2
McGill Biodiesel Initiative Annual Report 2012 A. Alan Blayney uses highperformance liquid chromatography to chemically analyze a sample of biodiesel. Parallel experiments test different variables of the transesterification reaction that creates biodiesel from waste vegetable oil. A washing step separates impurities from the biodiesel product. Undergraduate chemistry student Élyse Champagne inspects a synthesized biodiesel sample.

Biodiesel Initiative Annual Report - McGill University · 2012as!a!student!project!in!the!McGill!Chemistry ... to!fossil!diesel!fuel.!Biodiesel!offers!many!benefits!over!fossil

Embed Size (px)

Citation preview

 

McGill  Biodiesel  Initiative    Annual  Report  2012    

A.  

   

  Alan  Blayney  uses  high-­‐performance  liquid  chromatography  to  chemically  analyze  a  sample  of  biodiesel.    

Parallel  experiments  test  different  variables  of  the  transesterification  reaction  that  creates  biodiesel  from  waste  vegetable  oil.  

 

 

 

  A  washing  step  separates  impurities  from  the  biodiesel  product.    

Undergraduate  chemistry  student  Élyse  Champagne  inspects  a  synthesized  biodiesel  sample.    

B.            Results  to  Date    Investigation  into  the  technical  feasibility  of  biodiesel  production  began  in  Spring  2012  as  a  student  project  in  the  McGill  Chemistry  course,  CHEM  392:  Integrated  Inorganic/Organic  Laboratory.  Five  undergraduate  students—Alan  Blayney,  Élyse  Champagne,  Chelsea  Gilliam,  Patrick  Julien,  and  Gloria  Lunetta—completed  a  report  titled,  “The  Optimization  of  Biodiesel  Production”  as  part  of  their  coursework.  This  report  presented  experimental  results  of  small-­‐scale  biodiesel  production.  This  work  has  been  continued  during  the  summer,  with  current  efforts  focusing  on  pilot  scale  production.    The  following  are  a  selection  of  achievements  and  quantitative  results  obtained:    

1. Obtained  samples  of  waste  vegetable  oil  from  the  Bishop  Mountain  Hall  cafeteria.  

2. Determined  free  fatty  acid  (FFA)  content  of  waste  vegetable  oil  to  be  1.85-­‐2.6%.  Too  much  FFA  in  the  waste  oil  will  cause  excessive  formation  of  an  undesirable  soap  byproduct.  This  low  percentage  suggests  acid-­‐catalyzed  pretreatment  before  base-­‐catalyzed  transesterification  will  not  be  necessary,  greatly  decreasing  production  costs.    

3. Optimization  of  the  base-­‐catalyzed  transesterication  revealed  1%  weight  NaOH  and  a  6:1  methanol-­‐waste  oil  ratio  were  ideal  reaction  conditions.  

   C.          Blurb    The  McGill  Food  and  Dining  Serves  (MFDS)  produces  approximately  14000  liters  of  waste  vegetable  oil  (WVO)  per  year.  Disposal  of  this  oil  represents  a  loss  of  a  valuable  commodity:  WVO  contains  an  amount  of  chemical  energy  comparable  to  crude  oil.  While  unsuitable  for  direct  use  in  its  native  form,  a  simple  chemical  reaction  transforms  WVO  into  biodiesel,  an  ASTM  International  regulated  alternative  to  fossil  diesel  fuel.  Biodiesel  offers  many  benefits  over  fossil  diesel  and  combusts  in  conventional  diesel  engines  without  modification.  This  project  is  investigating  the  feasibility  of  biodiesel  production  from  WVO  at  McGill  for  use  in  campus  vehicles  and  equipment.