45
Beam Position Monitor for KAERI KNU Accelerator Physics Laboratory

Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Beam Position Monitor for KAERI

KNU Accelerator Physics Laboratory

Page 2: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Contents • The principle of a cavity BPM • Why 5.602 GHz? • Design results of the KAERI cavity BPM(5.6GHz) • Request list • Cylindrical cavity BPM design(2.8GHz) • Resonant mode of cylindrical BPM • Cavity dimensions for HFSS simulation • Antenna position scan • Design parameters of cavity BPM • Output signal of X-port for 2.8GHz and 5.6GHz • Test scheme for each BPMs • Cavity dimensions for HFSS simulation (40mm&50mm) • Dipole mode of cylindrical BPM(50mm) • Antenna position scan and antenna depth scan(50mm) • Isolation • Design parameters of a final decision cavity BPM (50mm) • Output signal for X-port and effect of the timing jitter in BPM • Homodyne Receiver and heterodyne Receiver • Comparison and discussion

Page 3: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

The principle of a cavity BPM

• Beam position measurement by using dipole-mode

An advantage of a cavity-type BPM - Achievement of higher beam position resolution (~nm) - Short decay time - Beam position measurement possibility of the bunch train

Page 4: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Calibration factor = 0.674 mV/ nm

Beam position [μm]

Calibration factor with beam position

Beam signal calibration

Base plate

post

mover

BPM

beam )R/Q(Q

Z2qV

ext0 out

ω= 2

2

0

2 28)( ybab

LTyQR

ωε

Page 5: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

1.348mV

Oscilloscope/ ADC

Voltage variation due to beam postion = 0.674mV/nm

The principle of measurement of BPM

Calibration

Beam position [μm]

Page 6: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

The constraints of BPM design of KAERI

•RF frequency= 2.801[GHz]

•Resonant frequency =5.602[GHz]

•Micro beam space= 357[ps]

•Micro pulse charge= 14.28[pC]

•Micro pulse length= 10~20[ps]

•Total bunch length= 5[μs]

•Average current= 40[mA]

•Vertical beam size= 2~3[mm]

•Radius of BPM < 86[mm]

•Drift beam pipe= 45[mm]

•Cut-off frequency=5[GHz]

22 )()(2 b

na

mcfcππ

π+=

Page 7: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Why 5.6GHz ?

• We should use resonant frequency of n x 2.801 GHz for the KAERI BPM to make constructive interference.

2.801 GHz 5.602 GHz

Page 8: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Cylindrical cavity BPM design

•2.801 X 2=5.6 [GHz]

•Cavity width= 6[mm]

•Beam pipe(radius)= 10[mm]

•Sensor cavity(radius)=30.7[mm]

23

8 )102

83.3(103 −××××=

Rf

mnlTM π

)exp()

2

2sin

( 2

2222

3

4

ccL

cL

Lxc

U zσωω

ωω −

=

Page 9: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Resonant mode of cylindrical BPM

TM010 mode f=4.07596[GHZ]

TM110 (X di-pole) f=5.64620[GHZ]

TM110 (Y di-pole) f=5.64649[GHZ]

전기장 (Electric field) 자기장 (Magnetic field)

Page 10: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Cavity dimensions for HFSS simulation

20

30.7

5 15

8

37

6

1.5

50

Unit: [mm]

Page 11: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Antenna position scan

Wave Guide

Antenna

1.8

3.2

6.3

4.1

Ap1

Unit: [mm]

Antenna position scan was performed to find the position with high transmission and high isolation.

Page 12: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

S parameter by HFSS simulation

X-port

Y-port

0.7669

0.7654

0.5423

0.5412

Mode f0[GHz] Δf[GHz] S21

X-port 5.5976 0.0057 0.7669

Y-port 5.5976 0.0057 0.7654

Mesh number=118,690

Page 13: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Design parameters of cavity BPM

Mode f0[GHz] β QL Q0 Qext τ[ns] Vout[mV]

X-port 5.5976 3.290 982.035 4212.935 1280.526 27.922 0.26466

Y-port 5.5976 3.263 982.035 4185.998 1283.035 27.922 0.2644

•f0= Resonant frequency

•β= Coupling constant

•QL= Loaded quality factor

•Q0= Quality factor of the cavity

•Qext = Quality factor of the external coupling

•τ= Decay time constant

•Vout= Output voltage

Lext QQββ+

=1

21

21

1 ss−

fQQ LL

πωτ

2==

ffQL ∆

=LQQ )1(0 β+=

Page 14: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Output signal for X-port

10μm offset

)sin()2

exp(

)2

exp()/(2

0,

2

22

0,

φωτ

σωω

+−=

−=

ttVV

cQR

QZqV

outout

z

extout

t

A

………...

357ps

10~20ps

0.7

Page 15: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Request list

• There is beam corrector to sweep the beam? • We need the beam current profile • What do you want see? Version 1 Version 2

Oscilloscope, Diode, Cables Oscilloscope, Diode, Cables, ADC, Electronics, Code, Ref. Cavity or

Signal Generator (~GHz)

Page 16: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Cylindrical cavity BPM design

•f=2.801 [GHz]

•Cavity width(L)= 12[mm]

•Beam pipe(radius)= 20[mm]

•Sensor cavity(radius)=61.4[mm]

)exp()

2

2sin

( 2

2222

3

4

ccL

cL

Lxc

U zσωω

ωω −

=

2.8 GHz

5.6 GHz •2.801 X 2=5.6 [GHz]

•Cavity width= 6[mm]

•Beam pipe(radius)= 10[mm]

•Sensor cavity(radius)=30.7[mm]

Page 17: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Resonant mode of cylindrical BPM

TM010 mode f=2.03503[GHZ]

TM110 (X di-pole) f=2.82356[GHZ]

TM110 (Y di-pole) f=2.82345[GHZ]

TM120 mode f=4.59769[GHZ]

Page 18: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

S-band BPM dimension

214

252

40 Beam pipe

Unit: [mm]

][77597.2

)()(2

11,

22,

GHzfb

na

mcf

c

mnc

=

+=ππ

π

BPM condition •RF frequency= 2.801[GHz]

•Resonant frequency =2.8035[GHz]

•Micro beam space= 357[ps]

•Micro pulse charge= 14.28[pC]

•Micro pulse length= 10~20[ps]

•Total bunch length= 5[μs]

•Average current= 40[mA]

•Vertical beam size= 2~3[mm]

•Drift beam pipe= 45[mm]

Waveguide

Coupling slot

Cavity

122.8

Page 19: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Cavity dimensions for HFSS simulation

40

61.4

8 31

14

70

12

3

85

Unit: [mm]

Antenna

Waveguide

Cavity

Beam pipe

Page 20: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Antenna position

Waveguide Antenna

1.8 3.2

4.1

Unit: [mm]

14

35

12.7

50

14

80

70

Page 21: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Antenna position scan

Waveguide

Ap1

Ap1 scan The antenna position (AP1) was selected at 14mm.

80

70

Page 22: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Antenna depth scan

Depth

Depth scan

Antenna

The antenna depth was selected at 12.7mm.

Page 23: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

S parameter for X-port transmission and Y-port transmission calculated by HFSS

X-port

Y-port

0.9023

0.9025

0.6380

0.6381 Mode f0[GHz] Δf[GHz] S21

X-port 2.8034 0.004 0.9023

Y-port 2.8033 0.004 0.9025

Mesh number=118,916

Page 24: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Design parameters of cavity BPM

Mode f0[GHz] β QL Q0 Qext τ[ns] Vout[mV] Offset=10

[um]

X-port 2.8034 9.235 700.850 7173.490 776.737 39.789 0.07374

Y-port 2.8033 9.256 700.825 7187.949 776.537 39.789 0.07374

•f0= Resonant frequency

•β= Coupling constant

•QL= Loaded quality factor

•Q0= Quality factor of the cavity

•Qext = Quality factor of the external coupling

•τ= Decay time constant

•Vout= Output voltage

Lext QQββ+

=1

21

21

1 ss−

fQQ LL

πωτ

2==

ffQL ∆

=LQQ )1(0 β+=

Page 25: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Compare with 2.8GHz and 5.6GHz

Frequency [GHz] Mode f0[GHz] β QL Q0 Qext τ[ns]

Vout[mV] Offset=10[um]

2.8

X-port 2.8034 9.235 700.85 7173.49 776.73 39.78 0.0737

Y-port 2.8033 9.256 700.82 7187.94 776.53 39.78 0.0737

5.6

X-port 5.5976 3.290 982.03 4212.93 1280.52 27.92 0.2646

Y-port 5.5976 3.263 982.03 4185.99 1283.03 27.92 0.2644

)sin()2

exp( )2

exp()/(2 0,2

22

0, φωτ

σωω+−=−= ttVV

cQR

QZqV outout

z

extout

Page 26: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Output signal of X-port for 2.8GHz

10μm offset

t

A

………...

357ps

10~20ps

0.7

Page 27: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Output signal of X-port for 5.6GHz

10μm offset

)sin()2

exp(

)2

exp()/(2

0,

2

22

0,

φωτ

σωω

+−=

−=

ttVV

cQR

QZqV

outout

z

extout

t

A

………...

357ps

10~20ps

0.7

Page 28: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Test scheme for each BPMs • 2.8 GHz BPM • 5.6GHz BPM

Sensor Cavity BPM Electro

nics Sensor Cavity BPM

Micro tron

Oscilloscope

ADC Beam Dump

Sensor Cavity BPM Electro

nics Sensor Cavity BPM

Micro tron

Oscilloscope

ADC Beam Dump

Ref cavity

Page 29: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Cavity dimensions for HFSS simulation

40

61.4

8 31

14

Unit: [mm]

Antenna

Waveguide

Cavity

Beam pipe

50

8 29

14

Unit: [mm]

Antenna

Waveguide

Cavity

Beam pipe

61

50 mm 40 mm

The height of the designed BPM is increased by 10 mm due to the growth of the radius of the beam pipe. The radius of the sensor cavity and size of slit is adjusted to control the frequency.

Page 30: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Dipole mode of cylindrical BPM

TM110 (X di-pole) f=2.8043[GHZ]

TM110 (X di-pole) f=2.8034[GHZ]

50 mm 40 mm

The stored power of sensor cavity was sinked into the beam pipe, which consequently reduced the strength sensor cavity’s electric filed to the half the previous strength.

Page 31: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Antenna position scan

Waveguide

1.8

3.2

Unit: [mm]

Ap1

35

50 mm 40 mm

•We scanned the position of antenna for high transmission and isolation. •The isolation of 50mm beam pipe is fluctuates greatly. •When BPM is processing, It can be problems that the section changed heavily.

Page 32: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Antenna depth scan

Depth

Antenna

40 mm 50 mm

•By looking at this graph, we can find out that the transmission has a small changes, but isolation shows extreme changes. •We found 7.5mm depth as the most appropriate point for having adequate transmission and isolation for BPM.

Page 33: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

• When the signal produced from the signal generator is put into the Y-port, the signal from Y-port is only observed in reduced rate in X-port.

Example) When the off-set of horizontal direction beam of BPM with over -40[dB] isolation is 1mm, it gives 10 μm process error in the vertical direction beam.

• We designed the BPM by using isolation with over -40[dB]

Isolation

=

in

out

VVdB 10log20][

X Port

X Port

Y Port

Y Port

Transverse

Transverse

Input

Opposite

2.8Ghz 10dBm

Signal Generator

-10 dBm

Spectrum Analyzer

2.8 GHz

Isolation -20 dB

Page 34: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

A final decision

7.5

42.5

35

Waveguide

Antenna

•The position of the antenna is finally decided for the middle of waveguide and the depth is 7.5mm. •The process error of antenna place is ±300μm and it is ±100μm for depth.

Page 35: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Design parameters of cavity BPM

Mode f0[GHz] β QL Q0 Qext τ[ns] Vout[mV]

X-port 2.8043 1.25 3115 6994 5619 176 0.0381

Y-port 2.8045 1.24 3505 7847 6335 198 0.0359

Mode f0[GHz] Δf[GHz] S21

X-port 2.8043 0.0009 0.5545

Y-port 2.8045 0.0008 0.5533

Mesh number=110,000

Mode f0[GHz] β QL Q0 Qext τ[ns] Vout[mV]

X-port 2.803 9.24 700 7173 776 39 0.1027

Y-port 2.803 9.26 700 7187 776 39 0.1027

50 mm

40 mm

Page 36: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Output signal for X-port

10μm offset

)sin()2

exp( )2

exp()/(2 0,2

22

0, φωτ

σωω+−=−= ttVV

cQR

QZqV outout

z

extout

50 mm 40 mm

10μm offset

Page 37: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Effect of the timing jitter in BPM

2.801 GHz

Q0

t0+Δt

Q0+ΔQ

t0 =357 ps Δt = 3.57 ps (1 %) Q0=14.28 pC ΔQ = 0.14 pC (1 %)

Beam offset : 100 μm

Page 38: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Effect of the timing jitter in BPM

Q0

t0+Δt

Q0+ΔQ

t0 =357 ps Δt = 35.7 ps (10 %) Q0=14.28 pC ΔQ = 0.14 pC (1 %)

2.801 GHz

Beam offset : 100 μm

Due to the timing jitter, the decrease of the output voltage is observed.

Page 39: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

39

Analog Signal Processing

The readings are waveforms in 2.8 GHz, so we need a downconversion electronics. Basically, two methods are available: ►homodyne receiver ►heterodyne receiver.

Page 40: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Homodyne Receiver

40

The signal is downconverted to the “direct current” in one stage. Just a few components are needed, the losses are low.

HR is very sensitive to the isolations between LO and RF ports of the mixer. I/Q mixer is usually used.

Page 41: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

For example 1, electronics for IP-BPM@ATF2 (by KNU)

5.712GHz(X) 6.426GHz(Y)

From Ref. cavity

5.712GHz(X) 6.426GHz(Y)

From sensor cavity

Conversion Gain 54dB

Noise Figure < 1.8dB

linear Range -57dB ~ -96dB

41

In-phase signal Quadrature phase signal Reference signal x100

Page 42: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Heterodyne Receiver

42

Downconversion is realized in several stages. That gives a better possibility for the filtering and amplification of the signal. The mirror frequency issue does not seem to be really dangerous in this case.

Page 43: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

In order to extract the amplitude and phase information necessary to recover the position, this waveform(left fig.) is downconverted again in software by multiplying by a LO signal at the same frequency as the waveform.

For example 2, electronics for S-band BPM@ATF2 (by UK)

43

Page 44: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Comparison

Homodyne Receiver

• A single stage • Output : direct current • Just a few components • low loss • Very sensitive to the

isolations between LO and RF ports of the mixer.

• I/Q mixer is used.

Heterodyne Receiver

• Several stages • Easy to filter and

amplify the signal • No effect of the mirror

frequency • Useful in case of long

distance between BPM and electronics

Page 45: Beam Position Monitor for KAERIwebbuild.knu.ac.kr/~accelerator/ppt/KAERI_2.8GHZ_BPM... · 2013. 11. 26. · TM110 (X di-pole) f=2.8043[GHZ] TM110 (X di-pole) f=2.8034[GHZ] 40 mm 50

Discussion • The output voltage of 40mm beam pipe case shows three times of

50mm case. • What beam pipe size need? • To fabricate BPM, we need three months.

– Feed through order &shipment (two month) – BPM design (one month ) fabrication (two month)

• To design electronics, – BPM data – Location to install electronics – Required resolution and dynamic range

• The fabrication will be taken about 3 months after the measurement of signal from BPM.