Upload
ngothien
View
221
Download
0
Embed Size (px)
Bio6–PrinciplesofGeneticInheritanceLab
OverviewInthis laboratoryyouwill learnaboutthebasicprinciplesofgenetic inheritance,orwhatiscommonlyreferredtoas“genetics”.Atrueappreciationofthenatureofgeneticinheritancewillrequiresolvingofavarietyofgeneticsproblems,andtodosoyouwillneedtounderstandseveralrelatedconcepts,somewhichshouldbefamiliarandotherswhichmaybenewtoyou.Thusyouwillbeginthislabbyexaminingtheconceptsofgenes,gameteproductionbymeiosis,andprobability.Youwillthenusetheseconceptstoworkthroughaseriesofgeneticsproblemsaddressingvariousaspectsofgeneticinheritanceinplantsandanimals.
Part1:KEYGENETICCONCEPTSWeallknowthatwhenlivingorganismsreproduce,theiroffspringaremuchliketheirparents.Chickensdon’tgivebirthtolizardsandappletreesdon’tgiverisetopinetrees.Sowhatisthebiologicalbasisforthisobviousreality?Youprobablyalreadyknowthishastodowithgenes,genesoneinheritsfromone’sparents.Howevertheprocessofpassingongenesfromonegenerationtothenextismorecomplexthanitmayappear.Thesimplestformofgeneticinheritanceinvolvesasexualreproduction.Thisisthecasewhenasingleparentorganismpassesitsgenestooffspringwhicharebasicallyclonesoftheparent(i.e.,genetically,and for themost part, physically identical). Although thismode of reproduction is quite convenient(imagineifyoucouldsimplyhavechildrenidenticaltoyourself,nopartnernecessary),ithasoneextremelysignificantshortcoming:NOgeneticdiversity.Forsomespeciesasexualreproductionworksquitewell,however formostplantsandanimals (includinghumans) this justwon’tcut it,geneticdiversity is tooimportantforthelongtermsurvivalofspecies.Sohowisgeneticdiversityproduced?Theanswerissexualreproduction: theproductionofgametes(sperm and eggs) bymeiosis followed by the fusion of sperm and egg (fertilization) to form a new,genetically unique individual. Sexual reproduction essentially “shuffles” the genes of each parentproducingauniquecombinationofparentalgenesineachandeveryoffspring.Thisisthesortofgeneticinheritancewewillfocuson,geneticinheritancebasedonsexualreproduction.Throughsexualreproduction,eachoffspringinheritsacompletesetofgenesfromeachparent,howeverthestudyofgeneticinheritanceisgenerallylimitedtooneortwogenesatatime.Thuswhenyoubegintoworkwithgeneticsproblemsyouwillfocusinitiallyonasinglegeneattime,andthenlearnhowtofollow the inheritanceofmore thanone gene. To focuson largenumbersof geneswouldbe rathercomplicatedandisnotnecessaryforourpurposes.Beforeyoubegintoexaminegeneticinheritanceviageneticsproblems,youwillneedtounderstandsomeimportant concepts that are central to the process: the nature of chromosomes, genes and geneticalleles; the process of gamete production bymeiosis; and the concept of probability. Once theseconceptsandtheirassociatedterminologyareclear,youwillthenbereadytoimmerseyourselfintotheworldofgeneticinheritance.
205
Chromosomes,GenesandAllelesAsyoulearnedinthepreviouslab,chromosomesareextremelylongpiecesofDNAinthenucleiofcellsthatcontainuptoathousandormoregeneseach.Eachspeciesoforganismhasacharacteristicnumberofchromosometypes:distinctchromosomeseachhavingauniquesetofgenesandauniquelength.Forexample, the fruit fly Drosophila, an organism used in many genetic studies, has only 4 types ofchromosomes–3autosomes(non-sexchromosomes)andtheXandYsexchromosomes.Humanbeings(Homo sapiens) on the other hand have 23 types of chromosomes – 22 autosomes and the sexchromosomes(XandY)asillustratedinthehumanmalekaryotypeshownbelow(noticetheXandYsexchromosomes):
Notice one more thing about this humankaryotype:therearetwoofeachautosomeaswellas twosexchromosomes. This isbecausehumanbeingsarediploid,whichmeanshavingtwoofeachchromosometype.Mostplantsandanimalsareinfactdiploid,andasweinvestigatetheprocessof genetic inheritancewewill onlyconcernourselveswithdiploidspecies.Howeveryoushouldbeawarethatnotallorganismsarediploid.Somearenormallyhaploid(oneofeachchromosome)suchasthefungi,andsomemayhavemorethantwoofeachchromosome(e.g.,four of each = tetraploid, eight of each =octoploid) as seen in a fair number of plantspeciesaswellasafewanimalspecies.As shown in thediagramto the left, genes arediscrete sections of chromosomal DNAresponsible for producing a specific protein orRNAmolecule.Theprocessofgeneexpression,theproductionofproteinorRNA fromagene,willbeaddressedinafuturelab.
The functional protein or RNA molecule produced from a particular gene is its gene product. It isimportant to realize that theDNAsequenceofagene,andhence itsgeneproduct, canvarywithinaspecies.Inotherwords,aparticulargeneinaspeciessuchasHomosapienscanhavedifferentversions,whatarereferredtoingeneticsasalleles.Thegeneproductsproducedfromanorganism’sgeneticallelesaccountforitsphysicalandbehavioralcharacteristics,whatwecollectivelycallanorganism’straits.Thespecific traitsan individualexhibits,whetherphysicalorbehavioral,are referred toas the individual’sphenotype.Thespecificgeneticallelesanindividualhasforaparticulargeneistheindividual’sgenotype.Asyoushallsoonsee,anindividual’sphenotypeislargelydeterminedbyitsgenotype.
206
Sincediploidorganismshavetwoallelesforeachgene,anindividualcanhavetwocopiesofthesamealleleforageneortwodifferentalleles.Iftheallelesarethesame,theindividualissaidtobehomozygousforthatgene.Iftheallelesaredifferent,theindividualissaidtobeheterozygousforthatgene.Whenanindividualisheterozygousforagene,oneallelemayoverrideor“mask”theotherallelebydeterminingthephenotyperegardlessoftheotherallele.Inthissituation,theallelethatdeterminesthephenotypeissaidtobedominantwhiletheotheralleleissaidtoberecessive.Thetermsdominantandrecessivearerelativetermsjustlikethetermsbigandsmall.Somethingisonlybigorsmallinrelationtosomethingelse,andinthesamewayanalleleforageneisonlydominantorrecessiveinrelationtoanotheralleleforthesamegene.
MeiosisandtheProductionofGametesSexualreproductionindiploidplantandanimalspeciesrequirestheproductionofhaploidgametesbytheprocessofmeiosiswhichisillustratedbelow.
Sincemeiosiswascoveredinthepreviouslab,wewon’treviewtheprocessinmuchdetailotherthantoremindyouofseveralkeypointsthatpertaintogeneticinheritance:
1) Diploid organisms have two of each chromosome type, one haploid set of chromosomesinheritedfromthemother(maternalchromosomes)andanotherhaploidsetinheritedfromthefather(paternalchromosomes),andthustwoallelesforeachgene,onematernalalleleandonepaternalallele.
2) Thehaploidgametesproducedbymeiosis(eggorsperm)containoneofeachchromosometype(e.g.,oneofeachautosomeandonesexchromosome),andthuscontainonlyonealleleforeachgene.
3) Itiscompletelyrandomwhichchromosomeofagiventype,maternalorpaternal,endsupinagameteproducedbymeiosis.Thusitiscompletelyrandomwhichalleleforaparticulargene(maternalorpaternal)endsupinagamete.
4) Sinceanindividualhasonlytwoallelesforeachgene,thereisa50%chancethateitherallele(maternalorpaternal)willendupinagivengamete.
207
Thesepointsarecentral to thestudyofgeneticsas itpertains tosexual reproduction. Diploidparentorganisms produce large numbers of haploid gametes, any of which may fuse at the moment offertilization toproduceadiploidzygote, ageneticallyuniquenew individual. It is thecombinationofallelesinheritedfromeachparentthatdeterminethegenotypeandphenotypeofeachnewoffspring.Giventhevarietyofpossiblegenotypesandphenotypesfortheoffspringofanytwoparents,geneticsmustalsoaddresstheprobabilityofeachpossibility.Sobeforeyoubeginworkingwithgeneticcrossesitisimportantthatyouunderstandbasicconceptsofprobability.
Probability
Tounderstandgeneticinheritance,youneedtohaveabasicunderstandingofprobability. Probabilityreferstothelikelihoodthatsomethingwillhappenasopposedtowhatactuallyhappens.Forexample,weallknowthatasinglecoinfliphasa50%chanceofbeing“heads”or“tails”,thustheprobabilityofheadsis50%or0.5or½asistheprobabilityoftails.Howeverwealsoknowthatwecannotknowwhattheoutcomeofasinglecoinflipwillbe. Allwecando ispredictthe likelihoodorprobabilityofeachpossibleoutcome,inthiscaseheadsortails.Whenanalyzingtheinheritanceofgenesyouwillalsobedealingwithprobabilities.Whentwoorganismsmateandproduceoffspringwecannotknowwhatgeneticalleleswillbeinheritedbyagivenindividual(genotype) or its physical characteristics (phenotype). We can only predict the likelihood of variouscharacteristicsbasedontheprobabilityofinheritingparticulargeneticallelesfromeachparent.Thenexttwo exercises will help illustrate the nature of probability and help prepare you to solve geneticsproblems.
Exercise1A–ProbabilityandsamplesizeInthisexerciseyouwillperformseveralsetsofcoinflips.Thiswillbedonetocomparethepredictedoutcomebasedonprobabilitytotheactualoutcome,andhowthisrelatestosamplesize(i.e.,thenumberofrepetitions):
1. Onyourworksheet,determinetheexpectednumbersofheadsandtailsforsamplesizesof10and100coinflips(theprobabilityofheadsis50%or0.50,asistheprobabilityoftails).
2. Perform10setsof10coinflips,recordingtheresultsonyourworksheet.
3. Combinetheresultsforall10setsofcoinflipsonyourworksheettogetatotalnumberofheadsandtailsoutof100coinflips.
4. Onyourworksheet,comparetheactualresultstoexpectedresultsforeachsetof10coinflipsaswellasthecombinedsetof100coinflipsandanswerthecorrespondingquestions.
208
Whenflippingacointhereareonlytwopossibleoutcomes, each with the same probability.Sometimes, however, youmust dealwithmorethantwopossibleoutcomes,eachwithadifferentprobability. This is thecase, forexample,whenyourollapairofdice,forwhichthereareelevenpossibleoutcomesintermsofthetotalsum:2,3,4,5,6,7,8,9,10,11and12.
Theprobabilitiesofeachpossiblesumofthedicearenotthesame.Ifyouhaveeverplayedaboardgameorcrapsyouknowforexamplethatarolltotaling7ismuchmorelikelythanarolltotaling2.Sowhyaretheprobabilitiesdifferent?Ithastodowithhowmanydifferentcombinationsadduptoagivensum.Forexample,torollapairofdiceandgetasumof2,bothdicemustshowa“1”.Thereisnootherwaytorollatotalof2withapairofdice.Therearesixdifferentways,however,torolla7: Reddie Blackdie total 1 6 7 6 1 7 2 5 7 5 2 7 3 4 7 4 3 7Sohowdoyoudeterminetheprobabilitiesofeachpossiblesumof thedice? Asshown inthematrixbelow,thereare6x6=36differentcombinationsyielding11possiblesums:
black1 black2 black3 black4 black5 black6red1 2 3 4 5 6 7red2 3 4 5 6 7 8red3 4 5 6 7 8 9red4 5 6 7 8 9 10red5 6 7 8 9 10 11red6 7 8 9 10 11 12
Eachdiehassixpossibleoutcomes(1through6),eachofwhichareequallylikelyandeachofwhichcanbe paired with any roll on the other die. Looking carefully at thematrix, you can see there is onecombinationoutof36thatyieldsasumof2(probability=1/36or0.028or2.8%),twocombinationsthatyieldasumof3(2/36or0.056or5.6%),threecombinationsthatyieldasumof4(3/36or0.083or8.3%),andsoon.If you think about it, the rolling of a pair of dice is actually two independent events in combination.Whetheryourollthereddieorblackfirst,orbothatthesametime,isirrelevant.Theprobabilityofrollingasumof2(“snakeeyes”)forexampleisstill1/36,regardlessofthetiming.Thisleadstoanimportantruleregardingprobabilitycommonlyreferredtoasthe“productrule”:
209
Theprobabilityofaspecificcombinationoftwoormoreoutcomesisthe
productoftheprobabilitiesofeachindividualoutcome.
Inour“snakeeyes”example,theprobabilityofrolling1onthereddieis1/6andtheprobabilityofrolling1ontheblackdieis1/6,thustheprobabilityofrolling1onboththereddieANDtheblackdieis1/6x1/6whichequals1/36.Anotherexamplewouldbetheprobabilityofflippingtwocoinsandhavingbothturnup“heads”,orinotherwordstheprobabilityofcoin1ANDcoin2bothyielding“heads”.Usingtheruleabovetheprobabilitywouldbe1/2x1/2whichis1/4.Anotherimportantrulecommonlycalledthe“sumrule”or“additionrule”addressesprobabilitywhentherearemultiplewaystoarriveataparticularoutcome:
Theprobabilityofanoutcomethatcanoccurinmultiplewaysisthesumoftheprobabilitiesofeachindividualoutcome.
Forexample,wehavealreadydeterminedthattheprobabilityofrollingasumof3withapairofdiceis2/36sincethereare2differentwaystoobtainasumof3:red1plusblack2(1/36)ORred2plusblack1(1/36).Eachoutcomeyieldsarollof3andbyaddingbothprobabilitiesyouarriveatanoverallprobabilityof2/36.Anotherexamplewouldbetheflippingofacoin.TheprobabilityofflippingheadsORtailsonagiventossisclearly100%: 50%heads+50%tails=100%. Whatabouttheprobabilityof flippingtwocoinsandgettingheadsforoneandtailsfortheother?Thereareactuallytwowaysthiscanoccur:
headsfromcoin1andtailsfromcoin2(50%x50%=25%)
OR
tailsfromcoin1andheadsfromcoin2(50%x50%=25%)
Inthiscasetheoverallprobabilityofgettingoneheadsandonetailsfromtwocoinflips is25%+25%whichequals50%.Youarenowreadyforthenextsetofexercisesinprobability,andkeepinmindthattheprobabilityofXANDYoccurringmeansyoumultiply,andtheprobabilityofXORYoccurringmeansyouadd.Exercise1B–DiceBaseballInthisexerciseyouwillplayagameofbaseballusingapairofdice.Thiswillrequirethatyouconsidertheprobabilitiesofvariousoutcomesforan“atbat”andmatchthesewithprobabilitiesinrollingapairofdice:
1. Onyourworksheet,determinetheprobabilityofeachpossiblesumforapairofdice.
2. Considertheprobabilitiesofeachsumanduseyourworksheettodesignyourowndicebaseballgameinwhichagivensumofthediceequalsaparticularoutcomeofan“atbat”(e.g.,7=out,12=homerun).Doyourbesttoberealistic–yourinstructorwillexplainthisfurther.
3. Arrangeteamsof1to2peopleandplayanineinninggamekeepingscoreonyourworksheet(you
cangotoextrainningsifnecessary).210
Part2:SOLVINGGENETICSPROBLEMS
ImportantToolsforSolvingGeneticsProblemsBeforeyoubegintosolvegeneticsproblemsitisimportantthatyouarefamiliarwiththetypesofsymbolsusedtorepresentgeneticallelesaswellastwoimportanttoolsyouwillusetosolvegeneticproblems.Let’sfirstaddressthesymbolsforgeneticalleles:
SymbolizingAllelesGeneticallelesarecommonlyrepresentedbyasingleletter,withthedominantallelebeinguppercaseandtherecessiveallelebeinglowercase:
dominantallele–Arecessiveallele–a
Whenworkingwithmorethanonegeneinageneticproblem,theallelesofeachgenewillberepresentedusingadifferentletter:
Gene1 Gene2dominantallele–A dominantallele–Brecessiveallele–a recessiveallele–b
Whenwritingthegenotypeforanindividualitisbesttokeeptheallelesforaparticulargenenexttoeachotherandtolistadominantallelebeforearecessiveallele:
AaBb
Ifanalleleisunknown,indicatethiswithanunderscore:
A_bb
Whentherearemorethantwoallelesforagene,differentsuperscriptsonasingleletterarecommonlyusedtodistinguishalleles:
alleles–Cx,Cy,Cz
genotype–CxCyWhenageneislocatedontheXchromosome(“X-linkedgene”),allelesarerepresentedbysuperscriptsonacapitalX.Inmalesa“Y”withoutasuperscriptisusedtosymbolizetheYchromosomewhichwouldnothaveanallelefortheX-linkedgene:
femalegenotypeforanX-linkedgene–XAXamalegenotypeforanX-linkedgene–XAY
211
PedigreesForsomeproblemsitwillbehelpfultodiagramapedigreeofallfamilymembersrelevanttotheproblemasshownhereforthreegenerationsofahypotheticalfamily.As you can see, males are represented bysquares and females by circles. Individualsexhibiting the phenotype of concern have afilled-insymbol.Pedigreesareusefulinthattheyallowyou to representall familial relationshipsvisuallysothatyoucanfillinanddeduceasmanygenotypes as possible. In addition, they alsoallowyoutodeducethemodeofinheritanceofthe condition in question (i.e., dominant vsrecessive condition, sex-linked vs autosomalgene).Onmany occasions youmay find it simpler todiagram your pedigree without shapes andcolors, and simply represent individuals in thepedigreebytheirgenotypes(orasmuchofthegenotypeasyouknow)asshowntotheright.
AaxAa
A_,A_,aa
PunnettsquaresAnotherextremelyusefultoolisthePunnettsquare,whichisbasicallyagridormatrixshowingallpossiblecombinationsofgametesfromeachparenttoproduceoffspring.APunnettsquareisusefulifyouknowthegenotypesoftheparentsbeingcrossed.OnceyoudetermineallpossiblehaploidgametesforeachparentyousimplyfilloutthePunnettsquareasshownbelow:
cross:Aa(female)xAa(male)
gametes:A&a(female);A&a(male)
ByplacingthedifferentgametesforeachparentalongeithersideofaPunnettsquare,itbecomeseasytofillinallpossiblecombinationsofeggandsperm.Allthat’sleftistodeterminetheprobabilitiesofeachgenotypeand/orphenotype.Thisgetsabitmorecomplicatedwhendealingwithtwogenes,howevertheprincipleisthesameasshowninthenextexample:
A a
A AA Aa
a Aa aa
212
cross:AaBbxAabb
gametes:AB,Ab,aB&ab;Ab&ab
AB Ab aB ab
Ab AABb AAbb AaBb Aabb
ab AaBb Aabb aaBb aabb
NoticethatthePunnettsquaredoesn’thavetobeasquareatall, itsimplyneedstoaccommodateallparentalgametesandtheirpossiblecombinations,nothingmore.
TypesofGeneticsProblemsSolving geneticsproblems involvesusing the knowncharacteristicsof some individuals todeduce theprobability of unknown characteristics of other individuals. The characteristics given will relate tophenotype(physicaldescription),genotype(geneticalleles),orboth.Ingeneral,thegeneticsproblemsyouwillbeaskedtosolveareoftwobasictypes:
1) Characteristicsoftheparentsaregivenandyoumustdeterminetheprobabilitiesofeachpossibletypeofoffspring.
2) Characteristicsoftheoffspringaregivenandyoumustdeducecharacteristicsoftheparents.Regardlessofwhichtypeofproblemyouaresolving,youwillneedtousetheprincipleswehaveaddressedinPart1(genes,alleles,meiosis,gametes,probability),thetoolsreviewedintheprevioussection,andabitofcommonsense.Theapproachtosolvingeachtypeofproblem,however,isslightlydifferent.
SolvingType1problemsInType1problems,youwillbegivencharacteristicsoftheparentsbeingcrossedandaskedtofigureouttheprobabilitiesofallpossiblegenotypesand/orphenotypesintheoffspring.Solvingsuchproblemswillrequire4basicsteps:
1) Determinethegenotypesofbothparentsandwriteoutthecross.• genotypesmaybegivenintheproblemoryoumayhavetodeducethem
2) Determinethegenotypesofallpossiblegametesproducedbyeachparent,andwritethemonadjacent
sidesofaPunnettsquare.• gametesarehaploidandthushaveonealleleforeachgeneofinterest
3) FillinallpossibleoffspringgenotypesinthePunnettsquare.
• allpossiblecombinationsofgeneticallydifferenteggsandspermmustbeaccountedfor
4) Determinetheprobabilitiesofeachpossiblegenotype/phenotypeintheoffspring.
213
Toillustratethesestepslet’ssolvethesampleproblembelow: In pea plants, purple flower color is determined by a dominant allele P and white flower color is determinedbyarecessiveallelep.Iftwoheterozygouspeaplantswithpurpleflowersarecrossed,what aretheprobabilitiesofeachpossiblegenotypeandphenotypeintheoffspring?Step1:Writeoutthegenotypesofeachparentinthecross.
Due to the phrase “two heterozygous pea plants with purple flowers are crossed” we know that the genotypesoftheparentsbeingcrossedmustbe:
PpxPp
Step2:Determinethegenotypesofalldifferentgametesproducedbyeachparent,andarrangethemonadjacentsidesofaPunnettsquare.
Duetomeiosis,eachparentwillproducehaploidgametescontainingeitherthePalleleorthepallele, eachinequalproportions(50%ofeach):
genotypesofmalegametes–P,p
genotypesoffemalegametes–P,p
P pP
p
Step3:Determineallpossiblegenotypesintheoffspring.
SimplyfillinthePunnettsquarewiththegenotypesofallpossibleunionsofgametes:
P(1/2) p(1/2)P(1/2)
PP(1/4) Pp(1/4)
p(1/2)
Pp(1/4) pp(1/4)
NOTE:Theprobabilitiesofeachgameteandeachresultingoffspringgenotypeareshowninparentheses,
thoughthisnormallywouldnotbenecessary.
Step4:Summarizetheprobabilitiesofeachpossiblegenotype/phenotypeintheoffspring.
ThePunnettsquareaboverevealsthatthereareonly4differentcombinationsofspermandeggyielding 3possiblegenotypesand2possiblephenotypes.Probabilitiesaredeterminedbyfollowingtheproduct rule(e.g.,PandPinagamete=½x½=¼)andthesumrule(e.g.,PporPp=¼+¼=½):
Genotypes Phenotypes¼PP ¾purpleflowers(¼+¼+¼)
½Pp(¼+¼) ¼whiteflowers ¼pp
214
Onceyoucompletestep4youwillhaveyouranswer.Whetheryourepresenttheprobabilitiesasfractions,decimalsorpercentagesisuptoyou.Allthatmattersisthatthevalueforeachprobability,regardlessofhowitispresented,iscorrect.Nowyouarereadyforthenextexerciseinwhichyouwillsolvesimilarproblemsonyourown…Exercise2A–Type1geneticsproblemsForthefollowingtwoproblems,tallplantheight isdeterminedbyadominantallele(T)andshortplantheight isdeterminedbyarecessiveallele(t).Determinetheprobabilitiesforallpossiblegenotypesandphenotypesoftheoffspringresultingfromeachcross.
1. homozygousdominant(TT)xheterozygous(Tt)
2. heterozygous(Tt)xhomozygousrecessive(tt)
SolvingType2problemsInType2problemsyouwillbegiventhecharacteristicsofoffspringandmustfigureoutthecharacteristicsofoneorbothparents.Tosolvesuchproblemssimplyfollowthesetwosteps:
1) Diagramapedigree containingall individuals in theproblem,and indicate thegenotypesofasmanyindividualsaspossibleusingtheinformationprovided.
2) Usethepedigreetodeducetheinformationtheproblemasksfor.
Let’sdoasampleproblemofthistype: In cats, black fur color is determined by a dominant allele B and white fur color is determined by a recessivealleleb.Awhitecatgivesbirthto3whitekittensand2blackkittens.Whatisthegenotypeand phenotypeofthefather?Step1:Diagramapedigreeshowingthegenotypes.
bbx__
3bb,2B_
Thephenotypesgivenforthemothercatandherkittensindicatethegenotypesabove(forthisproblemafullpedigreeisnotnecessary,asimplediagramsuchasthiswillsuffice).
Step2:Deducemissinggenotypesinpedigreetoarriveattheanswer.
Sincesomeofthekittensarewhite(bb),bothparentsmustcarrythewhiteallele(b).Sincesomeofthekittensareblack(B_),atleastoneparentmusthaveablackallele(B)whichinthiscasecanonlybethefather. Thus the father catmust beblackwith the genotypeBb,which is the answer to theproblem.Thoughnotaskedintheproblem,youcanalsodeducethattheblackkittensallhavethegenotypeBbsince
215
allkittensreceiveawhiteallele(b)fromthemother.Keepinmind,itisalwaysagoodideatoconfirmyouranswerwithaPunnettsquarebasedontheparentalgenotypesyouhavededuced.
bbxBb
3bb,2Bb
Exercise2B–Type2geneticproblemsAlbinisminhumanbeings(lackofskinpigment)isduetoarecessiveallele.UseAtorepresentthedominant“normal”alleleandatorepresenttherecessivealbinismalleleinsolvingthetwoproblemsbelow:
1. Analbinochildisborntotwoparentswithnormalskinpigmentation.Whatarethegenotypesoftheparents?
2. Analbinowomanhas8childrenwiththesameman,3withnormalpigmentationand5thatarealbino.Whatcanyouconcludeaboutthefather?
IncompleteDominance,Codominance,andMulti-AllelicInheritance
Theproblemsyouhavesolvedsofararerelativelystraightforwardasfarasgeneticsproblemsgo.Ineachcasetheprobleminvolvedonlyonegene,twoalleles,andthealleleswereeitherdominantorrecessive.Thenext fewproblems youwill solve involve somenewconcepts that are frequently encountered ingenetics.The first issue is incomplete dominance, which occurs when a heterozygous genotype results in aphenotypethatisintermediatebetweenthetwohomozygousphenotypes.Forexample,twodifferentalleles forasinglegeneresult inthreedifferentcolorsofcarnationflowers.TheRalleleresults inredpigment production (red) and the r allele results in a lack of pigment production (white). The threepossiblegenotypesandphenotypesareshownbelow:
Genotype Phenotype
RR redcarnations
Rr pinkcarnations
rr whitecarnationsThisclearlyisnotcompletedominance,otherwisetheheterozygotes(Rr)wouldhaveredflowers.Thewhitealleleisstillconsideredrecessivesinceitresultsinthelackofpigment.Howeverthereislessredpigmentwithoneredallele(Rr)thanwithtworedalleles(RR).Thusinthiscasewewouldsaythattheredalleleisincompletelydominantoverthewhiteallele.Thenicethingaboutincompletedominanceisthatthephenotyperevealsthegenotype,somethingyouwillappreciatewhenyousolveproblemssuchasthoseinthenextexercise.
216
Exercise2C–IncompletedominanceInsnapdragons,redflowersareproducedbyhomozygousRRplantsandwhiteflowersareproducedbyhomozygousrrplants.Heterozygousplants(Rr)producepinkflowers.Solvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:
1. Indicatetheprobabilitiesofeachgenotypeandphenotyperesultingfromtheacrossbetweentwopinksnapdragons.
2. Acrossbetweentwosnapdragonsproduced15offspringwithredflowersand17offspringwithpinkflowers.Whatarethegenotypesandphenotypesoftheparents?
Sometraitsinvolveagenethathasmorethantwoalleles.OnesuchexampleishumanABObloodtypewhichisdeterminedbyasinglegenewiththreedifferentalleles.The“A”and“B”alleleseachresultinadifferentglycoproteinonthesurfaceofredbloodcells.Whenpresentinthesameindividual,bothallelesareexpressedequallyresultingintheABbloodtype.Thisisanexampleofcodominance.The“O”alleleproduces no glycoprotein and thus is recessive to both the “A” and “B” alleles. Based on theserelationshipsthethreeallelesaresymbolizedIA,IB,andi,withthevariousABOgenotypesandphenotypessummarizedbelow:
Genotype BloodType
IAIA A IAi A IBIB B IBi B IAIB AB ii O
RefertotheinformationaboveasyousolvegeneticproblemsinvolvinghumanABObloodtypeinthenextexercise…Exercise2D–Multi-allelicinheritanceandcodominanceSolvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:
1. IndicatetheprobabilitiesofeachgenotypeandphenotypeinthechildrenofawomanwithbloodtypeOandamanwithbloodtypeAB.
2. AwomanwithbloodtypeAandamanwithbloodtypeBhave3children,oneeachwithbloodtypesA,BandO.Whatarethegenotypesoftheparents?
217
SexLinkageAll of the geneticproblems youhave solvedup to this point involve genesonanautosome, i.e., anychromosomethatisnotasexchromosome.Forgenesonautosomes,inheritancepatternsaregenerallyno different for males and females. This is not the case, however, for genes on the X and Y sexchromosomes. Females have two X chromosomes and thus two alleles for each gene on the Xchromosome.MaleshaveonlyoneXchromosomealongwithasingleYchromosome. Withveryfewexceptions,genesontheXchromosomearenotfoundontheYchromosomeandviceversa.ThusmaleswillhaveonlyonealleleforeachgeneontheXchromosome.As a result of this disparity, the inheritancepatterns for geneson the sex chromosomes are typicallydifferent for males versus females. This phenomenon is called sex linkage, which refers to geneticinheritancethatdiffersdependingonthesexoftheindividual.GenesontheXchromosome,referredtoasX-linked,andgenesontheYchromosome,referredtoasY-linked,exhibitsexlinkageorsex-linkedinheritance.BecausetheYchromosomehassofewgenes,wewilllimitourfocustoX-linkedgenes.
TheapproachtosolvinggeneticproblemsinvolvingX-linkedgenesisbasicallythesameasforautosomalgenes.TheallelesforX-linkedgenesaresymbolizedusingan“X”withasuperscriptrepresentingtheallele(e.g.,XA).Inplaceofasecondalleleinmalesthesymbol“Y”isused,withnosuperscript,torepresenttheYchromosome.Let’snowlookatasampleproblem:
Inhumans,ageneticalleleresponsibleforcolor-blindnessisrecessiveandX-linked.Ifacolor-blindwoman andamanwithnormalcolorvisionplantohavechildren,whatsortofcolorvisionwouldyoupredict in theirchildren?Step1:Writeoutthegenotypesofeachparentinthecross.
UsingXBandXbtorepresentthedominantnormalandrecessivecolor-blindnessalleles,respectively,the onlypossiblegenotypesfor“acolor-blindwomanandamanwithnormalcolorvision”are:
XbXbxXBY
Step2:Determinethegenotypesofalldifferentgametesproducedbyeachparent.
Bymeiosis,thewomanproduceseggsallwiththegenotypeXb.ThemanproducesspermcontaininghisX chromosome(XB)orhisYchromosome:
genotypeoffemalegametes–Xbgenotypesofmalegametes–XBorY
Step3:Determineallpossiblegenotypesintheoffspring.
SimplydrawaPunnettsquareaccountingforallparentalgametesandfillinallpossiblegenotypesforthechildren:
XB YXb
XBXb XbY
218
Step4:Summarizetheprobabilitiesofeachpossiblegenotype/phenotypeintheoffspring.
Whenevertheresultsofacrossdifferformalesandfemales,youshouldindicatetheprobabilitiesfor maleandfemalegenotypes/phenotypesseparately.Theanswertothisproblemthereforeisbest expressedasfollows:
100%oftheirgirlswillhavenormalcolorvision(thoughallwillbecarriers)
100%oftheirboyswillbecolor-blindHopefully it isclear that themethodofsolvinganX-linkedgeneticproblem is reallynodifferent thansolvinganyotherproblem.SomegeneralfeaturesofX-linkedgenesyoumayhaverealizedbysolvingthisproblemandshouldkeepinmindare:
• sonsalwaysreceivetheirXchromosomefromtheirmother(dadcontributesY)
• daughtersalwaysreceivetheirfather’sXchromosome
• femalesarediploidforX-linkedgenesandcanbecarriersofrecessivealleles
• malesarehemizygousforX-linkedgenes(haveonlyoneallele)andthusshowthephenotypeofthesinglealleleinheritedfromthemother
Exercise2E–X-linkedinheritanceHemophilia,likecolor-blindness,isanX-linkedrecessivecondition.Solvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:
1. Anormalwomanwhosefatherisahemophiliacmarriesanormalman.Whataretheoddsthathemophiliawillafflictanygivenmalechild?anygivenfemalechild?
2. Acouplehasthreechildren,anormalboyandaboyandgirleachwithhemophilia.Whatcanyousayabouttheparents?
TheInheritanceofMultipleGenesWhenfollowingtheinheritanceofmorethanonegene,theapproachissimilartosinglegeneinheritance.Thetrickistocorrectlydeterminealldifferentparentalgametesandkeeptrackoftheallelesforeachgene.Toillustratehowthisisdone,let’sdoasampleproblem: Inpeaplants,flowercolorisdeterminedbyadominantpurpleallelePandarecessivewhiteallelep,and plantheightisdeterminedbyadominanttallalleleTandarecessiveshortallelet.Atallpeaplantwith purpleflowersthatisheterozygousforbothgenesiscrossedwithashortplantwithpurpleflowersthatis heterozygousforflowercolor.Whataretheprobabilitiesofeachpossiblephenotypeintheoffspring?
219
Step1:Writeoutthegenotypesofeachparentinthecross.
TtPp(tallpurpleplant)xttPp(shortpurpleplant)
Thesearetheonlygenotypesconsistentwiththeinformationgivenintheproblem.
Step2:Determinethegenotypesofalldifferentgametesproducedbyeachparent.
Bymeiosis,eachparentwillproducehaploidgametescontainingonealleleforeachgene.Thedifferent gametesproducedbyeachparentare:
TP,Tp,tP,tp(tallpurpleplant)
tP,tp(shortpurpleplant)
Step3:Determineallpossiblegenotypesintheoffspring.
DrawaPunnettsquareshowingthegametesforeachparentandfillinthegenotypesofallpossibleoffspring:
TP Tp tP tptP
TtPP TtPp ttPP ttPp
tp
TtPp Ttpp ttPp ttpp
Step4:Summarizetheprobabilitiesofeachpossiblephenotypeintheoffspring.
BasedonthePunnettsquare,3outof8genotypesgivea“tallpurple”phenotype,3of8“shortpurple”,1of8“tallwhite”,and1of8“shortwhite”.Thustheprobabilitiesofallpossiblephenotypesintheoffspringare:
3/8–tallwithpurpleflowers3/8–shortwithpurpleflowers1/8–tallwithwhiteflowers1/8–shortwhiteflowers
Problemssuchasthiscangetrathercomplicated,howeverifyoukeeptrackofallallelesproperlyateachstep,youcaneasilysolveanysuchproblem.
Exercise2F–GeneticsproblemsinvolvingtwogenesSolvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:
1. Indicatetheprobabilitiesofallphenotypesintheoffspringoftwotallpeaplantswithpurpleflowers,bothofwhichareheterozygousforbothgenes.
2. Anormalwomanwithanalbinofatherandnofamilyhistoryofhemophiliaplanstohavechildrenwithahemophiliacmanwithnormalskinpigmentationwhosemotherisalbino.Determinetheprobabilitiesofallpossiblephenotypesintheirchildren.
220
InterpretingPedigrees
Asmentionedearlier,pedigreescanbeaveryusefultooltovisualizephenotypesinafamilylineage(seepage8ofthislab).Onceapedigreehasbeenproducedonecandeducethelikelymodeofinheritanceofthegeneticcondition(i.e.,dominantvsrecessive,autosomalvsX-linked)andasaresultdeterminethegenotypesofvariousindividualsinthepedigree.Toillustratethislet’sconsidersomeexamples:
Thispedigreerevealsanautosomal recessivemodeofinheritance, i.e., the gene responsible for the geneticconditionisrecessiveandlocatedonanautosome(non-sex chromosome). The condition is clearly recessivesince unaffected couples have affected children. Thiswouldnotbepossiblewithadominantallele.Youwillalsonoticethatthecondition“skipsageneration”whichalso is only possible with a recessive allele. It also
appears tobeautosomalsincemalesandfemalesareaffectedequally (recall thatmalesare farmorelikelytobeaffectedbyanX-linkedrecessivecondition).Youshouldalsoexamineaffectedfemalessuchastheoneatthetopofthepedigree.IfaconditionisactuallyX-linkedthenallsonsofaffectedfemaleswouldhavethecondition.Ifthisisnotthecase,asinthispedigree,thegenemustbeonanautosome.Oncethemodeofinheritancehasbeendetermined,genotypescanthenbededucedforeveryoneinthepedigree. For example, all affected individuals abovemust be homozygous recessive (aa) and if twounaffectedparentshaveaffectedchildren,theybothmustbeheterozygous(Aa).Forsomeunaffectedindividualsthesecondallelecannotbededucedbasedonthepedigreeandthusisunknown(A?).Here is an example of apedigree revealing a geneticcondition to be X-linkedrecessive. This condition isrecessive for the samereasons as the previouspedigree. It ismost likelyX-linked since only males areaffected. However thiscannot be said with 100%certaintysincethereisaslightchancethegeneresponsibleforthisconditionisautosomalandbyrandomchanceonlymalesareaffectedinthisfamily.Thenextexample showsanautosomaldominant condition. Noticethat,consistentwithaconditioncausedbyadominantallele,thereareaffectedindividualswhoshowupeverygeneration.Also,therearenounaffectedcoupleshavingaffectedchildrenasyouwouldseewitharecessivecondition.ThisconditioncannotbeX-linkedsince,ifitwas,all fathers would pass the condition to their daughters since alldaughters receive their fathersXchromosome. Ifyou lookcarefullyyouwillseeoneaffectedfatherhavinganunaffecteddaughtermakingitcertainthatthelocusofthismutantalleleisanautosome.
221
ThislastexamplebelowshowsanX-linkeddominantcondition.Ithasallthecharacteristicsofadominantconditionasindicatedforthepreviouspedigree.YoucantelliftheconditionisX-linkedbylookingattheoffspring of an affectedman and an unaffected woman (there are 3 such couples in this pedigree).RememberthatfathersgivetheirXchromosometoalldaughtersandtheirYchromosometoallsons.ThusiftheconditionisX-linkedanddominant,alldaughtersofthesemenshouldbeaffectedandalloftheirsonsshouldbeunaffected.All7daughtersofthesemenhavethecondition,whereasnoneoftheir5sonsareaffected.Theoddsofthisoccurringforanautosomaldominantconditionwouldbe2-12or1in4096sincetherewouldbea50%chanceforeachdaughtertoinherittheconditionanda50%chanceforeachsontobeunaffected.ThereforeitisalmostcertainthatthisgeneticconditionisdominantandX-linked.
Inthefinalexerciseforthislabyouwillpracticediagrammingandinterpretingpedigrees.Exercise2G–InterpretingpedigreesSolvethefollowingproblemsonyourworksheet,beingsuretoshowallyourwork:
1. Examinethepedigreeonyourworksheetanddeterminethemodeofinheritance(dominantorrecessive,autosomalorX-linked).Basedonthemodeofinheritance,determinethegenotypesofeachindividualinthepedigreerepresentinganyunknownalleleswithaquestionmark(?).
2. Ahypotheticalmutationinasinglegeneresultsina“zombie”phenotype.Anormalmanandwomanhave3children–azombiegirl,anormalgirlandanormalboy.Themanhasanormalsisterandmotherbuthisfatherisazombie.Thewomanhasanormalbrotherandbothherparentsarenormal.Diagramapedigreeofthisfamilyanddeterminethemodeofinheritanceforthezombiecondition.Onceyouhavedoneso,determinethegenotypesofallfamilymembersandindicateanyunknownalleleswithaquestionmark(?).
222
GeneticInheritanceLabWorksheet Name________________________Exercise1A–Probabilityandsamplesize
Probabilityofheads=______ Probabilityoftails=______Fill in the table to the right with the expectednumbers of heads and tails based on theprobabilitiesabove:
10flips 50flips wholeclassheads
tails
Recordthenumbersofheads&tailsandthepercentagesforyouractualcoinflips:
set> 1 % 2 % 3 % 4 % 5 % all %heads % % % % % %
tails % % % % % %
TOTAL 10 100% 10 100% 10 100% 10 100% 10 100% 50 100%Usethetablebelowtorecordtheresultsfortheentireclass(whichshouldbeonthewhiteboard):
Comparetheresultsforsamplesizesof10,50andthewholeclassandcommentonwhichsamplesizecomesclosesttotheexpectednumberofheadsandtailsyoudeterminedabove.
class percentheads %
tails %
TOTAL 100%
Exercise1B–DiceBaseball
Refertothematrixonpage5ofthelabtofillintheprobabilitiesforeachsumofthedice:
sum> 2 3 4 5 6 7 8 9 10 11 12 totalprobability
(x/36)
36/36Determinethefollowing“atbat”outcomesforeachsumofthedice–single,double,triple,homerun,out,walk,doubleplay(ifrunneronfirst)–doingyourbesttobeconsistentwithrealbaseball:
sum> 2 3 4 5 6 7 8 9 10 11 12outcomefor“atbat”
223
Keepscoreforyourbaseballgameinthetablebelow.Asyouplay,keeptrackofyourbaserunnersusingthepropsprovidedinyourlabkit:
team 1 2 3 4 5 6 7 8 9 10 11 12 total
Exercise2A–Type1geneticsproblems
Solvetheproblemsbelowinthespaceprovided.Besuretoindicatetheprobabilitiesofeachpossiblephenotypeandgenotypeandtoshowyourwork:1.homozygousdominant(TT)xheterozygous(Tt)
2.heterozygous(Tt)xhomozygousrecessive(tt)
Exercise2B–Type2geneticsproblems
Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Analbinochildisborntotwoparentswithnormalskinpigmentation.Whatarethegenotypesoftheparents?2.Analbinowomanhas8childrenwiththesameman,5ofwhicharealbino.Whatcanyouconcludeaboutthefather?
224
Exercise2C–Incompletedominance
Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Indicatetheprobabilitiesofeachgenotypeandphenotyperesultingfromtheacrossbetweentwopinksnapdragons.2.Acrossbetweentwosnapdragonsproduced15offspringwithredflowersand17offspringwithpinkflowers.Whatarethegenotypesandphenotypesoftheparents?Exercise2D–Multi-allelicinheritanceandcodominance
Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.IndicatetheprobabilitiesofeachgenotypeandphenotypeinthechildrenofawomanwithbloodtypeOandamanwithbloodtypeAB.2.AwomanwithbloodtypeAandamanwithbloodtypeBhave3children,oneeachwithbloodtypesA,BandO.Whatarethegenotypesoftheparents?
225
Exercise2E–Multi-allelicinheritanceandcodominance
Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Anormalwomanwhosefatherisahemophiliacmarriesanormalman.Whataretheoddsthathemophiliawillafflictanygivenmalechild?anygivenfemalechild?2.Acouplehasthreechildren,anormalboyandaboyandgirleachwithhemophilia.Whatcanyousayabouttheparents?Exercise2F–Geneticsproblemsinvolvingtwogenes
Solvetheproblemsbelowinthespaceprovided,andbesuretoshowyourwork:1.Indicatetheprobabilitiesofallphenotypesintheoffspringoftwotallpeaplantswithpurpleflowers,bothofwhichareheterozygousforbothgenes.2.Anormalwomanwithanalbinofatherandnofamilyhistoryofhemophiliaplanstohavechildrenwithahemophiliacmanwithnormalskinpigmentationwhosemotherisalbino.Determinetheprobabilitiesofallpossiblephenotypesintheirchildren.
226
Exercise2G–Interpretingpedigrees
1. Examinethepedigreeshownanddeterminethemodeofinheritance(dominantorrecessive,autosomalorX-linked).
Basedonthemodeofinheritance,determinethegenotypesofeachindividualinthepedigreerepresentinganyunknownalleleswithaquestionmark(?).
2. Ahypotheticalmutationinasinglegeneresultsina“zombie”phenotype.Anormalmanand
womanhave3children–azombiegirl,anormalgirlandanormalboy.Themanhasanormalsisterandmotherbuthisfatherisazombie.Thewomanhasanormalbrotherandbothherparentsarenormal.Diagramapedigreeofthisfamilyanddeterminethemodeofinheritanceforthezombiecondition.Onceyouhavedoneso,determinethegenotypesofallfamilymembersandindicateanyunknownalleleswithaquestionmark(?).
227
SupplementalProblemsToensureyouunderstandthekeyaspectsofgeneticinheritanceyouwillneedtopracticesolvinggeneticproblemsmuchliketheonesyou’vesolvedinthislaboratory.Whatfollowsaresetsofgeneticproblemsgroupedbycategory.Solvetheseproblemsonyourowninordertocompletethislaboratory.
SINGLEGENEPROBLEMSInDrosophila,atypeoffruitfly,thelong-wingallele(L)isdominantoverthevestigial-wingallele(l):1. Ifaheterozygous long-winged fly ismatedwithahomozygous long-winged fly,whatpercentageof the
offspringwouldbeexpectedtobehomozygouslong-winged?Wouldtherebeanyvestigial-wingedflies?2. Along-wingedflymatedwithaflyhavingvestigialwingsproduces35long-wingedand33vestigial-winged
offspring.Whatarethegenotypesoftheparentsandtheoffspring?PROBLEMSINVOLVINGTWOGENES3. Tworough,blackguineapigsproducetwooffspring,oneroughwhiteandtheothersmoothblack.Ifthese
sameparentsweretohaveadditionaloffspring,whatproportionofphenotypeswouldyouexpect?4. InDrosophila,graybodycolorisdominantoverebony,andstraightwingsaredominantovercurved. A
gray-bodiedfemalewithcurvedwingsismatedwithagray-bodiedmalewithstraightwings,yieldingsomeebony,curved-wingoffspring.Whatothertypesofoffspringcouldbeproducedandinwhatproportions?
Forthenextproblem,assumethatbrowneyes(B)aredominantoverblueeyes(b),andright-handedness(R)isdominantoverleft-handedness(r).(Inreality,modifyingfactorscomplicatetheinheritanceofthesetraits)5. Aright-handed,blue-eyedmanmarriesaright-handed,brown-eyedwoman.Theyhavetwochildren,one
left-handedandbrown-eyedandtheotherright-handedandblue-eyed.Byalatermarriagewithanotherwomanwhoisalsoright-handedandbrown-eyed,themanhasninechildren,allofwhomareright-handedandbrown-eyed.Whatarethegenotypesofthismanandhistwowives?
X-LINKEDPROBLEMS6. YellowbodycolorinDrosophilaisanX-linkedcharacteristicthatisrecessivetograybodycolor(Drosophila
femalesareXXandmalesXYasinhumans).Agrayfemalematedwithanunknownmaleandproducedsomeyellowandsomegrayoffspringofbothsexes.Whatisthegenotypeoftheoriginalfemale?Whatisthephenotypeofthemalewithwhichshemated?
Fortheseproblemskeepinmindthatcolor-blindnessandhemophiliaarebothX-linkedrecessiveconditions.7. Inhumans,migraine isduetoanautosomaldominantallele. Anormal-visionedwomanwhohasnever
sufferedfrommigraineheadachestakesherdaughtertoadoctorforanexamination.Intheexaminationthedoctordiscoversthatthegirliscolor-blindandsuffersfrommigraineheadaches.Whatcanthedoctorconcludeaboutthegirl’sfather?
228
8. Inhumans,aniridia(atypeofblindness)isduetoanautosomaldominantallele,andopticatrophy(anothertypeofblindness)isduetoarecessiveX-linkedallele.Amanblindfromopticatrophymarriesawomanblindfromaniridia.Assumingthatthewomanishomozygousforbothgenes,wouldanyoftheirchildrenbeexpectedtobeblind?Ifso,whattypeofblindnesswouldtheyhave?
9. Anon-hemophiliacmanwhoisblindfromaniridia(seepreviousproblem)andwhosemotherisnotblind
marries a non-hemophiliacwomanwho is not blind andwhose father has hemophilia. What kinds ofchildrenmighttheyhaveandinwhatproportions?
10. A normal-visionedmanmarries a normal-visionedwomanwhose father is color-blind. They have two
daughterswho growup andmarry. The first daughter has five sons, all normal-visioned. The seconddaughterhastwonormal-visioneddaughtersandacolor-blindson.Diagramthefamilyhistoryinapedigreeandindicatethegenotypesofallfamilymembers.
MULTIPLEALLELEPROBLEMSInrabbits,fourallelesforasinglegeneaffectingcoatcolorhavethefollowingrelationships:
C>cch>ch>cThustherearefourpossiblephenotypeswhichareassociatedwiththefollowinggenotypes:
fullcolor–C_(Cwithanyotherallele)
chinchilla–cchcchorcchchorcchc
Himalayan–chchorchc
albino–cc 11. Would it bepossible for a crossbetween two chinchilla rabbits to result inbothHimalayanandalbino
offspring?(besuretoqualifyyouranswer) Inmice,threeallelesforasinglegeneaffectingcoatcolorhavethefollowingrelationships:
AY>A>aTherearefourpossiblephenotypeswhichareassociatedwiththefollowinggenotypes: yellowcoat–AYAorAYa lethal(micedieinutero)–AYAY
agouti(gray)–AAorAa black–aa12. For the following crosses indicate the phenotypes of the parents and the expected proportions of all
possibleoffspring: a)AYaxAa b)AYaxAYa c)AAxAa d)AYAxAYa e)AYAxAYA
229
230