis...Poly(hydroxyalkanoate Poly(3-hydroxybutyrate) Poly(L-lactide), Poly(L-lactic acid) Poly(orthoester) Poly(ester carbonate) Poly(ethylene

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

  • Lecture

    Biomaterials Surfaces: Chemistry

    HydrolysisSupporting notes

    1

  • Hydrolysis�

    • Hydrolysis is a kind of “Solvolysis”, solvent + lysis: cleavage by the solvent.

    Br

    H2O

    3

    OH

    OCH3

    OCOH

    l

    CH OH

    HCOOH

    2-Bromo-2-methy propane

    + HBr Hydoloysis

    + HBr Methanolysis

    + HBr Formic acidolysis

    2

  • Polymer Hydrolysis�

    •�Polymers prepared by polycondensation can be susceptible to hydrolysis.

    n 1,4-Butanediol

    + HO OHO

    O

    n O O HH

    Succinic acid

    O

    O*

    *

    O

    O

    n 2O

    l Δ

    H+ -,

    + nHAs, Zn cata ysts,

    , OH or enzyme

    Poly(butylene succinate), PBS 3

  • Hydrolysable is “degradable”.�Synthetic polymers�· Polyesters · Polyamides · Polyanhydrides · Polyethers · Polyurethanes · Polycarbonates · Polyureas

    Material properties can be tuned readily. Cheaper!

    Naturally-occurring polymers · Proteins and polyamides

    Collagen Fibrinogen and fibrin Gelatin Casein

    · Polysaccharides Cellulose Starch and amylose Chitin and chitosan Dextran

    · Polynucleotides DNA and RNA

    4

  • Biodegradation:�An event which takes place through the action of enzymes and/or chemical decomposition associated with living organisms (bacteria, fungi, etc.) or their secretion products.

    Albertsson and Karlsson, in Chemistry and Technology of Biodegradable Polymers 1994

    O R C

    O

    N R C

    OH

    O R O C

    O

    Polyester Polyamide Polycarbonate

    C R O C

    OO

    N P

    R

    R'O

    O

    O

    O

    R"

    R'R

    O

    Polyanhydride Polyphosphazene Poly(ortho ester)

    Typical examples of synthetic biodegradable polymers 5

  • Key factors in hydrolysis�

    1. Bond stability

    Example: Hydrolysis of polyester C Oδ+ δ-

    Base-catalyzed polyester hydrolysis

    δ-

    δ+

    O

    CR O R'

    - O

    C-R O R'

    OH

    O-

    CR O R'

    OH

    H+ O

    CR OH + R’

    OH

    OH

    6

  • Acid-catalyzed polyester hydrolysis

    δ-

    H+

    δ +

    O

    CR O R'

    O+

    CR O R'

    H O

    C+R O R'

    H O

    CR O+ R'

    H

    H

    O

    H

    O

    CR O R'

    H

    O+H

    H

    -H+H2O + R’OH

    O

    CR OH

    Polyamide hydrolysis

    H2O O

    CR N R'

    H

    O

    CR OH + H2N-R’

    7

  • Key factors in hydrolysis�

    2. Hydrophobicity

    3. Molecular weight & architecture

    4. Morphology Crystallinity, porosity

    5. Tg Mobility of polymer chain

    Chance to contact with H2O

    8

  • 0 80

    90

    � a (

    degr

    ees)

    100

    120

    12 24 36 48 0 12 24 36 48

    Amorphous PLLA Crystalline PLLA

    108 110

    Alkaline Treatment Time (h) Alkaline Treatment Time (h)

    113

  • Hydrolysable polymers�Polyanhydride O

    CR O C R'

    O

    O

    CR O R'

    O

    CR N R'

    H

    H2O O

    CR OH

    O

    CR OH

    O

    CR OH

    +

    Polyester H2O +

    Polyamide H2O +

    Polyether OR R' OHR

    H2O +

    Polyether urethane OCO N R'

    H

    R

    R N

    H

    C

    O

    N R'

    H

    R O C

    O

    O R'

    H2O OHR +

    O

    CHO R'

    HO R'

    H2N R'

    HO R'

    O

    CHO N R'

    H

    Polyurea H2O R N

    H

    C

    O

    OH

    R O C

    O

    OH

    + H2N R'

    Polycarbonate H2O + HO R' 11

  • Poly(sebacic anhydride)�Properties: rapid degradation, Tg: 50 °C, Tm : 80 °C Uses: drug delivery matrices

    O

    O O

    Table. Half-lives of hydrolyzable polymers

    Incorporation ofPolymer class Half-life hydrophobic segment

    Polyanhydrides 0.1 h

    PLLA 3.3 years

    83,000 years Poly(bis-(p-carboxyphenoxy)propane-co-sebacic anhydride)

    C

    O

    O C3H6 O O

    O O

    C8H16

    O

    O

    Polyamides

    Tabata et al., Pharm. Res., 10, 391, 1993 Göpferich, Biomater., 17, 103, 1996 12

  • Poly(glycolide-co-lactide) (polyglactide)

    Properties: rapid degradation, amorphous*, Tg: 45-55 °C Uses: bioresorbable sutures, controlled release matrices,

    tissue engineering scaffolds *Depending on composition

    O

    O

    O

    O

    Glycolate Lactate (GA) (DL-LA)

    Dexon®: the first synthetic bioresorbable suture in 1960s. (PGA)�Histological response can be predictable in comparison to non-

    synthetic materials. High-crystalline nature limits processability.

    13

  • Poly(L-lactide), poly(L-lactic acid) (PLLA) Properties: rapid degradation, semicrystalline, Tg: 60 °C, Tm: 180 °C Uses: fracture fixation, ligament augmentation

    O

    O

    *

    PLLA

    O

    H

    HO

    H

    HO

    H

    OH

    OHHH

    OH

    HO

    O

    O

    H* O

    O

    *

    Fermentation -H2O

    microorganisms e.g. Lactobacilli L-lactic acid

    O

    O O

    O

    *

    *

    PLLAD-glucose from agricultural product; -H2Ocorn, potato, rice

    L-lactide 14

  • Physical properties of various plastics�

    PLLA PET PS PP�

    Density/g/cm3 1.27 1.34 1.04 0.90

    Tensile strength/MPa 66.7 55.9 43.1 37.3

    Yong’s modulus/MPa 3300 2600 3300 2100

    Elongation@break/% 4 300 2 700

    Cost/$/lb 1-5 0.75 0.55 -*Polymeric materials were non-oriented (as prepared).

    Tsuji, Polylactic acid, JPS press, Kyoto, 1997, Ikada, Macromol. Rapid Commun., 21, 117, 2000 15

  • O

    Polyethylene oxide (PEO) Properties: water soluble, semicrystalline, Tg: -60 °C, Tm: 60 °C Uses: hydrogel, protein-resistant coatings

    Two photos removed for copyright reasons.

    PEO Figure 6 in Irvine, D., et al. "Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 1. Synthesis and Characterization of

    Comb Thin Films." Biomacromolecules 2, no. 1 (2001): 85 -94.

    Rate of hydrolysis:

    anhydride > ester >> amide >>>> ether etc. Matrices for drug delivery

    16

  • Hydrolysis of polymeric materials�

    Acid- or base-catalyzed hydrolysis

    Time

    MW

    Enzymatic hydrolysis -surface erosion-

    Time

    MW

    17

  • Application of biodegradable polymers and minimal requirements of biomaterials

    PAA: PBS: PCA: PCL: PEA: PGA:

    PGALA:

    PDLLA:

    PDLLA

    PGALA PGA

    PCA

    POE PAA Starch

    PLLA PHA (PHB)

    PCL PEC

    PBS PES

    PEA

    Chitin PPZ

    Fibrin

    Application of Biodegradable Polymers

    Poly(acid anhydride) Poly(butylene succinate) Poly(�-cyanoacrylate) Poly(�-caprolactone) Poly(ester amide) Poly(glycolide), Poly(glycolic acid) Poly(glycolide-co-lactide), Poly(glycolic acid-co-lactic acid) Poly(DL-lactide), Poly(DL-lactic acid)

    PHA: PHB:

    PLLA:

    POE: PEC: PES:

    Poly(hydroxyalkanoate Poly(3-hydroxybutyrate) Poly(L-lactide), Poly(L-lactic acid) Poly(orthoester) Poly(ester carbonate) Poly(ethylene succinate)

    Oxidized cellulose

    CelluloseHyaluronate

    Collagen

    Medical Application Ecological Application

    Minimal Requirements of Biomaterials

    B) Effective Functionality, Performance, Durability, etc.

    C) Sterilizable Ethylene oxide, Θ-Irradiation, Electron beams, Autoclave, Dry heating, etc.

    D) Biocompatible Interfacially, Mechanically, and Biologically

    A) Non-toxic (biosafe) Non-pyrogenic, Non-hemolytic, Chronically non-inflammative, Non-allergenic, Non-carcinogenic, Non-teratogenic, etc.

    Figure by MIT OCW.

    19 Figure by MIT OCW.

  • 21

    Enzymatic degradation -Lipase-

    Brzozowski, et al., Nature 1991, 351, 491

    Lipase: an esterase (EC3.1.1.3)

    O

    CR O R'

    O

    CR OH HO R'+H2O+lipase

    In toluene at 90 °C

    stable in organic solvents @ high temp.

    MW of the polyester is usually low (< 10 k).Poor mechanical properties.