Bio108 lec1

Embed Size (px)

Citation preview

  • 7/31/2019 Bio108 lec1

    1/23

    Cell biology(formerly cytology, from the Greek kytos,"container") is an academic discipline that studies cells

    theirphysiological properties

    their structure,

    the organelles they contain

    interactions with their environment,

    theirlife cycle, division and death.

    Cellbasic unit of life structurally and functionally.History:

    a. Robert Hooke (1665)using his microscope discoverscells in cork

    b. Schleiden ; Schwann and VirchowCell theory:

    1. All organisms are composed of one or morecells

    2. The cell is the structural unit of life3. Cells can arise only by division from

    preexisting cells

    http://en.wikipedia.org/wiki/Physiologyhttp://en.wikipedia.org/wiki/Organelleshttp://en.wikipedia.org/wiki/Cell_cyclehttp://en.wikipedia.org/wiki/Cell_divisionhttp://en.wikipedia.org/wiki/Apoptosishttp://en.wikipedia.org/wiki/Apoptosishttp://en.wikipedia.org/wiki/Cell_divisionhttp://en.wikipedia.org/wiki/Cell_cyclehttp://en.wikipedia.org/wiki/Organelleshttp://en.wikipedia.org/wiki/Physiology
  • 7/31/2019 Bio108 lec1

    2/23

    Fundamental properties shared by all cells: (conserved throughout evolution)

    1. all cells employ DNA as their genetic material2. surrounded by plasma membrane3. use the same basic mechanisms for energy metabolism

    Organisms:1. Unicellular (eg. bacteria, amoebas & yeasts) capable of independent

    self-replication2. Multicellular(eg. Humans)- composed of collection of cells w/c fxns in

    a coordinated manner w/ diff cells specialized to performparticular tasks.

  • 7/31/2019 Bio108 lec1

    3/23

    Two Main Classes of Cells:

    a. Prokaryotic cells no nucleus- simpler structure (bacteria)

    b. Eukaryotic cells - contain nucleus-more complex structure(protists, fungi,

    plants & animals)

  • 7/31/2019 Bio108 lec1

    4/23

    Prokaryotes Eukaryotes

    Typical organisms bacteria, archaea protists, fungi, plants, animals

    Typical size ~ 1-10 m~ 10-100 m (sperm cells, apart from

    the tail, are smaller)Type ofnucleus nucleoid region; no real nucleus real nucleus with double membrane

    DNA circular (usually)linear molecules (chromosomes)with histoneproteins

    RNA-/protein-synthesis coupled in cytoplasmRNA-synthesis inside the nucleusprotein synthesis in cytoplasm

    Ribosomes 50S+30S 60S+40S

    Cytoplasmatic structure very few structureshighly structured byendomembranes and a cytoskeleton

    Cell movement flagella made offlagellinflagella and cilia containingmicrotubules; lamellipodia andfilopodia containing actin

    Mitochondria noneone to several thousand (though

    some lack mitochondria)Chloroplasts none in algae and plants

    Organization usually single cellssingle cells, colonies, highermulticellular organisms withspecialized cells

    Cell division Binary fission (simple division)Mitosis (fission or budding)Meiosis

    DNA content (base pairs) 1 106 to 5 106 1.5 107 to 5 109

    Table 1: Comparison of features of prokaryotic and eukaryotic cells

    http://en.wikipedia.org/wiki/Bacteriumhttp://en.wikipedia.org/wiki/Archaeahttp://en.wikipedia.org/wiki/Protisthttp://en.wikipedia.org/wiki/Fungushttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Animalhttp://en.wikipedia.org/wiki/%CE%9Cmhttp://en.wikipedia.org/wiki/%CE%9Cmhttp://en.wikipedia.org/wiki/Spermatozoonhttp://en.wikipedia.org/wiki/Cell_nucleushttp://en.wikipedia.org/wiki/Nucleoid_regionhttp://en.wikipedia.org/wiki/Chromosomehttp://en.wikipedia.org/wiki/Histonehttp://en.wikipedia.org/wiki/Proteinhttp://en.wikipedia.org/wiki/Cytoplasmhttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Cytoskeletonhttp://en.wikipedia.org/wiki/Chemotaxishttp://en.wikipedia.org/wiki/Flagellumhttp://en.wikipedia.org/wiki/Flagellinhttp://en.wikipedia.org/wiki/Ciliumhttp://en.wikipedia.org/wiki/Microtubulehttp://en.wikipedia.org/wiki/Lamellipodiahttp://en.wikipedia.org/wiki/Filopodiahttp://en.wikipedia.org/wiki/Actinhttp://en.wikipedia.org/wiki/Mitochondriumhttp://en.wikipedia.org/wiki/Chloroplasthttp://en.wikipedia.org/wiki/Algaehttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Cell_divisionhttp://en.wikipedia.org/wiki/Binary_fissionhttp://en.wikipedia.org/wiki/Mitosishttp://en.wikipedia.org/wiki/Meiosishttp://en.wikipedia.org/wiki/Meiosishttp://en.wikipedia.org/wiki/Mitosishttp://en.wikipedia.org/wiki/Binary_fissionhttp://en.wikipedia.org/wiki/Cell_divisionhttp://en.wikipedia.org/wiki/Cell_divisionhttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Algaehttp://en.wikipedia.org/wiki/Chloroplasthttp://en.wikipedia.org/wiki/Mitochondriumhttp://en.wikipedia.org/wiki/Actinhttp://en.wikipedia.org/wiki/Filopodiahttp://en.wikipedia.org/wiki/Lamellipodiahttp://en.wikipedia.org/wiki/Microtubulehttp://en.wikipedia.org/wiki/Ciliumhttp://en.wikipedia.org/wiki/Flagellinhttp://en.wikipedia.org/wiki/Flagellumhttp://en.wikipedia.org/wiki/Chemotaxishttp://en.wikipedia.org/wiki/Cytoskeletonhttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Cytoplasmhttp://en.wikipedia.org/wiki/Proteinhttp://en.wikipedia.org/wiki/Histonehttp://en.wikipedia.org/wiki/Chromosomehttp://en.wikipedia.org/wiki/Nucleoid_regionhttp://en.wikipedia.org/wiki/Nucleoid_regionhttp://en.wikipedia.org/wiki/Nucleoid_regionhttp://en.wikipedia.org/wiki/Cell_nucleushttp://en.wikipedia.org/wiki/Spermatozoonhttp://en.wikipedia.org/wiki/%CE%9Cmhttp://en.wikipedia.org/wiki/%CE%9Cmhttp://en.wikipedia.org/wiki/Animalhttp://en.wikipedia.org/wiki/Planthttp://en.wikipedia.org/wiki/Fungushttp://en.wikipedia.org/wiki/Protisthttp://en.wikipedia.org/wiki/Archaeahttp://en.wikipedia.org/wiki/Bacterium
  • 7/31/2019 Bio108 lec1

    5/23

    Fig.1.1.Average_prokaryote_cell-_en.svg (SVG

    file, nominally 494 402 pixels, file size: 135KB)

    http://upload.wikimedia.org/wikipedia/commons/5/5a/Average_prokaryote_cell-_en.svghttp://upload.wikimedia.org/wikipedia/commons/5/5a/Average_prokaryote_cell-_en.svghttp://upload.wikimedia.org/wikipedia/commons/5/5a/Average_prokaryote_cell-_en.svghttp://upload.wikimedia.org/wikipedia/commons/5/5a/Average_prokaryote_cell-_en.svg
  • 7/31/2019 Bio108 lec1

    6/23

    Fig1.2.Diagram of a typical animal (eukaryotic) cell, showing subcellular components.Organelles:(1) nucleolus(2) nucleus

    (3) ribosome(4)vesicle(5) rough endoplasmic reticulum (ER)(6) Golgi apparatus(7) Cytoskeleton(8) smooth endoplasmic reticulum(9) mitochondria(10)vacuole(11) cytoplasm

    (12) lysosome(13) centrioles within centrosome

    http://en.wikipedia.org/wiki/Animaliahttp://en.wikipedia.org/wiki/Eukaryotichttp://en.wikipedia.org/wiki/Organellehttp://en.wikipedia.org/wiki/Nucleolushttp://en.wikipedia.org/wiki/Cell_nucleushttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Vesicle_(biology)http://en.wikipedia.org/wiki/Rough_endoplasmic_reticulumhttp://en.wikipedia.org/wiki/Golgi_apparatushttp://en.wikipedia.org/wiki/Cytoskeletonhttp://en.wikipedia.org/wiki/Smooth_endoplasmic_reticulumhttp://en.wikipedia.org/wiki/Mitochondrionhttp://en.wikipedia.org/wiki/Vacuolehttp://en.wikipedia.org/wiki/Cytoplasmhttp://en.wikipedia.org/wiki/Lysosomehttp://en.wikipedia.org/wiki/Centriolehttp://en.wikipedia.org/wiki/Centrosomehttp://en.wikipedia.org/wiki/Centrosomehttp://en.wikipedia.org/wiki/Centriolehttp://en.wikipedia.org/wiki/Lysosomehttp://en.wikipedia.org/wiki/Cytoplasmhttp://en.wikipedia.org/wiki/Vacuolehttp://en.wikipedia.org/wiki/Mitochondrionhttp://en.wikipedia.org/wiki/Smooth_endoplasmic_reticulumhttp://en.wikipedia.org/wiki/Cytoskeletonhttp://en.wikipedia.org/wiki/Golgi_apparatushttp://en.wikipedia.org/wiki/Rough_endoplasmic_reticulumhttp://en.wikipedia.org/wiki/Vesicle_(biology)http://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Cell_nucleushttp://en.wikipedia.org/wiki/Nucleolushttp://en.wikipedia.org/wiki/Organellehttp://en.wikipedia.org/wiki/Eukaryotichttp://en.wikipedia.org/wiki/Animalia
  • 7/31/2019 Bio108 lec1

    7/23

    Fig.1.3.Diagram of a typical plant cell

    http://micro.magnet.fsu.edu/cells/plantcell.html
  • 7/31/2019 Bio108 lec1

    8/23

    the First Cell:

    -all present day cells (both prokaryotes & eukaryotes) descended

    from a single ancestor. The 1st

    cell is thought to have arisen at least 3.8 Byears ago as a result of enclosure of self-replicating RNA in a phospholipidmembrane (RNA world hypothesis)

    Present-Day Prokaryotes-divided into two groups: the archaebacteria and the eubacteria which

    diverged early in evolution

    Eukaryotic Cells-thought to have evolved from symbiotic associations of

    prokaryotes (ENDOSYMBIOSIS)

  • 7/31/2019 Bio108 lec1

    9/23

    ENDOSYMBIOSIS

    A large anaerobic, heterotrophic prokaryote engulfs a small aerobic prokaryote

    The aerobic endosymbiont has evolved into a mitochondrion

    A portion of the plasma membrane has invaginated and evolved into anuclear envelope and endoplasmic reticulum

    (primitive eukaryote)

    Nonphotosynthetic protist, fungal,animal cells

    Engulfs a photosynthetic prokaryote

    Evolve into a chloroplast

    Algal & plant cells

  • 7/31/2019 Bio108 lec1

    10/23

    Fig.1.4. Time scale of evolution The scale indicates the approximate times at which

    some of the major events in the evolution of cells are thought to have occurred.

  • 7/31/2019 Bio108 lec1

    11/23

    Figure 1.5. Generation of metabolic energy Glycolysis is the anaerobic breakdown of glucose to lactic acid.

    Photosynthesis utilizes energy from sunlight to drive the synthesis of glucose from CO2

    and H2O, with the release

    of O2

    as a by-product. The O2

    released by photosynthesis is used in oxidative metabolism, in which glucose is

    broken down to CO2 and H2O, releasing much more energy than is obtained from glycolysis.

    The Evolution of Metabolism:

  • 7/31/2019 Bio108 lec1

    12/23

    Figure 1.6. Evolution of cells Present-day cells evolved from a common prokaryotic ancestor along three

    lines of descent, giving rise to archaebacteria, eubacteria, and eukaryotes. Mitochondria and chloroplasts

    originated from the endosymbiotic association of aerobic bacteria and cyanobacteria, respectively, withthe ancestors of eukaryotes.

  • 7/31/2019 Bio108 lec1

    13/23

    Development of Multicellular Organisms

    Plants

    3 main tissue systems:1. ground tissue2. dermal tissue3. vascular system

    Animals- cells are more diverse than those of plants- 5 main types of tissues

    1. epithelial2. connective3. blood

    4. nervous5. muscle

  • 7/31/2019 Bio108 lec1

    14/23

    Organism Haploid DNA content (millions of base

    pairs)

    Bacteria

    Mycoplasma 0.6

    E. coli 4.6

    Unicellular eukaryotesSaccharomyces cerevisiae (yeast) 12

    Dictyostelium discoideum 70

    Euglena 3000

    Plants

    Arabidopsis thaliana 130

    Zea mays (corn) 5000

    Animals

    Caenorhabditis elegans (nematode) 97

    Drosophila melanogaster(fruit fly) 180

    Chicken 1200

    Zebrafish 1700

    Mouse 3000

    Human 3000

    Table 1.2 DNA Content of Cells

  • 7/31/2019 Bio108 lec1

    15/23

    Cells as Experimental Models

    E. coli S. cerevisiae Dictyostelium discoideum

    Arabidopsis thaliana Caenorhabditis elegans Drosophila melanogaster

    http://en.wikipedia.org/wiki/File:Adult_Caenorhabditis_elegans.jpghttp://en.wikipedia.org/wiki/File:Arabidopsis_thaliana.jpghttp://upload.wikimedia.org/wikipedia/commons/c/cf/Dictyostelium_Fruiting_Bodies.JPGhttp://upload.wikimedia.org/wikipedia/commons/d/d9/S_cerevisiae_under_DIC_microscopy.jpghttp://www.sciencedaily.com/images/2008/01/080106202952-large.jpg
  • 7/31/2019 Bio108 lec1

    16/23

    Xenopus laevis zebrafish

    House mouse

    http://en.wikipedia.org/wiki/File:House_mouse.jpghttp://en.wikipedia.org/wiki/File:Zebrafisch.jpg
  • 7/31/2019 Bio108 lec1

    17/23

    Tools of Cell Biology

    1. Light Microscopy

    Bright-field microscopy Phase-contrast microscopy Differential interference contrast microscopy Video-enhanced differential interference-contrast microscopy Fluorescence microscopy Confocal microscopy

    Two-photon excitation microscopy

    2. Electron microscopy Transmission electron microscopy Scanning electron microscopy

    Several different techniques exist to study cells:1. Cell culture 6. In situ hybridization2. Immunostaining 7. PCR3. Computational Genomics 8. Cell Fractionation4. DNA MICROARRAYS

    5. Gene knockdown

  • 7/31/2019 Bio108 lec1

    18/23

    a. Differential-interference-contrastmicrograph of a mitotic yeast cell.

    b. Fluorescence microscopy

    c. Phase-contrast micrograph of fibroblasts inculture.

  • 7/31/2019 Bio108 lec1

    19/23

    Scanning electron micrographof a flea

    Transmission electron micrographofBacillus anthracis

    http://www.imageenvision.com/md/stock_photography/bacillus_anthracis_transmission_electron_micrograph.jpghttp://www.google.com.ph/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/6/66/Scanning_Electron_Micrograph_of_a_Flea.jpg&imgrefurl=http://commons.wikimedia.org/wiki/File:Scanning_Electron_Micrograph_of_a_Flea.jpg&h=499&w=387&sz=40&tbnid=mRcDo42VlRKDMM:&tbnh=130&tbnw=101&prev=/images?q=scanning+electron+micrograph&hl=en&usg=__6YcHJXQ25jFYRRnBAKkbqXiSBQY=&ei=hIU7SvvgK8aUkAXE7tSsDg&sa=X&oi=image_result&resnum=1&ct=image
  • 7/31/2019 Bio108 lec1

    20/23

    Figure 1-7. A procedure used to make a transgenic plant.

  • 7/31/2019 Bio108 lec1

    21/23

    http://en.wikipedia.org/wiki/File:PCR_tubes.pnghttp://www.molecularstation.com/molecular-biology-images/506-molecular-biology-pictures/23-pcr-machine-pcr-thermocycler.html
  • 7/31/2019 Bio108 lec1

    22/23

    Figure 1.8. Using DNA microarrays to monitor theexpression of thousands of genes simultaneously.

    Figure 8-63. Using cluster analysis toidentify sets of genes that are coordinatelyregulated.

  • 7/31/2019 Bio108 lec1

    23/23

    Figure 8-47. Results of a BLAST search. Sequence databases can be

    searched to find similar amino acid or nucleic acid sequences. Here a

    search for proteins similar to the human cell-cycle regulatory protein

    cdc2 (Query) locates maize cdc2 (Subject), which is 68% identical (and

    82% similar) to human cdc2 in its amino acid sequence.